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Abstract. The complexity of requirements and complexity of operating environ-
ments make error detection in early stages of software system development diffi-
cult. This paper makes an argument for the use of formal modelling and verification
in early stages of system development to identify and eliminate errors in a timely
fashion. Precision is key to eliminating errors in requirements while abstraction is
key to mastering requirements complexity. The paper outlines the way in which
precision and abstraction may be achieved through modelling and how refinement
allows the complexity to be managed through layering. The role of model validation
and model verification in improving the quality of formal models and in improving
the quality of the requirements is also outlined. The formalism used throughout is
Event-B supported by the Rodin toolset.
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Introduction

This paper addresses the key role played by formal modelling and verification in software
systems engineering. Modelling may be used at all stages of the development process
from requirements analysis to system acceptance testing. Formal modelling and verifica-
tion lead to deeper understanding and higher consistency of specification and design than
informal or semi-formal methods. In order to manage system complexity, abstraction and
refinement are key methods for structuring the formal modelling effort since they support
separation of concerns and layered reasoning. A refinement approach means that models
represent different abstraction levels of system design; consistency between abstraction
levels is ensured by formal verification.

We use the Event-B formal modelling language developed by Abrial [1] and the
associated Rodin1 toolset for Event-B [2]. Event-B is a state-based formal method for
system-level modelling and analysis. The key features of Event-B are the use of set
theory as a modelling notation, the use of refinement to represent systems at different
abstraction levels and the use of mathematical proof to verify the consistency between
refinement levels.

We start by motivating the need for abstraction and formal modelling. We then pro-
vide insight into the abstraction process through an illustrative example of a secure ac-

1Available from www.event-b.org



cess control system. We show how our abstraction of the system may be formalised in
Event-B and the role played by formal verification (both model checking and automated
proof) in identifying errors in the model. We also outline the process of validation of a
formal model against informal requirements. The abstraction of the access control sys-
tem is focused on what the system achieves (its purpose) rather than how it is achieved.
We then show how features that were ignored in our abstraction may be introduced to
the formalisation in a layered and consistent way through refinement. Not only does re-
finement specify how the intended purpose is achieved, but the effort required to ver-
ify the consistency of the refinement w.r.t. its abstraction provides insight into why the
mechanism used works.

1. Motivation

It is useful to motivate the role and value of the formal methods that we are outlining
and advocating in this paper. Essentially it is about improving the processes that are used
to engineer software-based systems so that specification and design errors are identified
and rectified as soon as possible in the system development cycle. It has long been recog-
nised that the cost of fixing a specification or design error increases the later in the de-
velopment that error is identified. The diagram in Figure 1 illustrates the results of a sur-
vey from 1990 of industrial projects providing evidence of this phenomenon [12]. Based
on data from these projects it shows the cost of fixing requirements errors (errors that
are introduced in the requirements analysis phase) at various stages of the development
cycle. The graph shows that, for the projects reported on, the cost of fixing requirements
errors discovered in the acceptance testing phase is between 30 and 70 times that of the
cost of fixing errors discovered in the requirements phase; that scaling rises to between
40 and 1000 for requirements errors discovered in the operations phase in this survey.

Unfortunately a common feature of many large software engineering projects is that
numerous problems are discovered very late in the development cycle, making them very
expensive to fix. Many of these errors may have been introduced early in the development
cycle, but are discovered much later on when the system is being tested, close to or even
after deployment. Figure 2 illustrates a profile of the rate of error discovery over the
development cycle. The graph shows most errors being discovered during testing phases
with the error discovery falling close to and after deployment.

Early identification of errors through formal modelling

Clearly, identifying errors at the point at which they have become expensive to fix, long
after they were introduced, is undesirable. More desirable would be to discover errors
as soon as possible when they are less expensive to fix. Figure 3 illustrates an idealised
profile where the error discovery rate is higher in the earlier stages. So, why is it difficult
to achieve this ideal profile in practice? Common errors introduced in the early stages of
development are errors in understanding the system requirements and errors in writing
the system specification. Without a rigorous approach to understanding requirements
and constructing specifications, it can be very difficult to uncover such errors other than
through testing after a lot of development has already been undertaken. Why is it difficult
to identify errors that are introduced early in the development cycle? One reason is lack
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Figure 3. Types on Non-Clerical Requirements
Errors
(1981 IEEE Computer Society, Inc.)

Figure 4. Cost of Assumption Error in 
Requirements Phase
(“Extra Time Saves Money,” Warren Kuffel
Computer Language, December 1990)

The information in this figure is also applicable
to other requirements changes.  If you decide to
change a requirement at the beginning of the
program, the cost will be minimal compared with
making the change after you have begun
development or when you are in operations.

These two previous figures indicate the
importance of controlling all assumptions and all
requirements from the beginning of the program.
Gruhl’s chart shows the importance of devoting
resources to Phase A and B efforts.

Given the evidence of poor requirements
definition and management as the cause of
program cost overruns, why do program
managers continue to make the same mistakes?

Major Problems in Requirements
Management

The major cause of bad requirements is that
people do not know how to write requirements.
The problem is compounded by a lack of
management attention and a poorly defined
requirements management process.  If the
program manager assumes that (1) everyone
knows how to write requirements, (2) the
requirement definition process is well
understood, and (3)  the review process will fix
any problems, then problems are guaranteed.

1. Everyone does not know how to write
requirements.

Not everyone, in fact very few people, really
understands how to write good requirements.  In
each of my courses, I ask the class, "How many
of you have had to write requirements?" then
"How many of you have had to review or verify
someone else's requirements?"  Most of the class
responds to one or both questions.  Then I ask,
"How many of you have been happy about either
process?"  Only on rare occasions does anyone
respond to the final question.

The problem is that, while these are very bright
people, they (1) sense a lack of management
interest, (2) are not provided the information
needed to do a good job, and (3) do not have the
knowledge to do the job.

Figure 1. Cost of fixing requirements errors at different development stages [12]
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Figure 2. Typical error discovery rate at different stage of development

of precision in formulating specifications resulting in ambiguities and inconsistencies
that are difficult to detect and may store up problems for later. Another reason is too
much complexity, whether it is complexity of requirements, complexity of the operating
environment of a system or complexity of the design of a system.

To overcome the problem of lack of precision, we advocate the the use of formal
modelling. As well as encouraging precise descriptions, formal modelling languages are
supported by verification methods that support the discovery and elimination of incon-
sistencies in models. But precision on its own does not address the problem of complex
requirements and operating environments. Complexity cannot be eliminated but we can
try to master it. To master complexity, we advocate the use of abstraction. As we will see,
abstraction is about simplifying our understanding of a system to arrive at a model that is
focused on what we judge to be the key or critical features of a system. A good abstrac-
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Figure 3. Idealised error discovery rate through early stage formal modelling and analysis

tion will focus on the purpose of a system and will ignore details of how that purpose
is achieved. We do not ignore the complexity indefinitely: instead, through incremental
modelling and analysis, we can layer our understanding and analysis of a system. This
incremental treatment of complexity is the other side of the coin to abstraction, namely,
refinement.

