
Abstraction, Refinement and
Decomposition for Systems Engineering

(Using Event-B)

Michael Butler
users.ecs.soton.ac.uk/mjb

www.event-b.org

Marktoberdorf Summer School 2012

Abstraction, Refinement and
Decomposition for Systems Engineering

(Using Event-B)

Michael Butler
users.ecs.soton.ac.uk/mjb

www.event-b.org

Marktoberdorf Summer School 2012

Lecture 1: Problem Abstraction
and Model Refinement

- An Overview

Michael Butler
users.ecs.soton.ac.uk/mjb

www.event-b.org

Marktoberdorf Summer School 2012

Overview

• Motivation
– difficulty of discovering errors / cost of fixing

errors

• Small pedagogical example (access control)
– abstraction

– refinement

– automated analysis

• Background on Event-B formal method

• Methodological considerations

4

Cost of fixing requirements errors

5

“Extra Time Saves Money”
Warren Kuffel
Computer Language
December 1990

Cost of error fixes grows
- difficult to change this

Reqs Spec Design Impl Test
& fix

Accept
testing

Deploy

Cost
of fix

Time of error discovery
6

Rate of error discovery

Reqs Spec Design Impl Test
& fix

Accept
testing

Deploy

Error
discovery
rate

Time of error discovery
7

Invert error identification rate?

Reqs Spec Design Impl Test
& fix

Accept
testing

Deploy

Error
discovery
rate

Time of error discovery
8

Why is it difficult to identify errors?

• Lack of precision

– ambiguities

– inconsistencies

• Too much complexity

– complexity of requirements

– complexity of operating environment

– complexity of designs

9

Need for precision and abstraction
at early stages (front-loading)

• Precision through early stage models

– Amenable to analysis by tools

– Identify and fix ambiguities and inconsistencies as
early as possible

• Mastering complexity through abstraction

– Focus on what a system does (its purpose)

– Incremental analysis and design

10

Rational design, by example

• Example: access control system

• Example intended to give a feeling for:

– problem abstraction

– modelling language

– model refinement

– role of verification and Rodin tool

11

Important distinction

• Program Abstraction:
– Automated process based on a formal artifact

(program)

– Purpose is to reduce complexity of automated
verification

• Problem Abstraction:
– Creative process based on informal requirements

– Purpose is to increase understanding of problem

12

Access control requirements

1. Users are authorised to engage in activities
2. User authorisation may be added or revoked
3. Activities take place in rooms
4. Users gain access to a room using a one-time

token provided they have authority to engage in
the room activities

5. Tokens are issued by a central authority
6. Tokens are time stamped
7. A room gateway allows access with a token

provided the token is valid

13

Access control requirements

1. Users are authorised to engage in activities
2. User authorisation may be added or revoked
3. Activities take place in rooms
4. Users gain access to a room using a one-time

token provided they have authority to engage in
the room activities

5. Tokens are issued by a central authority
6. Tokens are time stamped
7. A room gateway allows access with a token

provided the token is valid

14

Entities and relationships

USER ACTIVITY

ROOM

TOKEN

AUTHORITY

GATEWAY

room

authorised

takeplace

holder

issuer

trust

location

read

manageauthorise
manage

guards

15

Entities and relationships

USER ACTIVITY

ROOM

TOKEN

AUTHORITY

GATEWAY

room

authorised

takeplace

holder

issuer

trust

location

read

manageauthorise
manage

guards
This model is unnecessarily complex to
specify the main access control policy

16

Extracting the essence

• Purpose of our system is to enforce an access control policy

• Access Control Policy: Users may only be in a room if they
are authorised to engage in all activities that may take
place in that room

• To express this we only require Users, Rooms, Activities and
relationships between them

• Abstraction: focus on key entities in the problem domain
related to the purpose of the system

17

Entities and relationships

USER ACTIVITY

ROOM

TOKEN

AUTHORITY

GATEWAY

room

authorised

takeplace

holder

issuer

trust

location

read

manageauthorise
manage

guards

18

Abstract by removing entities

USER ACTIVITY

ROOM

authorised

takeplace
location

19

Relationships represented in Event-B
authorised ∈ USER ↔ ACTIVITY // relation
takeplace ∈ ROOM ↔ ACTIVITY // relation
location ∈ USER ⇸ ROOM // partial function

Access control invariant

∀u,r . u ∈ dom(location) ∧
location(u) = r
⇒
takeplace[r] ⊆ authorised[u]

if user u is in room r,
then u must be authorised to engaged in

all activities that can take place in r

20

State snapshot as tables

USER ACTIVITY

u1 a1

u1 a2

u2 a1

USER ROOM

u1 r1

u2 r2

u3

ROOM ACTIVITY

r1 a1

r1 a2

r2 a1

authorised takeplace

location
21

Event for entering a room

Enter(u,r) ≙
when

grd1 : u ∈ USER
grd2 : r ∈ ROOM
grd3 : takeplace[r] ⊆ authorised[u]

then
act1 : location(u) := r

end

Does this event maintain the access control invariant?

22

Role of invariants and guards

• Invariants: specify properties of model variables
that should always remain true
– violation of invariant is undesirable (safety)
– use (automated) proof to verify invariant preservation

• Guards: specify enabling conditions under which
events may occur
– should be strong enough to ensure invariants are

maintained by event actions
– but not so strong that they prevent desirable

behaviour (liveness)

23

Remove authorisation

RemoveAuth(u,a) ≙
when

grd1 : u ∈ USER
grd2 : a ∈ ACTIVITY
grd3 : u↦ a ∈ authorised

then

act1 : authorised := authorised ∖ { u↦ a }
end

Does this event maintain the access control invariant?

