
Augmenting Event-B Modelling with Real-Time Verification

Alexei Iliasov, Alexander Romanovsky
Newcastle University

Newcastle Upon Tyne, UK
{alexei.iliasov, alexander.romanovsky}@ncl.ac.uk

Linas Laibinis, Elena Troubitsyna
Åbo Akademi University

Turku, Finland
{linas.laibinis, elena.troubitsyna}@abo.fi}

Timo Latvala
Space Systems Finland

Espoo, Finland
Timo.Latvala@ssf.fi

Abstract—A large number of dependable embedded systems
have stringent real-time requirements imposed on them. Anal-
ysis of their real-time behaviour is usually conducted at the
implementation level. However, it is desirable to obtain an
evaluation of real-time properties early at the development
cycle, i.e., at the modelling stage. In this paper we present an
approach to augmenting Event-B modelling with verification
of real-time properties in Uppaal. We show how to extract
a process-based view from an Event-B model that together
with introducing time constraints allows us to obtain a timed
automata model – an input model of Uppaal. We illustrate
the approach by development and verification of the data
processing software of the BepiColombo Mission.

I. INTRODUCTION

Event-B [1] offers a scalable approach to correct-by-
construction system development. While developing a sys-
tem in Event-B, we start from an abstract model that
represents only the most essential system behaviour and
properties. By correctness-preserving model transformations
– refinements – we arrive at a sufficiently detailed system
model. Each refinement step is accompanied by proofs.

Event-B modelling is focused on functional requirements.
However, in design of embedded systems, non-functional
requirements, such as real-time, play equally important role.
Usually, real-time systems properties are evaluated at late
development stages. This might incur costly redevelopment,
if the real-time constraints are not met. Hence, it would be
desirable to evaluate these properties as early as possible.

Real-time properties are to a great extent defined by the
system concurrency model. Such a model is derived from
the targeted system architecture. In the industrial setting,
the system architecture is usually dictated either by the need
to reuse existing components or by the constraints imposed
by the customer. To facilitate construction of the targeted
concurrency model, we propose to design an auxiliary model
– a Process View (PV) – from an Event-B system model.
While suppressing details of the functional behaviour, a PV
model provides the explicit notions of processes and their
synchronisation. We also define the proof obligations that
guarantee that a PV model is a valid projection of the
corresponding Event-B model. Then we augment the PV
model with clocks and timing constraints and arrive at a
timed automata model. The Uppaal model checker [2] is
then used to verify liveness and real-time system properties.

Our approach is illustrated by an industrial case study –
development of the data processing unit of the BepiColombo
satellite undertaken within the EU FP7 project Deploy [3].
The initial development was undertaken by the company
Space Systems Finland. The achieved results has allowed
us to evaluate the impact of component performance and
the frequency of data collection on system responsiveness.

Our approach aims at facilitating investigation of the real-
time behaviour at the modelling stage rather than replac-
ing simulation techniques for analysing real-time system
characteristics at the implementation level. Thus it helps
the designers to explore the impact of various architectural
alternatives on real-time system properties.

The paper is organised as follows. Section II gives a very
short overview of the Event-B formalism as well as presents
Event-B development of the BepiColombo data processing
unit. Section III describes a theoretical basis for constructing
an explicit concurrency model – Process View (PV). In
Section IV we briefly discuss application of the Uppaal
model checker to verification of timed PV models. Finally,
Section V concludes the paper with some final remarks.

II. MODELLING IN EVENT-B

A. Introduction to Event-B

The B Method [4] is a formal approach for development
of highly dependable software. Event-B [5] is a formal
framework derived from the B Method to model reactive
systems. The Rodin platform [6] provides automated tool
support for modelling and verification in Event-B.

In Event-B, a system model is an abstract state ma-
chine [1] defined as follows:

Definition 1 (Event-B model): An Event-B model is de-
fined by a tuple (c, s,X, v, I, SInit, E), where c and s are
the model constants and sets (types) respectively; X(c, s)
is a collection of model axioms; v are the model variables;
I(c, s, v) is the model invariant limiting the possible states
of v; SInit(c, s, v′) is an initialisation action for the model
variables; and E is a set of model events. Moreover, each
event is defined as a tuple (H,S), where H(c, s, v) is the
event guard and S(c, s, v, v′) is a before-after predicate
defining a relation between the current and next states.