The Event-B modelling approach is intended for early stage analysis of computer
systems. It provides a rich modelling language, based on set theory, that allows precise
descriptions of intended system behaviour (models) to be written in an abstract way. It
provides a mathematical notion of consistency together with techniques for identifying
inconsistencies or verifying consistency within a model. It also provides a notion of re-
finement of models together with a notion of consistency between a model and its re-
finement. By abstracting and modelling system behaviour in Event-B, it is possible to
identify and fix requirements ambiguities and inconsistencies at the specification phase,
much earlier in the development cycle than system testing. In this way, rather than hav-
ing an error-discovery profile in which most errors are discovered during system testing
(Figure 2), we would arrive at an ideal profile in which more errors are discovered as
soon as they are introduced as illustrated by Figure 3.

Requirements and formal models

We assume that the results of any requirements analysis phase is a requirements docu-
ment written in natural language. There remains a potentially large gap between these
informal requirements and a formal model. In this paper we will touch on this gap but
not address it in any comprehensive way. In the context of a system development that
involves both informal requirements and formal specification, it is useful to distinguish
two notions of validation as follows:

• Requirements validation involves analysing the extent to which the (informal)
requirements satisfy the needs of the stakeholders

• Model validation involves analysing the extent to which the (formal) model accu-
rately captures the (informal) requirements

Both of these forms of validation require the use of human judgement, ideally by a
range of stakeholders. In addition, we can perform mathematical judgements on a formal
model. We refer to this use of mathematical judgements are model verification, that is,
the extent to which a model satisfies a given set of mathematical judgements. Key to the



1. Users are authorised to engage in activities.
2. User authorisation may be added or revoked.
3. Activities take place in rooms
4. Users gain access to a room using a one-time token provided they have authority to

engage in the room activities.
5. Tokens are issued by a central authority.
6. A room gateway allows access with a token provided the token is valid .

Figure 4. List of requirements on the access control system

effective use of model verification is strong tool support that automates the verification
effort as much as possible.

Arriving at good abstractions, formalising them, enriching models through abstrac-
tion and making mathematical judgements all require skill and effort. This upfront effort
is sometimes referred to as front-loading: putting more effort than is usual into the early
development stages in order to save test and fix effort later.

In the next section we will illustrate the process of abstraction through an example.
Before we proceed however it is important to distinguish two forms of abstraction used
in the context of software verification. Model checking of programs relies on being able
to construct an abstraction of that program in order to reduce the (computational) com-
plexity of automated verification. This form of abstraction takes a (formal) program as
an input and can be automated – we refer to it as program abstraction. In this paper,
we are addressing a different form of abstraction, which we refer to as problem abstrac-
tion. Problem abstraction is a creative process that takes (informal) requirements as input
to produce a formal abstration. The purpose of problem abstraction is to increase our
understanding of a problem (and remove errors in understanding).

2. Abstraction: Access Control Example

In this section we consider an example of an access control system, constructing an
abstract formal model in Event-B. The example is intended to give the reader an insight
into the abstraction process as well as giving a taste of the Event-B modelling language.
In the next section (Section 3) we will look at validation of the formal model against the
informal requirements. In Section 4 we will outline the role that tool-supported model
verification plays in improving the quality of the model. This will in turn be followed in
Section 5 by an outline of how model refinement can be used to relate our abstraction to
the mechanisms used to achieve the access control purpose.

We consider a secure building consisting of a collection of rooms in which various
restricted activities take place. Users of the building may have authority to engage in the
activities. The access control system uses a token mechanism to control access by users
to rooms so that a user should be allowed to enter a room only if they have sufficient
authority.

Figure 4 provides a list of informal requirements on the access control system. We
assume that it has already been established that the requirements satisfy the needs of
the stakeholders (requirements validation). Presenting the requirements in list form, as
in Figure 4, will facilitate the process of ensuring that they are accurately represented
by the formal model (model validation). As a first step towards constructing an abstract



USER%

ACTIVITY%
ROOM%

TOKEN%
AUTHORITY%

GATEWAY%

AUTHORISATION%

Figure 5. Entities identified from the requirements list

USER% ACTIVITY%

ROOM%

TOKEN%

AUTHORITY%

GATEWAY%

room%

authorised%

takeplace%

holder%

issuer%
trust%

locaBon%

read%

manage%authorise%
manage%

guards%

Figure 6. Relevant relationships between entities

model, it is useful to identify the entities involved in the problem. An easy way of doing
this is to identify the nouns used in the list of requirements. In Figure 4 we have high-
lighted, in italics, the first occurrence of each noun. In Figure 5 we have represented the
identified problem entities in a graphical way. This will facilitate the identification of the
relationships between those entities that are relevant to the problem.

Entities and the relationships between them

To identify relevant relationships between entities, we take any pair of entities from the
diagram in Figure 5 and make a judgement about whether there is a relationship between
them that is relevant to the problem of access control. For example, if we consider the
entities USER and ROOM, we can conclude that it is relevant to know which room a user
is located in. To make this explicit, we draw a line between both entities in the diagram
and give it a meaningful name, say location. This relationship, along with several other
relevant relationships that we identified, is shown in Figure 6. This is an example of
the well-established concept of entity-relationship diagram [5] (a precursor to the class
diagrams found in UML [10]). The reader will notice that the AUTHORISATION entity
that appears in Figure 5 has been removed from Figure 6. The reason for this is that,
in constructing Figure 6, we made a judgement that the notion of authorisation is best
represented as a relationship between a user and an activity and this relationship has been
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Figure 7. Simplifed entity-relationship diagram for access control

identified and labelled authorised in Figure 6. This makes having AUTHORISATION as
an entity in its own right redundant so we remove it.

Now the entity-relationship diagram of Figure 6 is looking somewhat complex due to
the number of relationships that we have identified. Before proceeding with completion
of a formal model, we reflect on whether all of the entities and relationships we have
identified are necessary in order to arrive at an appropriate abstraction of the access
control problem. To do this we need to identify what we regard to be the purpose of the
access control system. Our judgement is as follows:

The purpose of our system is to enforce an access control policy.

The access control policy is that users may only be in a room if they are authorised to engage
in all the activities that may take place in that room

Simplifying the entities and their relationships

To express the policy we only require three entities, USER , ROOM and ACTIVITY, to-
gether with the relationships between these. This observation leads to the much simpler
entity-relationship diagram shown in Figure 7 that contains three entities and three re-
lationships between them. This simplification is an example of problem abstraction: we
focus on the entities that are most relevant to describing the purpose of the system being
analysed and ignore those that are less relevant to the purpose. Of course entities such as
the tokens and the gatekeepers are an important part of the means by which the purpose
is achieved so we will not ignore them forever. In Section 5 we will show how the token
mechanism can be layered into our formal modelling through refinement.

For the purposes of formal modelling we treat the three entities of Figure 7 are dis-
tinct abstract types. Given these types, we can define the three relations mathematically
as follows:

authorised ∈ USER↔ACTIV ITY

takeplace ∈ ROOM ↔ACTIV ITY

location ∈ USER↔ROOM

Thus, authorised is declared as a relation between USER and ACTIV ITY ,
takeplace is declared as a relation between ROOM and ACTIV ITY and location is
declared as a relation between USER and ROOM . For readers not familiar with the
mathematical notation of Event-B, we provide an overview of the mathematical concepts
used in this paper as an appendix. Given the above declarations, we can express the
security policy using the following predicate:

∀u, r · u 7→r ∈ location ⇒ takeplace[{r}] ⊆ authorised[{u}] (1)
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Figure 8. General structure of Event-B machine and context

Here takeplace[{r}] specifies the image of r under the takeplace relation, i.e., the set
of activities that r is related to or the set of activities that take place in room r. Similarly
authorised[{u}] represents the set of activities that user u is authorised to engage in.
Thus, (1) specifies that, for any user u and room r, if u is located in r, i.e., u 7→ r ∈
location, then the set of activities that take place in the room (takeplace[{r}]) must be
included in the set of activities that the user is authorised to engage in (authorised[{u}]).
In other words, the user must have sufficient authorisation to be in the room.