24

Counter-example from model checking

25

26

Failing proof

27

Strengthen guard of RemAuth

28

Early stage analysis

• We constructed a simple abstract model

• Already using verification technology we were
able to identify errors in our conceptual model of
the desired behaviour
– we found a solution to these early on

– verified the “correctness” of the solution

• Now, lets proceed to another stage of analysis…

29

We construct a new model
(refinement)

USER ACTIVITY

ROOM

location

authorised

takeplace

TOKEN
room

holder

Guard of abstract Enter event:
grd3: takeplace[r] ⊆ authorised[u]

is replaced by a guard on a token:
grd3b: t ∈ valid ∧ room(t) = r ∧ holder(t) = u

30

Failing refinement proof

31

Gluing invariant

USER ACTIVITY

ROOM

location

authorised

takeplace

TOKEN
room

holder

To ensure consistency of the refinement we need invariant:
inv 6: t ∈ valid

⇒
takeplace [room(t)] ⊆ authorised[holder(t)]

32

Invariant enables PO discharge

33

But get new failing PO

34

Strengthen guard of refined RemAuth

35

Requirements revisited

1. Users are authorised to engage in activities

2. User authorisation may be added or revoked

3. Activities take place in rooms

4. …

Question: was it obvious initially that revocation
of authorisation was going to be problematic?

36

Rational design – what, how, why

• What does it achieve?
if user u is in room r,
then u must be authorised to engaged in

all activities that can take place in r

• How does it work?
Check that a user has a valid token

• Why does it work?
For any valid token t, the holder of t must be authorised to
engage in all activities that can take place in the room
associated with t

37

What, how, why written in B

• What does it achieve?
inv1: u∈dom(location) ∧ location(u) = r

⇒
takeplace[r] ⊆ authorised[u]

• How does it work?
grd3b: t ∈ valid ∧ r = room(t) ∧ u = holder(t)

• Why does it work?
inv2: t ∈ valid

⇒
takeplace [room(t)] ⊆ authorised[holder(t)]

38

B Method (Abrial, from 1990s)

• Model using set theory and logic

• Analyse models using proof, model checking, animation

• Refinement-based development
– verify conformance between higher-level and lower-level models
– chain of refinements

• Code generation from low-level models

• Commercial tools, :
– Atelier-B (ClearSy, FR) - used mainly in railway industry
– B-Toolkit (B-Core, UK, Ib Sorensen)

39

B evolves to Event-B (from 2004)
• B Method was designed for software development

• Realisation that it is important to reason about system
behaviour, not just software

• Event-B is intended for modelling and refining system
behaviour

• Refinement notion is more flexible than B
• Same set theory and logic

• Rodin tool for Event-B (V1.0 2007)
– Open source, Eclipse based, open architecture
– Range of plug-in tools

40

System level reasoning

• Examples of systems modelled in Event-B:
– Train signalling system
– Mechanical press system
– Access control system
– Air traffic information system
– Electronic purse system
– Distributed database system
– Cruise control system
– Processor Instruction Set Architecture
– …

• System level reasoning:
– Involves abstractions of overall system not just software

components

41

Other Lectures

• Verification of Event-B models with Rodin tool

• Structured event decomposition

• Model decomposition

• Towards a method for decomposition

42

END

43

Verification and tools in
Event-B modelling

Michael Butler
users.ecs.soton.ac.uk/mjb

www.event-b.org

Marktoberdorf Summer School 2012

Overview

• Abstraction & refinement

validation & verification

• Proof obligations in Event-B

• Rodin tool features

45

Problem Abstraction

• Abstraction can be viewed as a process of
simplifying our understanding of a system.

• The simplification should
– focus on the intended purpose of the system
– ignore details of how that purpose is achieved.

• The modeller/analyst should make judgements
about what they believe to be the key features of
the system.

46

Abstraction (continued)

• If the purpose is to provide some service, then
– model what a system does from the perspective of the

service users

– ‘users’ might be computing agents as well as humans.

• If the purpose is to control, monitor or protect
some phenomenon, then
– the abstraction should focus on those phenomenon

– in what way should they be controlled, monitored or
protected?

47

Refinement

• Refinement is a process of enriching or modifying a model
in order to
– augment the functionality being modelled, or
– explain how some purpose is achieved

• Facilitates abstraction: we can postpone treatment of some
system features to later refinement steps

• Event-B provides a notion of consistency of a refinement:
– Use proof to verify the consistency of a refinement step
– Failing proof can help us identify inconsistencies

48

Validation and verification

• Requirements validation:
– The extent to which (informal) requirements satisfy the

needs of the stakeholders

• Model validation:
– The extent to which (formal) model accurately captures

the (informal) requirements

• Model verification:
– The extent to which a model correctly maintains

invariants or refines another (more abstract) model
• Measured, e.g., by degree of validity of proof

obligations

49

Event-B verification and tools

Event-B modelling components

context ctxmachine m

variables v
invariants I
events e1, e2, …

sets s
constants c
axioms x

sees

51

sees
machine m1 context c1

sees
machine m2 context c2

refines extends

Event structure

E = \\ event name
any

x1, x2, … \\ event parameters
where

G1 \\ event guards
(predicates)

G2
…

then
v1 := exp1 \\ event actions
v2 := exp2
…

end 52

Role of Event Parameters

• Most generally, parameters represent nondeterministically
chosen values, e.g.,

NonDetInc =

any d where v+d ≤ MAX then v:=v+d end

• Event parameters can also be used to model input and output
values of an event

• Can also have nondeterministic actions:

when v<MAX then v :| v < v’ ≤ MAX end

53

Refinement for events

• A refined machine has two kinds of events:
– Refined events that refine some event of the

abstract machine

– New events that refine skip

• Verification of event refinement uses
– gluing invariants linking abstract and concrete

variables

– witnesses for abstract parameters

54

Proof obligations in Event-B

• Well-definedness (WD)
– e.g, avoid division by zero, partial function application