A general syntactic representation of Event-B models is
given in Figure 1. While defining events, we adopt the



Machine M
Variables v
Invariants I
Events

Init
evt1
· · ·

evtN

−→

Context C
Carrier Sets s
Constants c
Axioms X

Figure 1. Event-B machine and context

following syntax:

evt =̂ any u where H(v, u) then act end,

where u are local event variables, the guard H is a state
predicate, and the action act is an (either deterministic or
nondeterministic) assignment to the state variables. A deter-
ministic assignment has the standard syntax: x := E(x, y).
A nondeterministic assignment is denoted either as x :∈ Set,
where Set is a value set, or x :| P (x, y, x′), where P relates
initial values of x, y to some final value of x′. As a result,
x can get any value belonging to Set or according to P .

The occurrence of events represents the observable be-
haviour of the system. The guard defines the conditions
under which the action can be executed, i.e., when the event
is enabled. If several events are enabled at the same time, any
of them can be chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach
to system development. Development starts from an abstract
system specification that models the most essential func-
tional requirements. While capturing more detailed require-
ments, each refinement step typically introduces new events
and variables into the abstract specification. Moreover,
Event-B supports data refinement, allowing us to replace
some abstract variables with their concrete counterparts.

The semantics of an Event-B model is formulated as a
number of proof obligations. For instance, the invariant proof
obligations guarantee that the model invariant is preserved
by all the events. The full list of proof obligations can be
found in [1]. The Rodin platform [6] significantly facilitates
verification in Event-B by automatically generating all proof
obligations and providing both automatic and interactive
provers to discharge them. Usually around 90% of proof
obligations are discharged automatically.

B. Modelling and Refinement of the BepiColombo DPU

Space Systems Finland (SSF) is one of software providers
for the European Space Agency mission BepiColombo [7].
The main mission goal is to carry various scientific studies to
explore Mercury. SSF is responsible for developing software
for an important part of the Mercury Planetary Orbiter – the
data processing unit (DPU).

DPU consists of the core software (CS) and the software
of two scientific instruments. CS communicates with the
BepiColombo spacecraft to receive telecommands (TCs)
from the spacecraft and transmit science and housekeeping
telemetry data (TMs) back to it.

CS stores the received TCs in the TC buffer. CS is
also responsible for validation of syntactical and semantical
integrity of each TC. If validation fails, the corresponding
TM is generated. A single TC might request to change
the operational mode of a component, activate or deactivate
scientific data generation, produce a housekeeping report etc.
CS decodes TCs one-by-one and forwards the decoded TC to
a required instrument. In its response, the instrument might
perform a certain action and return an acknowledging TM.
All the outgoing TMs are stored in the TM buffer.

This paper focuses on verification of real-time aspects of
DPU based on its Event-B model. We aim at investigating
the relationship between performance of the system
components and the maximum time it takes to produce a
TM. Hence, we will present only the bits of our Event-B
development relevant to handling TCs and producing TMs.

Abstract model. In our initial specification we define the
variable tmout, tmout ⊆ TM , to abstractly represent
the TM buffer. The model has two events shown below.
The event report adds an element to tmout modelling
production of a new TM, while the event transmit models
transmission of a TM by removing it from the buffer.

report =
any tm where tm /∈ tmout then tmout := tmout ∪ {tm} end

transmit =
any tm where tm ∈ tmout then tmout := tmout \ {tm} end

First refinement. Our first refinement step introduces
two new variables tcin and hkstatus. The variable tcin,
tcin ⊆ TC, models the buffer of incoming TCs, while
hkstatus, hkstatus ∈ BOOL, shows whether periodic
production of housekeeping TMs is activated. We introduce
a new event receive to model receiving a TC. The event
tchandling refines the event report in order to update the
housekeeping status. The event hk is also a refinement of
report. It models production of housekeeping TMs.

receive =
any tc where tc /∈ tcin then tcin := tcin ∪ {tc} end

tchandling = any tm, tc where
tc ∈ tcin ∧ tm /∈ tmout

then

tmout := tmout ∪ {tm} ‖
tcin := tcin \ {tc} ‖ hk :∈ BOOL

end

hk = any tm where
tm /∈ tmout ∧ hk = TRUE

then

tmout := tmout ∪ {tm}
end

Second refinement. At this refinement step we further
elaborate on TC handling and TM production. We introduce
a new variable, curr tc, to contain the current TC handled
by DPU. The new boolean variable decoded reflects
whether the last validation of curr tc has been successful.
The new event decode abstractly models choice of the
TC to be handled and its validation. If TC validation
fails, the new event report error becomes enabled. It
generates an outgoing TM with its value from the set