Structure of an Event-B specification

Before presenting the remaining details of the access control specification, we outline
the general structure of an Event-B specification. A specification consists of a static part,
specified in a context, and a dynamic part, specified in a machine. An Event-B context
contains the following elements:

• Sets: Abstract types used in specification to distinguish various entities

• Constants: Logical variables whose value remain constant

• Axioms: Predicates that specify assumptions about the constants.

An Event-B machine contains the following elements:

• Variables: State variables whose values can change

• Invariants: Predicates that specify properties about the variable that should al-
ways remain true.

• Initialisation: Initial values for the abstract variables

• Events: Guarded actions specifying ways in which the variables can change.
Events may have parameters.

A machine may see the static elements defined in a context meaning that these elements
are visible within the machine. The structure of a specification is outlined in Figure 8

Abstract access control in Event-B

Clearly the entities USER, ROOM and ACTIVITY from the diagram in Figure 7 should
be specified as abstract types in a context. In addition, for the purposes of this paper,
we assume that the allocation of activities to rooms cannot be modified during operation
and thus we specify the takeplace relation as a constant2. Accordingly we specify the
following Event-B context for the access control system:

2The requirements are vague about whether the allocation of activities to rooms may be changed. We made
a judgement to treat it as fixed but we could have chosen to make it changeable.



context AccessControlContext1
sets USER, ROOM, ACTIV ITY
constants takeplace
axioms

@axm1 takeplace ∈ ROOM ↔ACTIV ITY

Here and elsewhere we label predicates (@axm1) in the model for ease of reference.
We assume that users may change locations (implicit in Requirement 4 of Figure 4).

Furthermore, although not explicitly state in the requirements of Figure 4, we shall as-
sume that a user can be in at most one location at any time. We also assume that user
authorisations may change (implicit in Requirement 2 of Figure 4). Accordingly we treat
the location and authorised relations as variables. The assumption about users being
in at most one room, together with the access control policy, are specified with variables
and invariants in an Event-B machine as follows:

machine AccessControl1
sees AccessControlContext1
variables location, authorised
invariants

@inv1 location ∈ USER 7→ROOM
@inv2 authorised ∈ USER↔ACTIV ITY
@inv3 ∀u, r · u 7→r ∈ location ⇒

takeplace[{r}] ⊆ authorised[{u}]

events · · ·

Note that invariant @inv1 specifies that location is a partial function, i.e., each user
is mapped to at most one room. Invariant @inv3 specifies the access control policy as
already identified. So far we have not identified the relevant events that model ways
in which the variables can change. The location relation may change when some user
enters or leaves a room, thus we will introduce EnterRoom and LeaveRoom events.
The authorised relation is modified when user authorisation is added or revoked, thus
we will introduce AddAuthorisation and RemoveAuthorisation events to the formal
model.

We consider the EnterRoom event. In Event-B an event of a machine consists of a
list of guards and a list of actions. The guards specify the conditions that must hold for the
event to be executed - an event can only be executed when all of its guards are satisfied.
The effect of an event is specified as a list of assignments to variables of the machine.
An event may have parameters representing possible values that determine the effect of
the event, e.g., the EnterRoom event is parameterised by a user u and the room r they
are entering. In order for a user to enter a room they must have sufficient authorisation
to enter that room, i.e., they must have authorisation for all the activities that take place
in that room. This condition will be represented as a guard in the specification of the
EnterRoom event. The full specification of the EnterRoom event is as follows:



event EnterRoom
any u, r where
@grd1 u ∈ USER
@grd2 u 6∈ dom(location)
@grd3 r ∈ ROOM
@grd4 takeplace[{r}] ⊆ authorised[{u}]

then
@act1 location(u) := r

end

Here @grd2 specifies that the user u is not already located in some room while @grd4

specifies that the user has sufficient authorisation to enter room r.

We have used two forms of predicate in the specification of our Event-B machine,

invariants and guards. Let us clarify the distinction between these uses of predicates:

Invariants: Invariants specify properties of model variables that should always remain

true no matter what events get executed. Execution of an event that leads to a

violation of an invariant is undesirable.

Guards: Guards specify enabling conditions under which events may occur. Guards

should be strong enough to ensure invariants are maintained by the actions of an

event but not so strong that they prevent desirable behaviour.

The LeaveRoom event has a simpler guard than EnterRoom - the only condition is

that the user is currently in the room:

event LeaveRoom
any u, r where
@grd1 u 7→r ∈ location

then
@act1 location := {u}C− location

end

Here, action @act1 removes the mapping from u to r from the location relation.

Our first attempt at specifying the authorisation modification events are as follows:

AddAuthorisation adds a mapping from a user to an activity to authorised provided it

is not already present while RemoveAuthorisation removes a mapping that is present.



event AddAuthorisation
any u, a where
@grd1 u ∈ USER
@grd2 a ∈ ACTIV ITY
@grd3 u 7→a 6∈ authorised

then
@act1 authorised := authorised ∪ {u 7→a}

end

event RemoveAuthorisation
any u, a where
@grd1 u ∈ USER
@grd2 a ∈ ACTIV ITY
@grd3 u 7→a ∈ authorised

then
@act1 authorised := authorised \ {u 7→a}

end

In Section 4, when we apply model verification to the machine we will see that the
RemoveAuthorisation event, as specified above, may lead to a violation of the access
control policy.

In Event-B we also specification a special initialisation event for a model that de-
fines how the variables are to be initialised before other events are performed. For the
access control model, we specify that the both variables are empty, i.e., there are no
authorisations and no users are in rooms:

event initialisation
@act1 authorised := ∅
@act2 location := ∅

3. Model validation

Now that we constructed an abstract model in Event-B, we attempt to validate the model
against the informal requirements of Figure 4. One useful validation technique for Event-
B models is to use an animation tool such as ProB [14] or AnimB3. With these tools,
the abstract types are instantiated with some illustrative values, e.g., the type USER is
instantiated with the values u1, u2, u3, and the model can be executed on this models.
The execution is driven by the user and at each step the state can be inspected. Figure 9
represents the state that is reached by executing the following sequence of events on our
model of the access control system:

3www.animb.org
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Figure 9. Result of animating model through a sequence of events

initialisation
AddAuthorisation(u1, a1)
AddAuthorisation(u1, a2)
AddAuthorisation(u2, a1)
EnterRoom(u1, r1)
EnterRoom(u2, r2)

Figure 9 represents each of the relations takeplace, authorised and location as tables. For
example, the location table shows that u1 is related to r1 under the location relation,
i.e., a state corresponding to user u1 being in room r1. Manual inspection of the tables
in Figure 9 shows that they do represent a state that satisfies the key security invariant
@inv3. However, rather than using manual inspection to check for satisfaction of invari-
ants, in Section 4 we will show how model checking and proof can be used to do this in a
systematic and automated way. The value of the animation is that it helps us make human
judgements about whether the behaviour specified by the model is what we would expect
given the informal requirements.