• Invariant preservation (INV) ***
– each event maintains invariants

• Guard strengthening (GRD) ***
– Refined event only possible when abstract event possible

• Simulation (SIM) ***
– update of abstract variable correctly simulated by update

of concrete variable

• Convergence (VAR)
– Ensure convergence of new events using a variant

55

Invariant Preservation

• Assume: variables v and invariant I(v)

• Deterministic event:
Ev = when P(v) then v := exp(v) end

• To prove Ev preserves I(v):

INV: P(v), I(v) ⊢ I(exp(v))

• This is a sequent of the form Hypotheses ⊢ Goal

• The sequent is a Proof Obligation (PO) that must be verified

56

Using Event Parameters

• Event has form:

Ev = any x where P(x,v) then v := exp(x,v) end

INV: I(v), P(x,v) ⊢ I(E(x,v))

57

Example PO from Rodin

58

Simulation: maintaining a gluing relation

a0

a0

c0 c1
con

a1
abs

J J

59

New concrete events refine skip
(stuttering step)

a

c0 c1
new

J J

60

Refining traces

61

abs1

con1

abs3

con3

J J

new1

J

abs2

con2

J

new2

J

Proof method for refinement
(deterministic case)

• Suppose event con refines event abs:
abs = when P(a) then a := E(a) end
con = when Q(c) then c := F(c) end

• Verification of this refinement gives rise to two Proof
Obligations:

GRD: I(a), J(a,c), Q(a) ⊢ P(a)
SIM: I(a), J(a,c), Q(a) ⊢ J(E(a), F(c))

• See [Abrial 2010] for non-deterministic case of refinement
POs using witnesses

62

Some references

Comprehensive definition of proof obligations (plus much more):

Jean-Raymond Abrial. Modeling in Event-B: System and Software
Engineering. Cambridge University Press 2010

Event- B is strongly influenced by Back’s action system formalism:

State trace refinement:

Ralph-Johan Back and Joakim von Wright. Trace Refinement of Action
Systems. CONCUR '94

Event trace refinement:

Michael Butler. Stepwise Refinement of Communicating Systems

Science of Computer Programming, 27 (2), 1996

63

Rodin Toolset for Event-B

• Extension of Eclipse IDE

• Rodin Builder manages:
– Well-formedness + type checking
– Consistency/refinement PO generator
– Proof manager
– Propagation of changes

• Extension points to support plug-ins

64

Rodin Proof Manager (PM)

• PM constructs proof tree for each PO

• Automatic and interactive modes

• PM calls reasoners to

– discharge goal, or

– split goal into subgoals

• Basic tactic language to adapt PM

• Collection of reasoners:

– simplifiers, rule-based, decision procedures

65

Range of Automated Provers

• Built-in: tactic language, simplifiers, decision
procedures

• AtelierB plug-in for Rodin (ClearSy, FR)

• SMT plug-in (Systerel, FR)

• Isabelle plug-in (Schmalz, ETHZ)

66

Supporting model changes

• Models are constantly being changed

– When a model changes, proof impact of changes should be
minimised as much as possible:

• Sufficiency comparison of POs

– In case of success, provers return list of used hypotheses

– Proof valid provided the used hypothesis in new version of a PO

• Renaming:

– Identifier renaming applied to models (avoiding name clash)

– Corresponding POs and proofs automatically renamed

67

ProB Model Checker (Leuschel)

• Automated checker
– search for invariant violations

– search for deadlocks

– search for proof obligation violations

• Implementation uses constraint logic
programming
– makes all types finite

– exploits symmetries in B types

68

Proof and model checking

• Model checking: force the model to be finite state and
explore state space looking for invariant violations
 completely automatic

 powerful debugging tool (counter-examples)

state-space explosion

• (Semi-)automated proof: based on deduction rules
 not completely automatic

 leads to discovery of invariants - deepen understanding

 no restrictions on state space

69

Some references

• Abrial, Butler, Hallerstede, Hoang, Mehta and Voisin
Rodin: An Open Toolset for Modelling and Reasoning in Event-
B.
International Journal on Software Tools for Technology
Transfer (STTT), 12 (6), 2010.

• Leuschel and Butler
ProB: An Automated Analysis Toolset for the B Method.
International Journal on Software Tools for Technology
Transfer, 10, (2), 185-203, 2008.

70

Rodin Demo

Access Control Example

Rodin Plug-ins www.event-b.org

• ProB model checker:
– consistency and refinement checking

• External provers:
– AtelierB plug-in for Rodin (ClearSy, FR)
– SMT plug-in (Systerel, FR)
– Isabelle plug-in (Schmalz, ETHZ)

• Theory plug-in – user-defined mathematical theories
• UML-B: Linking UML and Event-B
• Graphical model animation

– ProB, AnimB, B-Motion Studio

• Requirements management (ProR)
• Team-based development
• Decomposition
• Code generation
• …

72

Contributors to Rodin toolset

Jean-Raymond Abrial Laurent Voisin
Stefan Hallerstede Thai Son Hoang
Farhad Mehta Christophe Metayer
Thierry Lecomte Michael Leuschel
Mathieu Clabaut Colin Snook
Alexei Iliasov Nicolas Beauger
Jens Bendisposto Kriangsak Damchoom
Dominique Cansell Cliff Jones
Renato Silva Francois Terrier
Michael Jastram Fabian Fritz
Issam Maamria Andy Edmunds
Abdolbaghi Rezazadeh Mar Yah Said
Carine Pascal Andreas Furst
Vitaly Savicks Thomas Muller
. . .