TM DECODE ERROR. Otherwise, the validated TC
may, e.g., (de)activate generation of housekeeping data, as
modelled in the new event compute hk flag.

decode =
any tc where

tc ∈ tcin ∧ curr tc = NO TC
then

decoded :∈ BOOL ‖ curr tc := tc
end

report error =
any tm where

decoded = FALSE ∧ curr tc %= NO TC ∧ report = NO TM
∧ tm ∈ TM DECODE ERROR \ tmout

then

report := tm
end

compute hk flag =
any hfun where
report %= NO TM ∧ curr tc ∈ {TC HK ON,TC HK OFF}
hfun = {TC HK ON &→ TRUE, TC HK OFF &→ FALSE}

then
hk flag := hfun(curr tc)

end

Third and fourth refinement steps. In our abstract model
the TC and TM buffers are modelled as sets. Next we refine
this abstraction by replacing the sets by the corresponding
queues. At the third refinement step we perform the data
refinement replacing the TC buffer, the set variable tcin, by
the queue tcqueue. In the resulting model, the following
gluing invariant is used to prove refinement correctness:

tcqueue ∈ tc hd+ 1..tc tl ! TC ∧ tc hd ∈ N ∧
tc tl ∈ N ∧ tcin = ran(tcqueue) ∧ tc hd ≤ tc tl ∧
curr tc %= NO TC ⇒ tc hd < tc tl ∧
curr tc %= NO TC ⇒ curr tc = tcqueue(tc hd+ 1)

In the events we replace operations over the set tcin by the
corresponding operations over tcqueue. This allows us to
ensure that TCs are handled in the ”first-in-first-out” order.

In the fourth refinement step we perform a similar data
refinement of the TM buffer by replacing tmout with
tmqueue. Moreover, we introduce a new event execute.
This event abstractly models the computations required to
produce a housekeeping TM. Two new boolean variables
execution and executed reflect whether the computations
have been respectively requested and performed.

execute =
when

executed = FALSE ∧ curr tc %= NO TC ∧
decoded = TRUE ∧
curr tc /∈ {TC HK ON,TC HK OFF}

then
executed :∈ BOOL ‖ execution := TRUE

end

Fifth refinement. In the last refinement step we present
here, we restrict sizes of the TC and TM queues. To achieve
that, we introduce the constants TC QUEUE SIZE
and TM QUEUE SIZE and define the constraining
invariants as follows:

tc tl − tc hd ≤ TC QUEUE SIZE ∧

tm tl − tm hd ≤ TM QUEUE SIZE

Due to the space limit we give only an outline of model
events. The complete model can be found at [8].

MACHINE m5
EVENTS
decode choice of a next TC and its validation
report error a TM about failed TC validation
report success a TM about successful TC validation
compute hk flag switching on/off housekeeping TMs
execute TM generation process
tchandling handling a TC from the TC buffer
hk generating a housekeeping TM
transmit sending a TM (from the TM buffer)
receive receiving a new TC (into the TC buffer)

The obtained Event-B model of DPU is still very abstract.
In [9] the model was refined further to introduce realis-
tic mechanisms for TC validation, TC decoding, and TM
generation. However, in this paper we omit a discussion of
the entire development and use the model m5 as a basis
for analysing the real-time characteristics of DPU. Next we
will briefly outline the principles of constructing an explicit
concurrency model and demonstrate how to create such a
model for the obtained specification of DPU.

III. CONSTRUCTING AN EXPLICIT CONCURRENCY

MODEL

As discussed in Section I, the concurrency model that
the system implements has a crucial impact on its real-
time properties. To construct an explicit concurrency model,
we propose a rely-guarantee [10] based framework called
Process View. Next we overview the basic definitions and
propose the proof obligations that guarantee consistency
between corresponding Process View and Event-B models.

Process View (PV) is a specific projection of an Event-
B model with explicit concurrency and synchronisation. An
intermediate PV model covers much of the semantic gap
between an event-based system characterisation, provided
by Event-B, and timed automata – our formalism of choice
for conducting timed analysis. The reason we propose a new
approach rather than adopt one of the existing notations is
to ensure the practicality and scalability of the verification
routine. The PV design and its structuring primitives are
dictated by the Event-B proof semantics. An important
consideration is also the use of the Event-B infrastructure, in
particular its automated proving, to deal with the verification
conditions introduced by the construction of a PV model.