In order to be systematic about validation of the model against the requirements, we
will re-visit the list of requirements and annotate each one with a explanation of whether
and how it is represented in the Event-B model. This is a form of tracing information:
a means of tracing from a requirement through to a part, or parts, of the formal model.
This is shown as a table in Figure 10 where the explanations of how a requirement is
represented in the formal model are in shown in the third column. For example, the anno-
tation on Requirement 1 provides an explanation of how that requirement is represented
in the formal model through the authorised relation. Three of the requirements (4, 5, 6)
are not addressed by our abstraction as indicated by the annotations. The reason they are
not addressed is that we chose to abstract away several entities, such as TOKEN, in our
abstract model.

As a result of our abstraction and formalisation we have identified some additional
informal requirements that we believe would be valuable to record. As indicated in Fig-
ure 10, Requirements 7 to 10 are the new requirements that we have identified. These
additional requirements make explicit some properties that were either missing or were
implicit. For example, the original requirements said nothing about whether the activi-
ties that take place in rooms was fixed or changeable (missing requirement). The access
control policy was implicit in Requirement 4 (implicit requirement). We have made it
explicit in Requirement 7.



Id Requirement Representation in model
1. Users are authorised to engage in activities. This is represented by the

authorised variable that relates
users to the activities they are
authorised to engage in.

2. User authorisation may be added or re-
voked.

This is represented by the AddAu-
thorisation and RemoveAuthorisa-
tion events.

3. Activities take place in rooms. This is represented by the events for
adding and revoking authorisation.

4. Users gain access to a room using a one-
time token provided they have authority to
engage in the room activities.

Not represented at this stage.

5. Tokens are issued by a central authority. Not represented at this stage.
6. A room gateway allows access with a token

provided the token is valid.
Not represented at this stage.

7. New requirement: Users may only be in a
room if they are authorised to engage in all
activities that may take place in that room.

This is represented by invariant
@inv3.

8. New requirement: Users may enter rooms
if they have sufficient authorisation for that
room. Users may always leave a room they
are in.

This is represented by the Enter-
Room and LeaveRoom events.

9. New requirement: A user may be in at
most one room.

This is represented by location be-
ing a partial function.

10. New requirement: The allocation of activ-
ities to rooms is fixed.

This is represented by takeplace
being a constant (not a variable).

Figure 10. Revised list of requirements with tracing information

4. Model verification

Model verification involves making mathematical judgements about the model. The main
mathematical judgement we apply to the abstract model is to determine whether the
invariants are guaranteed to be maintained by the events. Mathematical judgements are
formulated as proof obligations (PO). These are mathematical theorems whose proof we
attempt to discharge using a deductive proof system. In the Rodin toolset for Event-B,
mechanical proof of POs may be complemented by the use of the ProB model checker
which searches for invariant violations by exploring the reachable states of a model.

Consider the state of the access control system shown in Figure 9. As already ex-
plained, this state is reachable by executing a particular sequence of events. In the state
represented both u1 and u2 are in a room and have appropriate authorisation to be there.
Now if the next event to be performed was RemoveAuthorisation(u1, a2) the state
reached would be as shown in Figure 11. This new state is in incorrect state, that is,
it violates the invariant since user u1 is still in room r1 even though activity a2 takes
place in r1 and they no longer have authority to perform that activity. Indeed, ProB can
automatically find a sequence of events that lead to an invariant violation (known as a
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Figure 11. Incorrect state reached when RemoveAuthorisation(u1,a2) is applied to Figure 9

event E
any p where
@grd G(p, v)

then
@act v := F (p, v)

end

Invariant Preservation PO:

Hyp1 : I(v)

Hyp2 : G(p, v)

Goal : I( F (p, v) )

Figure 12. Invariant preservation proof obligation for an event

counterexample). The counterexample that leads to the state in Figure 9 is not the short-
est possible counterexample. ProB can automatically find a shorter counterexample such
as the following:

initialisation
AddAuthorisation(u1, a1)
AddAuthorisation(u1, a2)
EnterRoom(u1, r1)
RemoveAuthorisation(u1, a1)

The counterexample demonstrates an error in the model: if authorisation for a2 is re-
moved while user u1 is still in the room, i.e., has entered the room but not left it, then
the invariant is violated. A moments reflection confirms that this is indeed an issue with
access control that has not been addressed by the informal requirements: does it make
sense to remove authorisation if the user is currently located in a room in which the
activity takes place?

Before addressing a solution to this issue, we look at how the error is reflected in
the proof obligation (PO) for invariant preservation. Figure 12 shows a definition of this
PO. The left side of the figure provides a schematic specification of an event E with a
guard represented by G(p, v) and an action represented by F (p, v). Here p represents
the event parameters and v represents the variables on the machine on which the event
operates. We write G(p, v) to indicate that p and v are free variables of the predicate G.
Assuming that I(v) represents a invariant of the machine, the right hand side of Figure 12
shows the PO used to prove that the invariant is maintained by event E. The PO is in the
form of a list of hypotheses and a goal. The PO is discharged by proving that the goal is
true assuming that the hypotheses are true. In this case, the hypotheses are the invariant
itself (Hyp1) and the guard of the event (Hyp2). The goal is the invariant with the free
occurrences of variable v replaced by F (p, v), the representation of the value assigned
to v by the action of the event.



The Rodin tool for Event-B generates the invariant preservation POs for all of the
events of the model and the automated provers of Rodin are able to discharge all of the
generated POs except for one. The specification of the RemoveAuthorisation event
together with invariant @inv3 (the access control policy) give rise to the following PO
that cannot be proved:

Hyp1 : ∀u, r · u 7→r ∈ location ⇒ takeplace[{r}] ⊆ authorised[{u}]

Hyp2 : u 7→a ∈ authorised

Goal : ∀u, r · u 7→r ∈ location ⇒
takeplace[{r}] ⊆ (authorised \ {u 7→a}) [{u}]

Here, Hyp1 is the invariant to be preserved and Hyp2 is the guard of the event. The
event makes an assignment to the authorised variable and thus the goal is formed by
substituting authorised by (authorised \ {u 7→ a}). The result of the substitution is
underlined in the goal. The problem here is that the right-hand side of the set inequality in
the goal, (authorised \ {u 7→a})[{u}], is reduced compared with that in the hypothesis,
Hyp1, while the left-had side, takeplace[{r}], remains unchanged.

This failing PO highlights the fact that the RemoveAuthorisation event removes
activity a from the right-hand side of the set inequality without removing it from the
right-hand side. If that activity was not a member of the left-hand side, then removing
from the right-hand side would be ok, i.e.,

S ⊆ T ∧ a 6∈ S ⇒ S ⊆ (T \ {a}). (2)

The following property will ensure that a is not a member of the left-hand side
(takeplace[{r}]):

u 7→r ∈ location ⇒ r 7→a 6∈ takeplace. (3)

Now since location is a partial function, u is related to at most one room r. Thus property
(3) is equivalent to the following property:

u ∈ dom(location) ⇒ location(u) 7→a 6∈ takeplace. (4)

Now property (4) will be available as a hypothesis in the PO for RemoveAuthorisation
if the property is a guard of the event. Adding this property as a guard gives us the
following revised specification of the event:

event RemoveAuthorisation
any u, a where
@grd1 u ∈ USER
@grd2 a ∈ ACTIV ITY
@grd3 u 7→a ∈ authorised
@grd4 u ∈ dom(location) ⇒ location(u) 7→a 6∈ takeplace

then
@act1 authorised := authorised \ {u 7→a}

end



Id Requirement Representation in model
1. · · ·
2b. New requirement: User authorisation

may not be revoked while a user is located
in a room in which the activity takes place.