73

END

74

Abstract program structures for
decomposing atomicity

Michael Butler
users.ecs.soton.ac.uk/mjb

www.event-b.org

Marktoberdorf 2012

Abstraction and decomposition

• In a refinement based approach it is beneficial to model
systems abstractly with little architectural structure and
large atomic steps
– e.g., file transfer, distributed database transaction

• Refinement and decomposition are used to add structure
and separate elements of the structure

• Atomicity decomposition
– Decomposing large atomic steps to more fine-grained steps

• Model decomposition
– Decomposing models for separate refinement of sub-models

Event-B style refinement

• Refinement

– one-to-many event refinement

– new events (refine skip)

• Flexible: allows complex relationships
between abstract and refined models

• But (perhaps) too much flexibility

– Need support for adding explicit “algorithmic”
structures in refinement steps

77

Simple file store example

machine filestore1

variables file, dsk

invariant
file  FILE ∧
dsk  file  CONT

initialisation
file := { } || dsk := { }

events

CreateFile ≙ …

WriteFile ≙ // set contents of f to be c
any f, c where

f ∈ file

c ∈ CONT

then
dsk(f) := c

end

ReadFile ≙ // return contents of f
any f, c! where

f ∈ file

c! = dsk(f)
end

78

Sample event traces of file store

 CreateFile.f1,

WriteFile.f1.c1,

ReadFile.f1.c1, … 

 CreateFile.f1,

CreateFile.f2,

WriteFile.f2.c4,

WriteFile.f1.c6, … 

An (infinitely) many more traces.

79

Refinement of file store

• Structure of file content: CONT = PAGE ↛ DATA

• Instead of writing entire contents in one atomic step, each page is
written separately:

machine filestore2
refines filestore

variables file, dsk, writing, wbuf, tdsk

invariant

writing  file
wbuf  writing  CONT
tdsk  writing  CONT // temporary disk

80

Refining the WriteFile event

• Abstract: WriteFile

• Refinement:

StartWriteFile

WritePage

EndWriteFile (refines WriteFile)

81

Events of refinement

StartWriteFile ≙
any f, c where

f ∈ (file \ writing)

c ∈ CONT

then
writing := writing  {f}
wbuf(f) := c
tdsk(f) := {}

end

WritePage ≙
any f, p, d where

f ∈ writing

p ↦ d ∈ wbuf(f)

p ↦ d ∉ tdsk(f)

then
tdsk(f) := tdsk(f)  { p ↦ d }

end

82

Events of refinement
EndWriteFile
refines WriteFile ≙

any f, c where
f ∈ writing

c = tdsk(f)

dom(tdsk(f)) =
dom(wbuf(f))

then
dsk(f) := tdsk(f)
writing := writing \ { f }
wbuf := wbuf \ { f }
tdsk := tdsk \ { f }

end

AbortWriteFile ≙
any f, c where

f ∈ writing

c = tdsk(f)

then
writing := writing \ { f }
wbuf := wbuf \ { f }
tdsk := tdsk \ { f }

end

83

Comparing abstract and refined traces

 CreateFile.f1,

CreateFile.f2,

WriteFile.f2.c2,

WriteFile.f1.c1

… 

 CreateFile.f1,

StartWriteFile.f1.c1,

CreateFile.f2,

WritePage.f1.p2.c1(p2),

StartWriteFile.f2.c2,

WritePage.f1.p1.c1(p1),

WritePage.f2.p1.c2(p1),

WritePage.f2.p2.c2(p2),

EndWriteFile.f2.c2,

WritePage.f1.p3.c1(p2),

EndWriteFile.f1.c1

… 

84

Breaking atomicity

• Abstract WriteFile is replaced by
– new events: StartWriteFile, WritePage,
– refining event: EndWriteFile

• Refined events for different files may interleave

• Non-interference is dealt with by treating new events as
refinements of skip
– new events must maintain gluing invariants

• But: not all event relations are explicit
– insufficient structure

85

Jackson Structure Diagrams

• Part of Jackson System Development

• Graphical representation of structured programs

• We can exploit the hierarchical nature of JSD
diagrams to represent event refinement

• Adapt JSD notation for our needs

86

WriteFile sequencing in JSD

WriteFile

StartWriteFile WritePage * EndWriteFile

Sequencing is from left to right

* signifies iteration

87

Adapting the diagrams

• Attach the iterator to an arc rather than a node to clarify atomicity
• Events are represented by leaves of the tree
• Solid line indicates EndWrite refines Write
• Dashed line indicates new events refining skip

Write

StartWrite PageWrite EndWrite

*

88

Nondeterministic forall

• pages may be written after StartWrite has occurred
• the writing is complete (EndWrite) once all pages have been written
• order of PageWrite events is nondeterministic
• this abstract program structure represents atomicity refinement explicitly

Write

StartWrite PageWrite(p) EndWrite

all(p:P)

89

Interleaving of multiple instances

• Multiple write “processes” for different files may interleave
– (sub-)events of Write(f1) may interleave with (sub-)events of Write(f2)
– (sub-)events of Write(f1) may interleave with (sub-)events of Read(f1)

• interleaving can be reduced with explicit guards (e.g., write lock)

Write(f)

StartWrite(f) PageWrite(f,p) EndWrite(f)

all(p)

90

Hierarchical refinement

Write(f)

StartWrite(f) PageWrite(f,p) EndWrite(f)

all(p)

ByteWrite(f,p,b)

all(b)

StartPage(f,p) EndPage(f,p)

91

Event-B encoding

A

B(x) C

all x:S

variable B ⊆ S ∧ finite(S)

Events:

B ≙ x ∈ S\B B := B ⋃ {x}

C ≙ B = S ∧ ¬C

 C := TRUE

92

SOME program structure

A

B(x) C

some x:S

Events:

B ≙ x ∈ S\B B := B ⋃ {x}

C ≙ B ≠ {} ∧ ¬C

 C := TRUE

C can occur provided B(x) occurs for at least one x

B(x’) may occur after C for other x’
93

Treating failure in file write

• AbortWrite may occur if PageFail(p) occurs for some page p

• Weak: PageFail(p’) may occur for other p’ after AbortWrite

AbortWrite

StartWrite PageFail(p) AbortWrite

some p

94

Separation of concerns

WriteOk ≙
begin

disk := file
end

WriteFail≙
begin

skip
end

95

WriteOk WriteFail

Write

xor

WriteOk WriteFail

Write

StartWrite WritePage(p) WriteOk

all p

StartWrite PageFail(p) WriteFail

some p

Layered refinement

• M0: two events - WriteOk and WriteFail

• M1: refine atomicity of WriteOk

• M2: refine atomicity of WriteFail

96

xor

FindOk NoFind

Search

StartFind Pass(i) FindOk

some i

StartFind Fail(i) NoFind

all i

Search

• FindOk: find a point in S satisfying property P x ∈ S ∩ P
or
• NoFind: determine that no point in S satisfies S ∩ P = {}

97

xor

FindOk NoFind

Search

StartFind Pass(i) FindOk

some i

StartFind Fail(i) NoFind

all i

Invariants for verification

• Pass ⊆ S ∩ P

• Fail ⊆ S \ P

98

xor

Transform to sequential model

StartFind ;

for i in S do

Fail(i)

[]

Pass(i) ; exit

od ;

if exit then FindOk else NoFind fi

99

FindOk

StartFind

Pass(p,i)

FindOksome i:S[p]

Alternatively refine to parallel model

• Partition S so that search is farmed out to
multiple processors p ∈ P

• This is a simple refinement step in Event-B

some p:P

100

Replicated data base

• Abstract model

db  object  DATA

Commit = /* update a set of objects os */

any os, update

where

os  object ∧

update  (os  DATA)  (os  DATA)

then

db := db <+ update(os ⊲ db)

end

101

Update Transaction

At abstract level, update transaction is a
choice of 2 atomic events:

Commit(t) Abort(t)

Update(t)

xor

102

Refinement by replicated database

ldb  site  (object  DATA)

Update is by two phase commit:

PreCommit followed by Commit

Global commit if all sites pre-commit

Global abort if at least one site aborts

103

Event refinement diagram for Commit

Commit(t)

Start(t) PreCommit(t,s)
Global

Commit(t)
Local

Commit(t,s)

all s in SITEall s in SITE

Which event refines the abstract Commit?

104

Event refinement diagram for Commit

Commit(t)

Start(t) PreCommit(t,s)
Global

Commit(t)
Local

Commit(t,s)

all s in SITEall s in SITE

Decision to proceed is made by GlobalCommit

105

Abort(t)

Start(t) Refuse(t,s)
Global

Abort(t)
Local

Abort(t,s)

all s in
PreCommit[{t}]

some s in
SITE

Event refinement diagram for Abort

Protocol aborts transaction if some site aborts
106

Locking objects

• PreCommit(t,s) : locks all objects for
transaction t at site s

• LocalCommit(t,s) LocalAbort(t,s) : release all
objects for transaction t at site s

107

Read transactions

• Abstract read: values read are from single abstract
database db

• Concrete read: (provided objects are not locked)
values read are from copy of database at a site ldb(s)

• Key gluing invariant:

∀s, o · o ∉ dom(lock(s)) ⇒ (ldb(s))(o) = db(o)

• But (ldb(s))(o) = db(o) is broken by GlobalCommit

108

Global and local commit not
synchronised

Commit(t)

Global
Commit(t)

Local
Commit(t,s)

all s in SITE

How are db(o) and ldb(s)(o) related in between
GlobalCommit and LocalCommit?

Commit updates db, but
GlobalCommit does not update ldb

LocalCommit updates ldb(s)

109

Another gluing invariant

t ∈ GlobalCommit ∧

t↦ s ∉ LocalCommit ∧

os = tos[t] ∧ o ∈ os ∧

U = upd(t) ∧ L = os◁ ldb(s)

⇒

db(o) = (U(L))(o)

The abstract value of an object at a site is determined
by applying the update associated with the transaction
to the database at the local site

Layered strategy for Commit
Commit(t)

Start(t) Global
Commit(t)

Local
Commit(t,s)

all s in SITE

PreCommit(t,s)

all s in SITE

Global
Commit(t)

Layered strategy allowed us to focus on difficult part of the abstraction first
led to simpler invariants, hence simpler proofs 111

Concluding

• Abstract program structures add value to existing
refinement framework
– Structures provide explicit representation of atomicity

decomposition (with sufficient interleaving)

– Power of diagrams – rapid understanding

• Not quite transformational approach:
– abstract programs provide templates for constructing

refined models

– refined models are verified but templates increases
likelihood of correctness

112

End

Model Decomposition for
Distributed Design in Event-B

Michael Butler
users.ecs.soton.ac.uk/mjb

www.event-b.org

Marktoberdorf 2012

Decomposition

• Beneficial to model systems abstractly with little architectural
structure and large atomic steps
– e.g., file transfer, replicated database transaction

• Refinement and decomposition are used to add structure and
then separate elements of the structure

• Atomicity decomposition: Decomposing large atomic steps to
more fine-grained steps

• Model decomposition: Decomposing refined models to for
(semi-)independent refinement of sub-models

• Towards a method for decomposition
115

Reminder

Event-B machine consists of

• Variables (e.g., authorised, location,…)