Formally, a PV model is a separate modelling artefact.
It is linked with an Event-B model by a number of veri-
fication conditions inducing a simulation relation between
the models. An Event-B specification is said to simulate a
corresponding PV model. In other words, a PV model is
some abstraction of an Event-B specification. We argue that
such an abstraction of the Event-B model behaviour allows
us to reason about its timed properties.

The rest of the section is organised as follows. First we
introduce the basic building blocks – activities and activity
transitions. We define then how to assemble activities into



processes and reason at the process level. Finally, we give a
definition of a system of communicating processes and apply
the rely/guarantee reasoning to show process compatibility.

A. Process View

The simplest form of a process is called an activity – an ab-
stract characterisation of a piece of functionality. An activity
is defined by a triple of assumption, rely and guarantee. The
assumption characterises the states when the activity may be
operational. It is essentially an activity invariant. The rely
states the operational conditions that must be satisfied by any
changes in an environment during execution of an activity,
i.e., the maximum interference from the environment that
the activity can tolerate. Finally, the guarantee defines an
obligation that every execution step of an activity must fulfil.

Definition 2 (Activity): Let Σ be the system state space.
An activity is a tuple (A,R,G), where A(v) is the assump-
tion predicate, A : Σ→ BOOL; R(v, v′) and G(v, v′) are
the rely and guarantee predicates defined over the current
state v and the next state v′, R,G : Σ× Σ→ BOOL.

An activity must also satisfy a number of conditions
(omitted here for brevity) that ensure that the set of op-
erational states are not empty and assumption, rely and
guarantee are not contradictory with each other.

Let A be the set of all system activities. Then we can
define a transition between two activities as follows:

Definition 3 (Activity Transition): An activity transition
is a tuple (src, dst, grd, act), where src is the source activ-
ity, src : A, dst is the destination (target) activity, dst : A;
grd is the transition guard predicate, grd : Σ → BOOL,
and act is the transition action defined as a next state
relation, act : Σ× Σ→ BOOL.

While defining a transition, we should also ensure that
the transition guard is compatible with the target activity
assumption, the transition action is feasible, and the transi-
tion is compatible with the destination activity assumption.

Activities connected by activity transitions form a process.
There is no concurrent behaviour within the process as it
engages into activities one at a time. Let A be a set of all
system activities, and T be a set of all activity transitions.
Then we can define a process in the following way:

Definition 4 (Process): A process is a tuple (Inv,Act,
T rn,Rel,Grt,%p, Init), where Inv is the process invari-
ant; Act and Trn are the sets of process activities and
transitions respectively, Act ⊆ A, Trn ⊆ T ; Rel and Grt
are the process rely and guarantee conditions, Rel,Grt :
Σ→ BOOL ; %p is the initial process activity, %p ∈ Act;
and Init is the initialisation transition, Init ∈ Trn.

There is a number constraints that the definition of a
process should satisfy. For instance, we should verify that the
initial process activity is not empty and all other activities
are reachable from it. We should prove that the activity
assumptions imply the process invariant. Moreover, we need

verify the relationships between the rely/guarantee of pro-
cess and its constituting activities. An abstraction of activity
properties (Rel and Grt) allows us to check compatibility
at the level of the process rely and guarantee conditions.

An explicit concurrency model that we aim at building –
a PV model – is assembled from a number of concurrently
running processes. Two processes synchronise by simulta-
neously firing their activity transitions. Synchronisation is
achieved by matching transition tags called channels.

Definition 5 (Process View): A Process View model is
defined by a tuple (I, P, C, S), where I is the system invari-
ant, P is a set of processes, C is a set containing all the
synchronisation channels, and a function S : T →C×{!, ?}
attributes a channel and the synchronisation type to each
process transition. The predefined channel τ : C denotes
the absence of synchronisation on a transition.

While creating a PV model, we should verify that com-
posed processes are compatible with each other. For in-
stance, this includes checking that the guarantee of one
process implies the rely of other process and the overall
model invariant implies the invariants of the processes. We
also should guarantee that two synchronised transitions may
be fused into a single one: the transition guards and actions
should be non-contradictory in order to permit the execution
of the transitions in a single atomic step.