This is represented by guard @grd3
of the RemoveAuthorisation event.

3. · · ·

Figure 13. Second revision of requirements

This revised definition of RemoveAuthorisation has an additional guard specifying
that we can only remove authorisation for an activity a from user u provided the activity
does not take place in the room in which the user is located (if they are in a room). With
this the Rodin provers are able to discharge all of the invariant-preservation POs for the
abstract model.

The counterexample generated by the ProB model checker using the original ver-
sion of the event highlighted a problem with the specification of the event. This stronger
condition for removing authorisation was identified through our attempt to prove that the
original specification of the event maintained the access control invariant. It is appropri-
ate that we make a (human) judgement about the validity of this stronger specification
of removing authorisation. Is it a reasonable constraint? Well, if we expect the access
control policy to hold always, we have no choice: without the stronger guard, the event
cannot maintain the access control invariant. We could remove the invariant completely
from the model but that seems like an unsatisfactory solution since it would mean we
were not addressing the main purpose of access control in our formalisation and would
undermine what we can reasonably state in our requirements. For the purposes of this
paper, we make the judgement that the invariant should stay and thus the revised version
of the RemoveAuthorisation event with the stronger guards holds. A more elaborate solu-
tion might be to introduce a notion of pending authorisation removals. These are autho-
risation removals that are marked as pending if a user is in a room in which the activity
takes place but that only take effect after the user has left the room. This solution would
also allow us to retain the access control invariant.

Give the revision to the model we have decided to adopt, it is appropriate to modify
the requirements document accordingly. We add an additional requirement that is related
to our existing requirement about adding and revoking authorisation (Requirement 2).
This new requirement (Requirement 2b) is shown in Figure 13.

5. Refinement

In this section we show how the token mechanism that we previously abstracted away
from may be introduced to the formal modelling through refinement. A user needs to
acquire a token in order to enter a room. A token has a holder and a room for which it
grants access to the holder. Figure 14 shows an entity-relationship diagram in which the
TOKEN entity has been introduced, along with two new relations between tokens and
users and between tokens and rooms.

An Event-B machine m2 may be declared to be a refinement of some other Event-B
machine m1. In this case we refer to m1 as the abstract machine and m2 as the refined
machine. Machine m1 is said to be a correct refinement of m1 if any behaviour that may
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Figure 14. Entity-relationship diagram with tokens
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Figure 15. Structuring refinement

be exhibited by m2 is also a possible behaviour of m1. Refinement represents our expec-
tation that the behaviour of m2 should conform to the behaviour of m1. Of course declar-
ing that m2 refines m1 does not on its own guarantee the correctness of a refinement.
Rather the declaration gives rise to proof obligations that need to be discharged in order
to guarantee the correctness of a refinement. When refining a machine, it is common to
specify new types and constants to be used in the refinement. This is achieved by spec-
ifying a new context for the refined machine. If the specification of any new types and
constants depend on the types and constants used by the abstract machine, the new con-
text is declared to be an extension of the context of the abstract model. The relationships
between a machine and its refinement, as well as their respective contexts, is illustrated
by Figure 15. This figure shows the refinement declaration from m2 to m1, together with
the relationships with their contexts. A refined context c2 is declared as an extension of
the abstract context c1 meaning context c2 may refer to types and constants specified in
context c1. The dashed line from machine m2 to context c1 indicates that m2 implicitly
see definitions in c1 (via c2).

For the refinement of the access control system, we introduce the type TOKEN to-
gether with the relation between TOKEN and USER, called holder, and between TO-
KEN and ROOM, called room (Figure 14). Clearly TOKEN needs to be introduced as
a new type. We need to decide whether holder and room should be specified as vari-
ables or constants. If we need to specify that the holder of a token may change, then
this relation should be specified as a variable. However the assumption we will make is
that once a token is issued, its holder and room attributes will not change. Thus we will
model the holder and room relations as constants. This leads to the following context,
AccessControlContext2 that extends AccessControlContext1:



context AccessControlContext2
extends AccessControlContext1
sets TOKEN
constants room holder
axioms

@axm1 room ∈ TOKEN →ROOM
@axm2 holder ∈ TOKEN → USER

Here room and holder are total functions so each token t is associated with a single

room, written room(t), and a single holder, written holder(t). We need to assume that

the gatekeeper to a room can check somehow that the user trying to gain entry using a

token is indeed the same user who the token is related to via the holder relation. For

example, this might be achieved through some biometric mechanism though we do not

address this issue in this paper.

Our first attempt at specifying the variables and invariants of a refinement of the

token system are as follows:

machine AccessControl2
refines AccessControl1
sees AccessControlContext2
variables location, authorised, valid
invariants

@inv4 valid ⊆ TOKEN

events · · ·

Here we have explicitly declared AccessControl2 to be a refinement of AccessControl1

and we have declared that AccessControl2 can see the extended context AccessControl-

Context2. The refining machine has one additional variable, valid, which represents the

set of tokens that have been issued and have yet to be used to gain access to a room.

In Event-B, every event of the refining machine is either a refinement of some event

of the abstract machine or is a so-called new event introduced in the refinement that has

no corresponding abstract event. The event for creating a new token is one such new

event. It has no corresponding abstract event since the abstract model did not include a

notion of token thus it was not appropriate to model token creation at the abstract level.

The IssueToken event has three parameters, a user, a room and a token:



event IssueToken
any u, r, t where
@grd1 u ∈ USER
@grd2 r ∈ ROOM
@grd3 takeplace[{r}] ⊆ authorised[{u}]
@grd4 t ∈ TOKEN \ valid
@grd5 room(t) = r
@grd6 holder(t) = u

then
@act1 valid := valid ∪ {t}

end

Here the effect of the event is to add the new token t to the set of valid tokens (@act1).
The token can only be issued if the user has sufficient authorisation to be able to enter the
room (@grd3). The new token should not already be on the set of valid tokens (@grd4).
The value chosen to represent token t must be such that the room and the holder at-
tributes match the room and user attributes (@grd5, @grd6). At an abstract level we do
not distinguish between input and output parameters – parameters simply represent val-
ues that are chosen nondeterministically in a way that satisfies the guards. In the imple-
mentation the values for u and r could be chosen externally by a (human) administrator
while the value for t could be chosen internally by the token issue mechanism. It is the
responsibility of the implementation to ensure that the guards are enforced.

In the abstract specification of the EnterRoom event, the main guard is the check
that the user has sufficient authority, i.e.,

takeplace[{r}] ⊆ authorised[{u}] (5)

Now, in our refinement we wish to represent the design requirement that a user must
provide a valid token in order to gain access to a room. At the point at which the user
is entering a room, the validity of the token is the only check that is made. Property (5)
does not need to be checked at that point since it will already have been checked at the
point at which the token is issued (IssueToken event). The refined EnterRoom event
is thus specified as follows:

event EnterRoom refines EnterRoom
any u, r, t where
@grd1 u ∈ USER \ dom(location)
@grd2 r ∈ ROOM
@grd3 t ∈ valid
@grd4 room(t) = r
@grd5 holder(t) = u

then
@act1 location(u) := r
@act2 valid := valid \ {t}

end

The declaration ‘EnterRoom refines EnterRoom’ indicates that this refining event is
intended to be a refinement of the corresponding abstract event. Although we use the



same name for both the abstract and refining event here, in Event-B the names may be
different. The refining EnterRoom event has an additional parameter compared with
the abstract version of the event, namely the token t. The token is required to be valid
(@grd3) and its room and holder attributes must correspond to the user and the room
they are trying to enter (@grd4,@grd5). Just like the abstract EnterRoom event, the
refining version sets the location of the user to room r (@act1). The refining version also
removes the token used to enter the room from the set of valid tokens (@act2). This is
because the token is required to be a one time (single use) token.