• Invariants
– Predicate logic
– Also used for type inference

• Events
– Acting on variables, expected to maintain invariants
– Specified by parameters, guards, actions

116

Model Decomposition styles

• Shared Event
• Sub-models interact through synchronisation over

shared events

• Shared events can have common parameters

• Shared Variable
• Sub-models interact through shared variables

• Events are independent

• Both styles supported by a decomposition
plug-in

117

Shared Event Decomposition

E1 E2 E3

v1 v2
M

E1 E2a

v1

E2b

v2

E3

M1 M2

v1 v2 Partition the variables

118

Shared Event Decomposition
– by example

A

v

Events

Variables

B C

w

A ≙ v := v+1

B ≙ when v>0  w<M then v := v-1 || w := w+1
end

C ≙ when w>0 then w := w-1 end

119

Decompose by partitioning variables

A

v

Events

Variables

B C

w

A ≙ v := v+1

B ≙ when v>0  w<M then v := v-1 || w := w+1
end

C ≙ when w>0 then w := w-1 end

N1 N2

B event needs to be split into v-part and w-part

120

Parallel Event Split

A

v

Events

Variables

B C

w

B1 ≙ when v>0 then v := v-1 end

B2 ≙ when w<M then w := w+1 end

B is split into two parallel events operating on independent variables:

B ≙ when v>0  w<M then v := v-1 || w := w+1 end

N1 N2

121

Synchronised events with parameter
passing

B ≙ any x where 0 < x  v

then v := v-x || w := w+x end

B1 ≙ any x where 0 < x  v then v := v-x
end
B2 ≙ any x where x ∈ ℤ then w := w+x

end

B can be split into 2 events that have x in common:

B1 constrains the value for x by 0 < x  v (output)

B2 just constrains the value of x to a type (input)

122

Partitioning events

E =

any p where

G1(x, p)

G2(y, p)

then

x := H1(x, p)

y := H2(y, p)

end

Ex =

any p where

G1(x, p)

then

x := H1(x, p)

end

Ey =

any p where

G2(y, p)

then

y := H2(y, p)

end

123

Pre-partitioning

E =

any p where

G1(x, p, f(y))

G2(y, p)

then

x := H1(x, p, f(y))

y := H2(y, p)

end

E =

any p, q where

q = f(y)

G1(x, p, q)

G2(y, p)

then

x := H1(x, p, q)

y := H2(y, p)

end

Transform E to make it easier to split into x-part and y-part

124

Composition and Decomposition

• Decomposition: from M,
decomposition plug-in
generates:
– machines L, P

– composed machine M’

• M’ is a wrapper for L || P

• Consistency of
decomposition:
– prove M’ refines M

composed machine M’
refines M
Includes L, P
events

A = L.A
B = L.B || P .B
C = P.C

end

125

Shared event composition operator

• Shared event composition operator for Event-B
machines is syntactically simple
– combine guards and combine actions of events to be

synchronised
– no shared state variables
– common event parameters represent values to be agreed

by both parties on synchronisation

• Corresponds to parallel composition in CSP
– processes interact via synchronised channels
– monotonic: subsystems can be refined independently

126

Shared Variable Decomposition

E1 E2 E3

v1 v2 v3

E4

M

E1 E2 E3’

v1 v2

E2’ E3

v2 v3

E4

M1 M2

E1, E2 E3, E4 Partition the events

127

Refinement after decomposition

• Shared event: can refine sub-model provided

• Common parameters of shared events are
consistently maintained

• Shared variable: can refine sub-model provided

• External events are not refined (rely condition)

• Private events in M1 that affect shared variables must
refine some external event of M2, e.g., E3 refines E3’

• Shared variables are not refined.

• Invariants used in refinement are preserved by
external events

128

Observation on Decomposition

• The decomposition itself is straightforward

– Essentially a syntactic partitioning of events

• The more challenging part is refining the
abstract model to a sufficiently detailed model
to allow the syntactic decomposition to take
place

129

Asynchronous distributed system

A

v

B C

m

D

w

Agent 1 Middleware Agent 2

For distributed systems, agents do not interact directly.

Instead they interact via some middleware, e.g., the Internet

130

Some references

• Butler, M. (2009) Decomposition Structures for Event-B. In: Integrated
Formal Methods iFM2009, LNCS 5423.

• Abrial, J.-R. and Hallerstede, S. (2007) Refinement, Decomposition and
Instantiation of Discrete Models: Application to Event-B. Fundam. Inf.,
77(1-2).

• Silva, R., Pascal, C., Hoang, T. S. and Butler, M. (2011) Decomposition Tool
for Event-B. Software: Practice and Experience, 41 (2).

• Salehi Fathabadi, A., Rezazadeh, A. and Butler, M. (2011) Applying
Atomicity and Model Decomposition to a Space Craft System in Event-B.
In: Third NASA Formal Methods Symposium, 2011.

• Salehi Fathabadi, A., Butler, M. and Rezazadeh, A. (2012) A Systematic
Approach to Atomicity Decomposition in Event-B. In, SEFM 2012.

• http://www.ecs.soton.ac.uk/people/mjb/publications

131

END

Towards a Method for
Decomposition

Michael Butler
users.ecs.soton.ac.uk/mjb

www.event-b.org

Marktoberdorf 2012

Decomposition

• Beneficial to model systems abstractly with little architectural
structure and large atomic steps
– e.g., file transfer, replicated database transaction

• Refinement and decomposition are used to add structure and
then separate elements of the structure

• Atomicity decomposition: Decomposing large atomic steps to
more fine-grained steps

• Model decomposition: Decomposing refined models to for
(semi-)independent refinement of sub-models

• Towards a method for decomposition
134

Shared Event Decomposition

E1 E2 E3

v1 v2
M

E1 E2a

v1

E2b

v2

E3

M1 M2

v1 v2 Partition the variables

135

Asynchronous distributed system

A

v

B C

m

D

w

Agent 1 Middleware Agent 2

For distributed systems, agents do not interact directly.