B. Consistency Between Process View and Event-B

To ensure consistency for a given Event-B model, we should
demonstrate that the corresponding PV model is its valid
abstraction. Intuitively, we should show that any PV activity
is related to a group of Event-B events, while there is
an Event-B event for each activity transition. Moreover,
we should establish a correspondence between a pair of
synchronised transitions and an Event-B event.

To derive proof obligations for establishing consistency
between PV and Event-B, we first define an intermediate
construct called Mapping Model. It links elements of a PV
model to those of an Event-B model defined in Section II.

Definition 6 (Mapping Model): Let N be a PV model
and M be an Event-B model. Then the Mapping Model is
defined by a tuple (L,ma,mt), where L relates the states
of PV and Event models, L : Σ×BState→ BOOL. Here
BState is the state space of M . The functions ma and
mt map, respectively, the activities and transitions of N
into the events of M , ma : AN → P 1(E), mt : TN → E.
Here AN , TN stand respectively for all the activities and
transitions of the model N .

Now we can formulate the model consistency conditions:

Definition 7 (Mapping Consistency Conditions): A PV
model N, an Event-B model M and their Mapping Model
MM are consistent provided the following conditions hold:

1) all the events of M are used in the mapping:⋃
(ran(MM.ma)) ∪ ran(MM.mt) = M.E;



2) for every activity a, such that a ∈ AN , and every event
e, such that e ∈ MM.ma(a), the following conditions
must be demonstrated:

a) the event may be enabled only when the ac-
tivity assumption is satisfied: ∀v, w ·M.I(w) ∧
MM.L(v, w) ∧ e.H(w) ⇒ a.A(v);

b) it must be established that the event satisfies the
activity guarantee:
∀v, w,w′ ·M.I(w) ∧ a.A(v) ∧ MM.L(v, w) ∧
e.H(w) ∧ e.S(w,w′) ⇒
∃v′ ·MM.L(v′, w′) ∧ a.A(v′) ∧ a.G(v, v′);

3) for every transition t, such that t ∈ TN , it must be
shown that every associated event e, such that e =
MM.mt(t), is a valid implementation of the transition:

a) ∀v, w ·M.I(w) ∧ a.A(v) ∧ MM.L(v, w) ∧
e.H(w) ⇒ t.grd(v);

b) ∀v, w,w′ ·M.I(w) ∧ a.A(v) ∧ MM.L(v, w) ∧
e.H(w) ∧ e.S(w,w′) ⇒
∃v′ ·MM.L(v′, w′) ∧ t.grd(v) ∧ t.act(v, v′);

4) for a pair of synchronized transitions t1 and t2, such
that t1 ∈ TN , t2 ∈ TN , it is required to show
that the transitions are mapped into the same event:
MM.mt(t1) = MM.mt(t2);

5) The INITIALISATION event must be mapped into a
synchronised transition of the process initial activities:
∀t ∈ TN · t.src = %p ⇒
MM.mt(t) = INITIALISATION.

Theorem 1 then formalises the consistency conditions be-
tween Event-B and PV models.

Theorem 1: For a triple of Event-B, PV and Mapping
models satisfying Definitions 1, 6 and 7, it holds that every
Event-B state transition w +→ w′ has the corresponding PV
state transition v +→ v′ such that L(v, w) ∧ L(v′, w′).

The theorem proof as well as the complete list of PV model
formal conditions can be found in [8]. Let us now exemplify
our approach by constructing a PV model of DPU.

C. A Process View Model of DPU

Our verification goal is to determine the ability of the
system to handle a certain number of TCs per time unit.
More specifically, we aim at estimating the correspondence
between the rate of TC arrival, the speed of TC decoding, the
rate of housekeeping data production and the capacity of the
TC and TM buffers. To reason about a relative speed of the
TC decoding subsystem, we define it as a process in a PV
model. Similarly, for each mentioned subsystem, we define
a separate PV process. In a PV model, processes operate at
arbitrary speeds. Later, when a timed model is created, we
will introduce the cost (time) of process activities.