In some cases we require a refining event to have the same specification as the corre-
sponding abstract event or maybe to have additional behaviour. This can be achieved in
Event-B using a special case of refinement called event extension. This specifies that the
refining event includes all of the parameters, guards and actions of the abstract event to-
gether with additional parameters, guards and events. Only the additional elements need
to be specified in the refining event. Use of the keyword extends means that the specifi-
cation elements of the abstract event are implicitly included. We specify the initialisation
of the refining machine in this way:

event initialisation extends initialisation
@act3 valid := ∅

As well as initialising the variables that are present in the abstract machine, the refining
initialisation also refines the newly introduced variables, valid, to be empty. The other
events from the abstract model are retained unchanged:

event LeaveRoom extends LeaveRoom

event AddAuthorisation extends AddAuthorisation

event RemoveAuthorisation extends RemoveAuthorisation

6. Refinement verification

In order to verify that the refining model conforms to the abstract model, there are two
main forms of proof obligation to be proved: invariant preservation and guard refine-
ment. Invariant preservation is as in Figure 12. Guard refinement involves proving that
the guards of the refined event are not weaker than the guards of the abstract events, i.e.,
that if the refining event is enabled in some state then in any corresponding abstract state
the abstract event is also enabled. The definitions of the refinement POs we use are given
in Figure 16. Here E2 and E1 represent a refining event and its corresponding abstract
event respectively. The variables of the abstract model are represented by v and the new
variables introduced in the refining machine are represented by w. Verification of the
refinement makes use of invariants that state properties of w and v combined. These are
sometimes referred to as gluing invariants as they are used to specify properties that glue
together abstract and refining variables. In Figure 16 these gluing invariants are repre-



event E1
any p where
@grd1 G1(p, v)

then
@act1 v := F1(p, v)

end

event E2 refines E1
any p, q where
@grd2 G2(p, q, w)

then
@act1 v := F1(p, v)
@act2 w := F2(p, q, w)

end

Guard Refinement PO:

Hyp1 : J(v, w)

Hyp2 : G2(p, q, w)

Goal : G1(p, v)

Figure 16. Guard refinement when E2 refines E1 with gluing invariant J

sented by J(v, w). In the guard refinement PO we see that the gluing invariants and the
refining guard are hypothesis while the abstract guard is the goal. In other words we are
required to prove that the abstract guard follows from the refining guard and the glu-
ing invariants. When a refining event is an extension refinement, then the refined guards
trivially satisfy the guard refinement PO since, in that case, the effective guards of the
refining event are the abstract guards conjoined with the refining guards. New events in
a refinement do not need to satisfy the guard refinement PO since they do not have a
corresponding abstract event. For a fuller definition and explanation of all the Event-B
POs, the reader is referred to Abrials’ book [1].

The only event of the refining model that is a proper refinement (as opposed to an
extension refinement) is the EnterRoom event. The guard refinement PO for this event
is as follows:

Hyp1 : t ∈ valid

Hyp2 : r = room(t)

Hyp3 : u = holder(t)

Goal : takeplace[{r}] ⊆ authorised[{u}]

Here the hypotheses are the guards of the refining EnterRoom event while the goal is
a guard of the corresponding abstract event. As it stands, this PO is not provable: there
is no overlap between variables and constants of the hypotheses with those of the goal
so effectively the PO contains no useful hypotheses that would contribute to proving the
goal. The hypotheses refer only to refining variables and constants while the goal refers
only to abstract ones. What is missing from the PO is any hypothesis that would link the
abstract and refining elements, i.e., a gluing invariant.

In this case, the above unprovable PO actually suggests a gluing invariant that would
allow the PO to be discharged:

∀t, r, u · t ∈ valid ∧ r = room(t) ∧ u = holder(t) ⇒

takeplace[{r}] ⊆ authorised[{u}] (6)



Here we have simply constructed an invariant with the hypotheses as antecedent and goal
as consequent and quantified over the parameter variables t, r and u. Because of the
equations for quantified variables r and u in the antecedent, we can eliminate them to get
the following:

∀t · t ∈ valid ⇒ takeplace[{room(t)}] ⊆ authorised[{holder(t)}] (7)

Now, simply converting an unprovable PO into an invariant is not always the right
solution to getting a PO proved. For example, in Section 4 we saw that the way to make a
PO provable was by adding a guard to the event rather than an invariant. In other cases it
may be that the actions of an event are incorrectly specified and need to be fixed. Before
adding Property 7 as a gluing invariant to our refining model, it is appropriate to make a
(human) judgement about whether we believe this really is an invariant of the system. In
this case it seems clear that this property should be an invariant: the property states that

for any valid token, the set of activities that can take place in the room associated
with the token must be included in the set of activities that the holder of the token is
authorised to engage in.

If a token is valid we would expect it to be the case that the holder of the token has suffi-
cient authority to enter the room associated with the token and thus we add Property (7)
as an invariant to the refining model as follows:

machine AccessControl2
refines AccessControl1
sees AccessControlContext2
variables location, authorised, valid
invariants

@inv4 valid ⊆ TOKEN
@inv5 ∀t · t ∈ valid ⇒

takeplace[{room(t)}] ⊆ authorised[{holder(t)}]

events · · ·

The addition of @inv5 to the refining model allows the Rodin provers to discharge
the guard refinement PO for the EnterRoom event. Of course, the addition of @inv5 in
turn gives rise to additional invariant preservation POs. We will return to this issue but
for now we consider validation of the refining model against the informal requirements
together with improvements to the requirements. Figure 17 shows a further revision of
the requirements to reflect insights gained through the refinement. The gluing invariant
we identified specifies precisely what it means for a token to be valid and we decide it is
useful to reflect this in the requirements. In Figure 17 we replace the original Require-
ment 4 by two requirements, 4a and 4b. Requirement 4a states that a user must have a
valid token to enter a room while Requirement 4b defines what it means for a token to
be valid. Also in Figure 17 we have elaborated on the extent to which Requirements 5
and 6 are represented by the refining model.

As already stated, the addition of @inv5 gives rise to additional invariant preser-
vation POs. It is easy to see why the IssueToken event preserves this invariant be-



Id Requirement Representation in model
· · ·

4a. Revised requirement (replacing 4):
Users gain access to a room using a
one-time token provided the token is valid.

Guards of refined EnterRoom event
ensure token is valid. Action @act2
of EnterRoom event ensures token
cannot be used again (one-time).

4b. Revised requirement (replacing 4): A to-
ken is valid provided the holder of that to-
ken is authorised to engage in all activities
that can take place in the room associated
with the token .

Invariant @inv5 of refined model.

5. Tokens are issued by a central authority. Token issue is represented by To-
kenIssue event. The central author-
ity not explicitly represented at this
stage.

6. A room gateway allows access with a token
provided the token is valid.

Access with valid token is rep-
resented by refined EnterRoom
event. Other properties of the gate-
way are not explicitly represented at
this stage.