Instead they interact via some middleware, e.g., the Internet

136

Atomicity and machine
decomposition of ATM

Abstract Events for Cash Withdrawl

Transaction

WithdrawLowCash LowBal

xor

An ATM transaction results in one of three outcomes

Distributed implementation with ATM and Bank server:
• LowCash only affects the ATM
• LowBal and Withdraw affect ATM and Bank

138

LowCash: separate user request from
ATM response

Transaction

WithdrawLowCash LowBal

Req
Cash

Low
Cash

139

xor

LowBal: introduce protocol steps

Transaction

WithdrawLowCash LowBal

Req
Cash

Query
Bal

LowBal

140

Resp
NOK

xor

Withdraw: separate cash delivery and
balance reduction

Withdraw

Deliv
Cash

Reduce
Balance

141

Withdraw: protocol steps

Withdraw

Deliv
Cash

Reduce
Balance

Req
Cash

Query
Bal

Deliv
Cash

Reduce
Bal

Conf

142

Resp
OK

Separate sending and receiving for
protocol steps

Withdraw

Deliv
Cash

Reduce
Balance

Req
Cash

Query
Bal

Deliv
Cash

Reduce
Bal

Conf

Send
Query

Recv
Query

Send
Resp

Recv
Resp

Send
Conf

Recv
Conf

143

Resp
OK

Which are ATM events
and which
are Bank events?

Distinguish ATM and Bank events

Withdraw

Deliv
Cash

Reduce
Balance

Req
Cash

Query
Bal

Deliv
Cash

Reduce
Bal

Conf

Send
Query

Recv
Query

Send
Resp

Recv
Resp

Send
Conf

Recv
Conf

144

Resp
OK

Extract ATM behaviour

ATM
Withdraw

Req
Cash

Deliv
Cash

Send
Query

Recv
Resp

Send
Conf

145

Extract Bank behaviour

Bank
Withdraw

Reduce
Bal

Recv
Query

Send
Resp

Recv
Conf

146

What about communication between
ATM and Bank ?

Withdraw

Deliv
Cash

Reduce
Balance

Req
Cash

Query
Bal

Deliv
Cash

Reduce
Bal

Conf

Send
Query

Recv
Query

Send
Resp

Recv
Resp

Send
Conf

Recv
Conf

147

Resp
OK

Identify need for asynchronous
communication

Withdraw

Deliv
Cash

Reduce
Balance

Req
Cash

Query
Bal

Deliv
Cash

Reduce
Bal

Conf

Send
Query

Recv
Query

Send
Resp

Recv
Resp

Send
Conf

Recv
Conf

Buffer is required whenever
there is a transition from
red to green or green to red

148

Resp
OK

Local Events
ReqCash
DelivCash
LowCash
LowBal

Variables
cash

Decompose model into
ATM, Bank and Buffers

Local Events
ReduceBal

Variables
balance

Shared Events

ATM

Buffers

Bank

149

SendConf

RecvResp

SendQuery

Shared Events

RecvConf

SendResp

RecvQuery

Decomposition of replicated
database

Abstraction of Distributed Database

Abstract model:

db  object  DATA

Commit(t) Abort(t)

Update(t)

xor

151

Refinement by replicated database

ldb  site  (object  DATA)

• Decompose atomicity of Commit and Abort
following 2-phase commit protocol

152

Structured refinement of Commit

Commit(t)

Start(t) PreCommit(t,s)
Global

Commit(t)
Local

Commit(t,s)

all s in SITEall s in SITE

153

Abort(t)

Start(t) Refuse(t,s)
Global

Abort(t)
Local

Abort(t,s)

all s in
PreCommit[{t}]

some s in
SITE

Structured refinement of Abort

154

Towards a distributed system

1. Start with atomic model of transaction,
independent of architecture/roles

2. Introduce separate steps of a transaction

– independent transactions can run concurrently

3. Introduce explicit message send/receive

– this will allow us to separate the coordinator and
worker roles

155

Introducing messaging

Commit(t)

Start(t) PreCommit(t,s)

Broadcast
Start(t)

RcvStart(s,t)
Send Pre
Cmt(t,s)

Recv Pre
Commit(t,s)

all s

Pre
Cmt(t,s)

156

Global
Commit(t)

Separate coordinator and worker
events

Commit(t)

Start(t) PreCommit(t,s)

Broadcast
Start(t)

RcvStart(s,t)
Send Pre
Cmt(t,s)

Recv Pre
Commit(t,s)

all s

Pre
Cmt(t,s)

157

Global
Commit(t)

Identify communications buffers

Commit(t)

Start(t) PreCommit(t,s)

Broadcast
Start(t)

RcvStart(s,t)
Send Pre
Cmt(t,s)

Recv Pre
Commit(t,s)

all s

Pre
Cmt(t,s)

158

Global
Commit(t)

Coordinator abstract program

Coordinator(t)

Broadcast
Start(t)

Recv Pre
Commit(t,s)

all s

159

Global
Commit(t)

Worker behaviour

NonCoordinator(s,t)

PreCommit(s,t)

RcvStart(s,t)
Send Pre
Cmt(t,s)

Pre
Cmt(t,s)

160

Other case studies

• Multimedia protocol (Asieh Salehi)

• Data manipulation in satellite (Asieh Salehi)

• Railway network (Renato Silva)

• Automotive control (Sanaz Yeganefard)

161

Space Craft System

• A TeleCommand (TC) is received by the Core from Earth.

• The syntax of the received TC is check in the core.