Below we show construction of a part of the PV model
concerning TC arrival. In the Event-B model m5, this
corresponds to just one event receive:

receive = any tc where
tc /∈ ran(tcq) ∧ tc tl − tc hd < TCQSIZE

then

tcq := tcq ∪ {tc tl + 1 &→ tc} ‖ tc tl := tc tl + 1
end

We construct a PV abstraction that achieves the same effect
as a synchronised transition of two PV processes. The first
process deals solely with announcing arrival of a new TC
and giving it a name, which is stored in the global variable
new tc. There is a finite set of possible TC names, idset,
recycled among all the processes.

process sender =
rely new tc′ = new tc ∧ idset ⊆ idset′

guarantee idset′ ⊆ idset ∧ new tc′ ∈ (idset \ idset′) ∪ {new tc}
. . .

The body of sender is essentially one transition generating
a fresh TC. We introduce an additional helper transition
and activity to play the role of a ’delay’, i.e., simulate the
time between appearance of two TCs:

idle = assume idset %= ∅

to done action
new tc′ = max(idset) ∧ idset′ = idset \max(idset)
sync newtc!

done = to idle when idset %= ∅

The assumption idset ,= ∅ states that the activity idle should
never encounter a situation when there are no fresh message
ids. A fresh new tc is computed by taking a distinguished
element (here, a maximum) from idset. The activity done
may switch to the activity idle if there is a fresh name in
idset. At the system level this means that the rest of the
system is prepared for new TCs.

In the Event-B model, a fresh TC in saved in the buffer.
In the PV model, we we explicitly define a process tcpool
that manipulates this buffer. The process saves new TCs in
the buffer (variable tcbuffer ) and makes previously saved
TCs available to other processes. It is a circular buffer with
separate pointers for the first and the last elements.

process tcpool =
rely new tc′ = new tc ∨ new tc′ /∈ elts(tcbuffer)
guarantee (tcbuffer ′ \ tcbuffer) ∩ idset = ∅

. . .

Here the set elts(tcbuffer) denotes the contents of the
buffer, while the variable next tc stores the index of the
last message. The process guarantee requires that the buffer
does not keep fresh (non-existent) messages. The process
rely states that the buffer takes new TCs from the variable
new tc, the value of which has to be a valid fresh TC.

The body of process tcpool is made of three activities:
empty, not empty and full corresponding to the respective
buffer states. An important part of tcpool is the interaction
with the sender process. For instance, when the buffer is
empty, it may become non-empty by receiving a new TC:

empty = assume next tc = first tc
to non empty action
tcbuffer ′ = tcbuffer "− {next tc &→ new tc}
next tc′ = (next tc+ 1) mod BUFF SIZE

sync newtc?

Here first tc is the index of the oldest message.



The transition action is ’glued’ with the corresponding ac-
tion of the sender process (via the synchronisation channels)
and the overall effect is similar to that of the event receive.
In fact, our PV model exhibits exactly the same behaviour
as its Event-B part. The models differ only in the way they
represent the buffer and treat fresh messages.

Due to the space constraints we do not discuss the details
of other PV processes. They can be found in [8].

IV. TOWARDS REAL-TIME VERIFICATION WITH UPPAAL

A. From Process View to Timed Automata

In this paper we use a PV model as an intermediate step
towards a timed model suitable for checking the desired
real-time properties. Our approach is driven by the pursue of
scalability and industrial relevance. Hence, to perform verifi-
cation of real-time properties, we have to chose a framework
that is scalable and well-maintained. Timed automata [11]
and the verification tool Uppaal [2] satisfy these criteria.

Timed automata [11] is a formalism with an explicit
model of time. It is based on a finite automaton char-
acterising the system behaviour via a number of states
(locations) and state transitions. An array of real-valued
clocks is introduced for time keeping. All the clocks progress
synchronously and can be independently reset. State transi-
tions are instantaneous, thus time advances only while the
system stays in a given state. A logical expression called
a location invariant sets the boundaries for time progress.
Time constraints can also appear is state transitions, in the
form of a predicate on clock values and a list of clock resets.

We propose the following technique for augmenting a
PV model with time. The PV model is extended with a
vector of real-valued clocks C; each activity is extended
with time invariant φ(C); each transition is extended with
a tuple of time guard ω(C) and clock reset θ, θ ⊆ C. For
each activity such that its guarantee G permits state update
(i.e., ∃v, v′ · v′ ,= v ∧G(v, v′)), there added a self-transition
with guard % and action G. The relies, guarantees and
assumptions of processes and activities are removed. This
is justified by two reasons. First, the relies and guarantees
are merely verification assistants, they do not describe actual
behaviour. Second, state evolution inside of an activity is
completely covered by the addition of a self-transition.
Activities are treated as named states and activity transitions
as state transitions.