· · ·

Figure 17. Third revision of requirements

cause it includes a guard to check that the user for the new token has sufficient au-
thorisation. The invariant preservation POs for all the other events, except one, can be
proved using the Rodin provers. The one event that does not preserve the token-validity
invariant (@inv5) is the same event that causes problems in the abstract model, the
RemoveAuthorisation event. The invariant preservation PO is as follows:

Hyp1 : ∀t · t ∈ valid ⇒
takeplace[{room(t)}] ⊆ authorised[{holder(t)}]]

Hyp2 : u 7→a ∈ authorised

Hyp3 : u ∈ dom(location) ⇒ location(u) 7→a 6∈ takeplace

Goal : ∀t · t ∈ valid ⇒
takeplace[{room(t)}] ⊆ (authorised \ {u 7→a}) [{holder(t)}]

In this PO, the hypotheses are the token-validity invariant and the guards of the
RemoveAuthorisation event while the goal is the invariant with the substitution ap-
plied to the variable that is modified by that event (as underlined in the goal). As was the
case in Section 4, where we identified a problem with preservation of the access control
invariant by RemoveAuthorisation, the right-hand side of the set inequality in the goal
is reduced compared with that in the hypothesis while the right-hand side remains un-
changed. RemoveAuthorisation removes activity a from the right-hand side of the set
inequality without removing it from the right-hand side. If that activity was not a mem-
ber of the left-hand side, then it removing from the right-hand side would be ok. We can
ensure this by adding the following guard:



∀t · t ∈ valid ∧ u = holder(t) ⇒ room(t) 7→a 6∈ takeplace (8)

That is, if the user holds a valid token, then the activity being removed from the user
cannot take place in the room that the token is associated with. We revise our specification
of the RemoveAuthorisation event by adding Property (8) as a guard. This is achieved
through extension refinement of the abstract event since the only revision is the addition
of a guard:

event RemoveAuthorisation extends RemoveAuthorisation
when @grd5 ∀t · t ∈ valid ∧ u = holder(t) ⇒ room(t) 7→a 6∈ takeplace

With the addition of this guard, the Rodin provers are able to discharge the invariant
preservation PO for the token-validity invariant.

We might conclude that this additional constraint on removing authorisation is not
satisfactory however. As it stands, once a token has been issued, we cannot remove au-
thorisation that would conflict with that token until after the token has been used. We
have not specified any mechanism for invalidating a token. Human judgement might sug-
gest that such a mechanism ought to be provided. At the level of abstraction at which our
model is specified, it is very easy to specify an event that invalidates a token as follows:

event RescindToken
any t where
@grd1 t ∈ valid

then
@act1 valid := valid \ {t}

end

The more difficult engineering question is how token invalidation can be achieved. One
approach commonly used with secure tokens is for them to be time-stamped with an ex-
piry time and if they have not been used by that time, then they become invalid. Another
approach would be for the central authority to distribute a black-list of invalid tokens
periodically. Let us suppose that the decision to made to incorporate a time-stamp mech-
anisms on tokens so that tokens are stamped with an expiry time when they are issued
and that this is checked by a room gatekeeper. In Figure 18 we have defined some addi-
tional requirements to reflect this decision. Treating the time-stamp requirements could
be addressed as a further refinement of the formal model. We leave this as an exercise
for the reader!

7. What, how, why

In treating the access control system through a combination of abstraction, refinement,
validation and verification, we have distinguished and addressed three important ques-
tions about this particular system:

1. What does it achieve?
2. How does it work?



Id Requirement Representation in model
1. · · ·
2c. New requirement: User authorisation

may not be revoked while a user holds a
valid token that would allow them to enter
a room in which the activity takes place.

This is represented by guard @grd5
of the RemoveAuthorisation event.

· · ·
4c. New requirement: A token is valid pro-

vided its time-stamp has not expired.
The time-stamp requirement is not
addressed at this stage.

· · ·
11. New requirement: Tokens are time

stamped with an expiry time and a valid
token is rescinded if it has not been used
by that time.

This is partially represented by
the RescindToken event. The time
stamp mechanism is not addressed
at this stage.

Figure 18. Fourth revision of requirements

3. Why does it work?

Typically, when constructing a software solution, the tendency is to focus on the
second question: how it works. That is what a program is after all – a structured set of
instructions explaining how some purpose is achieved. If we are to ensure that a system
is fit for purpose, we need to understand that purpose clearly. By focusing on the purpose
of the access control system and identify a minimal set of entities required to express this
in a formal way (users, rooms, activities), we were able to express the first question in a
clear manner:

• What does it achieve? The system allows users to enter an leave rooms in a way
that satisfies the access control policy. The access control policy is that, if a user
is in room, then that user must be authorised to engaged in all activities that can
take place in the room

This question is answered precisely in the abstract Event-B model through a small num-
ber events and variables and through expression of the access control policy as an invari-
ant:

∀u, r · u 7→r ∈ location ⇒ takeplace[{r}] ⊆ authorised[{u}]

The access control rights are maintained centrally and made available to room gate-
keepers through the token mechanism. The enforcement of the access control is achieved
through the issue and validity checking of tokens.

• How does it work? The access control mechanism works by issuing tokens to
users provided they have sufficient authorisation and by checking the validity of
tokens when a user attempts to enter a room.

These properties are expressed clearly as guards in the refining model of the access con-
trol system. The IssueToken event ensures there is sufficient authorisation when a token
is issued through the following guard:

takeplace[{r}] ⊆ authorised[{u}]



The refining EnterRoom event ensures the validity of a token through the following
guard:

t ∈ valid ∧ room(t) = r ∧ holder(t) = u

The attempt to verify the correctness of the refining machine required the identifica-
tion of a gluing invariant expressing an obvious (in hindsight) property of valid tokens.
The gluing invariant is as follows:

∀t · t ∈ valid ⇒ takeplace[{room(t)}] ⊆ authorised[{holder(t)}]

This key property of valid tokens essentially explains why the token machanism works.

• Why does it work? For any valid token, the holder of the token must be autho-
rised to engage in all activities that can take place in the room associated with the
token.

This final question is rarely expressed explicitly in software developments. The normal
mechanism for convincing ourselves that a software system is fit for purpose is through
testing. While comprehensive testing does provide evidence that a system works, it does
not provide evidence of why a system works. The gluing invariant provides evidence of
why the token mechanism achieves the required purpose. The derivation of this invariant
illustrates the way in which the attempt to prove correctness encourages the identification
of key properties that can provide insight into why a particular solution works.

8. Guidelines for system level reasoning

Traditional program verification methods, as exemplified by Hoare logic [8], are de-
signed for reasoning about the correctness of programs. However, rather than reasoning
about programs, what we have given an overview of here is what might be termed system
level reasoning. By this we mean reasoning about an overall system rather than just the
software parts of a system. We achieve system-level reasoning through the use of a for-
mal modelling language, Event-B, which is independent of any particular programming
language. We identified various entities in the system and abstracted these to the key en-
tities to focus on the main purpose. This purpose was then modelled formally in Event-B
and formal verification was applied to the model.