• Further semantic checking has to be carried out either in the core
or devices based on the type of TCs.

• For all received TCs, a control TeleMessage (TM) is generated and
sent back to Earth.

• For some particular types of TC, one or more data TMs are
generated and sent back to Earth.

CSW
TC/TM Management

MIXS-C MIXS-T SIXS-X SIXS-P

Devices

162

Space Craft Development

M1

M2

M3

Refinements
Before Decomposition

Model Decomposition

M4

M5

CoreDevice

M0

Refinements
After Decomposition

163

Event refinement structure
BepiColombo(tc)

ReceiveTC(tc) TCValid_ReplyDataTM(tc)TC_Validation_Ok(tc)

TCCheck_Ok(tc) TCExecute_Ok(tc) TCExecOk_ReplyCtrlTM(tc)

XOR

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

TCValid_GenerateData(tc)

TC_TransferData_Device_to_Core(tc)

ALL (tm)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc) SendOkTC_Device_to_Core (tc)

164

TC_GenerateData_in_Device(tc, d)

Railway System Decomposition

• Decomposition for Railway

•3 refinement levels: Railway_M0 to

Railway_M2

•Decompose Railway_M2

165

Some references

• Butler, M. (2009) Decomposition Structures for Event-B. In: Integrated
Formal Methods iFM2009, LNCS 5423.

• Abrial, J.-R. and Hallerstede, S. (2007) Refinement, Decomposition and
Instantiation of Discrete Models: Application to Event-B. Fundam. Inf.,
77(1-2).

• Silva, R., Pascal, C., Hoang, T. S. and Butler, M. (2011) Decomposition Tool
for Event-B. Software: Practice and Experience, 41 (2).

• Salehi Fathabadi, A., Rezazadeh, A. and Butler, M. (2011) Applying
Atomicity and Model Decomposition to a Space Craft System in Event-B.
In: Third NASA Formal Methods Symposium, 2011.

• Salehi Fathabadi, A., Butler, M. and Rezazadeh, A. (2012) A Systematic
Approach to Atomicity Decomposition in Event-B. In, SEFM 2012.

• http://www.ecs.soton.ac.uk/people/mjb/publications

166

Code Generation from Event-B

A. Edmunds, A. Rezazadeh, M. Butler (2012).
Formal modelling for Ada implementations:
Tasking Event-B.
Ada-Europe 2012

Background

• Typical embedded systems
– Several concurrent tasks

– Tasks may be aperiodic or periodic

– Some sharing of variables

– Task and data structures usually static

• Event-B supports modelling of concurrency
– Model atomic steps in concurrent computation

– Refinement allows atomicity to be refined with
interleaving of (sub-)atomic steps

– Events and machines are the basic structuring mechanisms

168

Tasking Event-B
• Tasking Machine (Event-B machine +explicit control flow

term)
– system may have several parallel tasking machines

– add structured control flow to machine: ; / If / While

– atomic steps in a task correspond to atomic events

• Environment Machine
– Similar to tasking machine but only intended for simulation of controller

environment

• Shared-data Machine (standard Event-B machine)
– tasking machine interact indirectly via shared data machine

• Interaction between tasks and shared data represented by
shared-event composition (synchronisation)

169

Proof and generation

• Proof: control flow structures are encoded as Event-B

• Code generation:

– Internal intermediate language based on Ada subset (IL1)

– Synchronisation implemented by synchronised call
(monitor)

– Back-end to textual Ada/C via simple rules

• Data types:

– Data types are defined as reusable theories

– Rewrite rules define back-end translation to Ada or C
170

Main Functions

• Adjusting Target
Temperature

• Sensing temperature

• Displaying current and
target temperatures

• Activating/Deactivating
Alarms

• Change target temperature

• Power on/off Heater

• Sensing heater status

Heating Controller Block Diagram

Heating Controller case study

171

Decomposition to tasks

4

Decomposition of the Controller
into Tasks and a shared Object

Decomposing the
Controller from its

Environment

Environment

Controller

Environment

Shared
Object T

em
p

eratu
re

C
trl T

ask

D
isp

lay

U
p

d
ate

T
ask

H
eater

M
o

n
ito

r T
ask

Controller

5

Heating_Ctrl_M0

Heating_Ctrl_M1

Environment HCtrl_M0

HCtrl_M1

Temperature Ctrl
Task

Heater Monitor
Task

Display Update
Task

Shared
Object

Specification

Level

Refinement

First Level

Decomposition

Temperature Ctrl
Task1

Shared
Object1

Environ1

Second Level

Decomposition

Further

Refinement

Task Bodies

Event-B Development for the

Heating Controller

Display Update
Task1

Heater Monitor
Task1

Not (yet) supporting…

• Dynamic task structures

• Fine-grained locking of shared variables

• Reasoning about timing properties of tasks

• …

174

Wrap-up

Important Messages

• Role of formal modelling /problem abstraction:
– increase understanding of problem
– decrease errors

• Role of refinement and decomposition:
– manage complexity through multiple levels of abstraction and

architecture

• Role of verification:
– improve quality of models (consistency, invariants)

• Role of tools:
– make verification as automatic as possible, pin-pointing errors

and even suggesting improvements

• Event-B can and should be linked with complementary
methods

Challenges

• More powerful proof automation
• Richer modelling and refinement patterns

– General and domain specific
– Automated application of patterns

• Code generation:
– support much broader program structures

• Linking systematic requirements analysis with problem abstraction
– General and domain-specific
– Problem structure versus solution structure

• More experimental validation of methods and tools in realistic
industrial settings

• Education/training
• …

177

Keep up to date / contribute

• www.event-b.org

• wiki.event-b.org

– share your Event-B models

– share your plug-in plans

– suggest plug-in ideas

178