Next we present the results of augmenting the PV model
of DPU with time and show how to verify the desired real-
time properties using Uppaal.

B. Real-Time Verification of the DPU

A representation of a part of the PV model augmented with
time in the visual Uppaal notation is given in Figure 2.

For verification of timing properties of a Uppaal model,
a simplified version of CTL (Computation Tree Logic) is
used. We are mostly interested in verifying liveness and

done

idle

t_start! newtc!
new_tc = unique_id()

full

non_empty

empty

next_inx != first_inx &&
next_inx != (first_inx + 1) % Buff_size

out?

buffer[first_inx] = 0,
first_inx = (first_inx + 1) % Buff_size

next_inx != first_inx &&
(next_inx +1) % Buff_size != first_inx

in?

buffer[next_inx] = new_el,
next_inx = (next_inx + 1) % Buff_size

next_inx != first_inx &&
next_inx == (first_inx + 1) % Buff_size

out?

buffer[first_inx] = 0,
first_inx = (first_inx + 1) % Buff_size

out?
buffer[first_inx] = 0,
first_inx = (first_inx + 1) % Buff_size

next_inx != first_inx &&
(next_inx + 1) % Buff_size == first_inx

in?

buffer[next_inx] = new_el,
next_inx = (next_inx + 1) % Buff_size

in?
buffer[next_inx] = new_el,
next_inx = (next_inx + 1) % Buff_size

Acknowledge Execute

TCH_c <= Exec_maxtime

ForwardValidate

TCH_c <= Valid_maxtime

wait

newtm!new_tm = curr_tc

res?

req!

TCH_c = 0

readtc!

curr_tc = tc_buffer[first_tc_inx],
TCH_c = 0

busy
Inst_c <= Inst_maxtime

wait

res!Inst_c = 0 req?
Inst_c = 0

Figure 2. The BepiColombo process view model Uppaal notation.

time-bounded reachability properties. In particular, we need
to verify that, for any received TC, the corresponding TM
is eventually returned. In CTL, this can be expressed as

(new tc == id) −→ (last tm == id)

where −→ is the ”leads-to” operator, and id is some TC id.
Uppaal allows us to add various timing constraints and

then check time-bounded reachability properties using the
values of clock variables. One way to define such a property
in our case is as follows:

A[] (last tm == id && Obs1.stop) imply (Obs1 c < upper bound)

where A[] means ”Always, for any execution path”, while
Obs1 is a special process that starts the clock Obs1 c,
whenever a TC command with id is received, and stops
it, once the corresponding TM is returned. This property
essentially verifies the maximal response time of the system.

The value of upper bound depends on concrete quanti-
tative system parameters. In our case, such parameters are

• the size of buffers for storing TCs and TMs;
• the worst execution time (WET) for the instrument

responding to the forwarded TC;
• the WET for validation of the arrived TC;
• the period of the process regularly generating house-

keeping data returned as additional TMs;
• the maximal delivery delay for an outgoing TM, etc.

Naturally, different combination of these parameters may
lead to quite different response times. In particular, we have
noticed that the buffer size almost linearly correlates with
the required time. This gave us the idea to use it as a time
unit while verifying other parameter correlations.

Figure 3 illustrates how specific values of the period
for production of housekeeping data affects the overall TC
handling time. The time values are given as multiples of the
buffer size. It is interesting to see that small values of the
period (i.e., very frequent interference) makes the system es-
sentially unresponsive, while bigger values form a ”plateau”
indicating that this interference becomes a constant.

We believe that our experiment with real-time analysis of
DPU allowed us to identify a strategy for integrating real-
time verification into the formal development process. We



4 5 6 7 8 9 10 11 12 13 14 16 18 20 25 50 100

TC
 h

an
dl

in
g 

tim
e

Figure 3. The relationship between the period of housekeeping TM
production (X-axis) and worst TC handling time (Y-axis).

obtained the desired correlation between system responsive-
ness and various characteristics of its components. Such a
correlation paves the path to optimising concurrency model
and enables efficient design space exploration.

V. RELATED WORK AND CONCLUSIONS

Since real-time requirements have a direct impact on system
dependability, verification of real-time properties has at-
tracted significant research efforts. In particular, a substantial
amount of work is done in the area of combining state-based
methods and time modelling formalisms.