Reasoning about the system was much more than proving certain properties of our
model, e.g., invariant preservation proofs. Several different forms of reasoning were de-
ploy: identification of the various entities in the system and their relationships, identifi-
cation of the main purpose, abstraction from design details – all of these are forms of
reasoning. Constructing the formal model of the abstraction and applying model verifi-
cation to the model (both model checking and proof) are other forms of reasoning the we
deployed. Validation of the model against the requirements through human judgements
and revising the requirements accordingly are other forms of reasoning. Deciding what
design elements to incorporate in refinement steps are, again, forms of reasoning. All
these forms of reasoning complement each other in helping us to understand the purpose
of system, understand how that purpose is achieved and understand why it is achieved
correctly by the chosen solution.



There are many examples of systems that have been reasoned about using Event-B:

• train signalling system [1]
• mechanical press system [1]
• flash-based filestore [6]
• electronic purse system [4]
• cruise control system [16]
• part of a space craft system [7]

We can identify some generic guidelines on how to arrive at a useful abstraction of
a system. Abstraction can be viewed as a process of simplifying our understanding of
a system. The simplification should focus on the intended purpose of the system while
ignoring details of how that purpose is achieved. For example, we focused on enforce-
ment of the access control policy as representing the intended purpose and ignored the
mechanisms through which that is achieved in our initial abstraction.

The modeller needs to make judgements about what they believe to be the key fea-
tures of the system. If the purpose is to provide some service, then the abstraction should
focus on what a system does from the perspective of the service users . In this case ‘users’
might be computing agents as well as humans. If the purpose is to control, monitor or
protect some phenomenon, then the the abstraction should focus on those phenomenon,
considering in what way they should be monitoring, controlled or protected and should
ignore the way in which this is achieved.

Once we get a grip on the intended purpose of a system through formalisation of
the abstraction, we construct refined models to layer in various features. Refinement is a
process of enriching or modifying a model in order to augment the functionality being
modelled, or explain how some purpose is achieved. Refinement can be performed in a
series of stages resulting in a series of models forming a refinement chain. Refinement
facilitates abstraction since it allows us to postpone treatment of some system features to
later refinement steps. Abstraction and refinement together allow us to manage system
complexity in the design process.

Event-B provides a notion of consistency of a refinement. We use proof to verify the
consistency of a refinement step while failing proof can help us identify inconsistencies in
a refinement step. Automated tools such as model checkers and automated proof systems,
as found in the Rodin system for Event-B, play a key role in improving the quality of
models through identification of errors, pin-pointing of required invariants and proofs of
consistency. These models and invariants in turn increase our understanding of a problem
and its proposed solution and this can be achieved long before the system is implemented
and tested. These lead to improvements in the quality of requirements documents, inform
design decisions and provide evidence of the extent to which a system as implemented
is fit for purpose.

In Event-B system behaviour is modelled discretely – discrete in the sense that the
behaviour of the system is represented by the occurrence of events in discrete steps.
For some systems, especially systems that monitor and control physical processes, it is
sometimes appropriate to model behaviour with continuous models. The ability to do
this using Event-B is a topic of on-going research.



We conclude by summarising some key messages about systems-level reasoning as out-
lined here:

• The role of problem abstraction and formal modelling is to increase understanding
of a problem leading to good quality requirements and design documents with
low error rates.

• The role of model validation is to ensure that formal models adequately represent
the intended behaviour of a system.

• The role of model verification is to improve the quality of models through invari-
ant discovery and consistency proofs.

• the role of tools is to make verification as automatic as possible, helping us to
pin-point errors.

• The role of model refinement is to allow us to manage complexity through multi-
ple levels of abstraction and associated reasoning.

The readers should note that there are several other formal modelling systems be-
sides Event-B that can be used for the kind of system level reasoning outlined in this
paper. Examples include Alloy [9], ASM [3], TLA [13], VDM [11] and Z [15].

A. Overview of mathematical operators of Event-B

This appendix gives an overview of mathematical language used in the paper. It is not
intended as a comprehensive introduction to the mathematical language of Event-B. For
that the reader is referred to [1].

A predicate is a logical property about some variables that is either true or false
depending on the values of the variables, e.g., x < y is true whenever the value of x is
less than y and is false otherwise.

Predicate operators

The following table presents the operators used to form predicates (P and Q represent
any predicate):

Symbol Usage Explanation
∧ P ∧Q And: true when both P and Q are true.
∨ P ∨Q Or: true when either P or Q (or both) are true.
¬ ¬P Not: true when P is false and false otherwise.
⇒ P ⇒ Q Implication: if P holds then Q must hold.
⇔ P ⇔ Q Equivalence: (P ⇒ Q) ∧ (Q⇒ P )
∀ ∀x · P Forall: P is true for every value of x.
∃ ∃x · P Exists: P is true for some value of x.

Predicates about sets

A set is an unordered collection of elements. An element is either in a set or not in that
set. The following table explains the basic predicates about sets (S and T represent sets
and x represents elements of sets):



Symbol Usage Explanation
∈ x ∈ S Membership: x is an element of the set S.
6∈ x 6∈ S Non-membership: shorthand for ¬(x ∈ S).
= S = T Equality: S and T contain exactly the same elements.
⊆ S ⊆ T Subset: all elements of S are also elements of T .

Set operators

Set operators form sets from arguments that are sets. The following table explains some
of the basic set operators by explaining the conditions under which an element is in the
result of applying the operator (S and T represent sets and x represents elements of sets):

Symbol Usage Explanation
∪ S ∪ T Union: x ∈ S ∪ T ⇔ x ∈ S ∨ x ∈ T .
∩ S ∩ T Intersection: x ∈ S ∩ T ⇔ x ∈ S ∧ x ∈ T .
\ S \ T Difference: x ∈ S \ T ⇔ x ∈ S ∧ x 6∈ T .
{ } {x} Singleton: set containing the single element x.
∅ ∅ Empty set: set containing no elements.

Relations

Relations are sets of pairs, where pairs are compound elements, written x 7→y, consisting
of a first element x and a second element y. The following table explains some operators
associated with relations (x and y represent elements, S and T represent sets, r repre-
sents relations):

Symbol Usage Explanation
7→ x 7→y Pair: x 7→y has first element x and second element y.
↔ S↔ T Relations: r ∈ S ↔ T means r is a set of pairs of the

form x 7→y with x ∈ S and y ∈ T .
dom dom(r) Domain of r: x ∈ dom(r) ⇔ ∃y · x 7→y ∈ r.
ran ran(r) Range of r: y ∈ ran(r) ⇔ ∃x · x 7→y ∈ r.
[ ] r[S] Image of S under r:

y ∈ r[S] ⇔ ∃x · x ∈ S ∧ x 7→y ∈ r.
C− S C− r Domain subtraction:

x 7→y ∈ (S C− r) ⇔ x 7→y ∈ r ∧ x /∈ S.

Functions

Functions are special cases of relations where each domain element is mapped to exactly
one range element. Because any x in the domain of a function f is mapped to a single
value in the range, we write f(x) for that single range value (function application). The
following table explains some operators associated with functions (S and T represent
sets, r represents relations):



Symbol Usage Explanation
7→ S 7→ T Partial functions:

f ∈ (S 7→ T ) ⇔
∀x, y, y′ · x 7→y ∈ f ∧ x 7→y′ ∈ f ⇒ y = y′.

→ S→ T Total functions:
f ∈ (S→ T ) ⇔ f ∈ (S 7→ T ) ∧ dom(f) = S.

f(x) f(x) Function application: provided f(x) is well-defined, i.e.,
f ∈ S 7→ T ∧ x ∈ dom(f),

then f(x) = y ⇔ x 7→y ∈ f .
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