In [12], the concept of time is embedded into the B
notation and time progress is modelled by equipping a
machine with a clock and assuming that an event execu-
tion has a certain (non-deterministically selected) duration.
Unfortunately, there are no available means for checking
real-time properties of such models. In certain situations,
timing properties may be successfully modelled within the
B Method and Event-B [13]–[16]. The overall idea is to use
one or more variables to represent clock readings as well as
provide events to advance the clocks. The main modelling
technique is expressing timing constraints as deadlines by
adding timing guards to some critical events. A worrying
consequence is that time is put under the control of a model:
time is not allowed to progress past a deadline until a
scheduled event takes place. Thus, real-time properties are
postulated rather than inferred from the system behaviour.

In this paper we proposed a practical approach to in-
tegrating verification of real-time properties into Event-B
modelling. Its development was driven by a pursuit of
scalability and simplicity. As a result, we have developed
a technique for building a process-based abstraction of an
Event-B model and employing such an abstraction in the
verification of real-time properties.

Our approach has been validated in the context of the
Deploy project [3]. Space Systems Finland together with
the academic partners has conducted an exploratory study
aimed at finding a scalable and useful approach to integrating
real-time analysis into formal development. In this paper we
have only described the main stages of this approach – from

Event-B modelling via Process View to timed automata –
and presented the semantic links between the stages.

In our approach we have put a special emphasis on
defining a set of well-formedness conditions ensuring sound-
ness of new abstractions. To achieve a semantic anchoring
between PV and Event-B models, we have formally ex-
pressed verification conditions as theorems to be verified
in the Rodin platform. As a future work, we are planning
to experiment with deriving real-time concurrent system
implementations by refinement and distilling the guidelines
on the constructing and using PV models. There is also
an ongoing work on developing a plug-in that integrates
construction of a PV model and its verification in Rodin.

REFERENCES

[1] C. Metayer, J. Abrial, and L. Voisin, Eds., Rodin Deliverable
D7: Event B language. Project IST-511599, School of
Computing Science, Newcastle University, 2005.

[2] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“Uppaal - a tool suite for automatic verification of real-time
systems,” in Proceedings of the DIMACS/SYCON Workshop
on Hybrid systems. Springer-Verlag, 1996, pp. 232–243.

[3] EU-project DEPLOY, online http://www.deploy-project.eu/.

[4] J. R. Abrial, The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 2005.

[5] J.-R. Abrial, Modeling in Event-B. Cambridge University
Press, 2010.

[6] “Event-B and the Rodin Platform,” http://www.event-b.org/.

[7] Factsheet: BepiColombo. ESA Media Center, Space Science,
15.01.2008, online at http://www.esa.int/esaSC/
SEMNEM3MDAF 0 spk.html.

[8] A. Iliasov, L. Laibinis, E. Troubitsyna, A. Romanovsky, and
T. Latvala, “Augmenting Event-B Modelling with Real-Time
Verification,” TUCS Technical Report, 2011, http://tucs.fi.

[9] OBSW formal development in Event-B, online at
http://deploy-eprints.ecs.soton.ac.uk/view/type/rodin=
5Farchive.html.

[10] C. B. Jones, “Specification and design of (parallel) programs,”
in IFIP83, 1983, pp. 321–332.

[11] R. Alur and D. Dill, “A theory of timed automata,” Theoret-
ical Computer Science, vol. 126(2), pp. 183–235, 1994.

[12] K. Lano, The B Language and Method: A Guide to Practical
Formal Development. Springer-Verlag New York, Inc., 1996.

[13] M. Butler and J. Falampin, “An Approach to Modelling and
Refining Timing Properties in B,” in Proceedings of Workshop
on Refinement of Critical Systems (RCS), January 2002.

[14] J. Rehm, “A Method to Refine Time Constraints in Event-B
Framework,” in Proceedings of AVoCS, 2006.

[15] J. W. Bryans, J. S. Fitzgerald, A. Romanovsky, and A. Roth,
“Patterns for Modelling Time and Consistency in Business
Information Systems,” in Int. Conference on Engineering of
Complex Computer Systems. IEEE Computer Society, 2010.

[16] D. Cansell, D. Méry, and J. Rehm, “Time Constraint Patterns
for Event B Development,” in Formal Specification and
Development in B, 7th Int. Conference of B Users, 2007.


