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Abstract.
It is shown how Event-B can be use to model and reason about distributed sys-

tems from a high-level global view down to a detailed distributed architectural view.
It is shown how refinement and decomposition can be used to introduce distribu-
tion of state and control and to introduce message passing between components.
Distribution is treated as a special case of concurrency. Techniques are presented
for decomposing abstract atomic events into smaller atomic steps in refinement and
for decomposing models into sub-models.

Keywords. set theory, refinement, invariants, proof obligations, distributed systems,
message-passing

1. Introduction

These lectures notes make use of Event-B [1] for modelling and refinement and make use
of the Rodin toolset for Event-B [2]. The notes assume some knowledge of the Event-B
language, refinement in Event-B, invariants and proof obligations.

It will be shown how Event-B can be use to model and reason about distributed
systems from a high-level global view down to a detailed distributed architectural view
and will be shown how refinement and decomposition can be used to introduce distri-
bution of state and control and to introduce message passing between components. We
treat distribution as a special case of concurrency where the only shared variables are
buffers used for message-passing. This is very convenient as it allows us to reason about
key properties of systems using simpler global abstractions of state and then refine these
to distributed systems. We will look at how one can model concurrency in Event-B by
modelling the atomic steps that take place in a concurrent system. We will also look
at atomicity refinement whereby an atomic step at an abstract level is decomposed into
several smaller atomic steps. This involves refining coarse-grained atomicity with more
fine-grained atomicity.

We will look at how a model may be decomposed into sub-models. Typically these
sub-models will represent separate archtectural components. We will present a technique
for syntactically partitioning an Event-B model into several sub-models. This technique
has a sound semantic basis that corresponds to the synchronous parallel composition of
processes as found in process algebra such as CSP [13]. An important property of the



decomposition technique is that the resulting sub-models can be refined independently of
each other. Our decomposition tehnique will be used to partition the behaviour of agents
in a distributed network into separate models, including separate models of message-
passing mechanisms.

Performing refinement in incremental steps means that the abstraction gap between
refinement levels is not too great for feasible reasoning (formal and informal). This
means that the proof effort can be factored out into many relatively simple steps. Simple
proof steps allow for a high degree of automation in proof. More automated proof makes
it easier to change models

A completed refinement chain (or tree) is usually presented in a top-down manner.
However, construction of a refinement chain is rarely top-down. There are several rea-
sons for this. One is that requirements change. Another is that when proving refinement
between two models, say M1 and M2, it may be more convenient to find an intermediate
model M3 lying between M1 and M2 in order to simplify the proof effort. A further
reason is that our abstract model my turn out to be inaccurate. That is when proving that
M1 is refined by M2, we encounter proof failure and realise that the problem is with M1
rather than M2. Our understanding of the system changes (improves) as we elaborate
the design.

A key ingredient in performing refinement proofs is the gluing invariant linking
states of abstraction levels. A key role of the proof obligations generated by the Rodin
tool is to verify the maintainence of gluing invariants. But the tool can also be used to
help in the discovery of appropriate gluing invariants.

A link between modelling in Event-B and modelling with process algebra such as
CSP will be made. Typically in process algebra the behaviour of a process is defined
in terms of the events in which it can engage. A similar view can be taken of Event-B
models and has a bearing on the way in which interaction, composition and refinement
are treated. The relationship to modelling and proof in Event-B will be outlined.

In Event-B, a system is specified as an abstract machine consisting of some state
variables and some events (guarded actions) acting on that state. This is essentially the
same structure as an action system [4] which describes the behaviour of a parallel re-
active system in terms of the guarded actions that can take place during its execution.
Techniques for refining the atomicity of operations and for composing systems in par-
allel have been developed for action systems and such techniques are important for the
development of parallel/distributed systems. Different views as to what constitutes the
observable behaviour of a system may be taken. In the state-based view, the evolution of
the state during execution is observable but not the identity of the operations that cause
the state transitions. In the event-based view, the execution of an operation is regarded as
an event, but only the the identity of the event is observable and the state is regarded as
being internal and not observable. The event-based view corresponds to the way in which
system behaviour is modelled in process algebras such as CSP [13]. An exact correspon-
dence between action systems and CSP was made by Morgan [15]. Using this correspon-
dence, techniques for event-based refinement and parallel composition of action systems
have been developed in [7,8]. In these notes, we shall use the event-based view of action
systems, applying the techniques of [7,8] to Event-B machines. For a description of the
state-based view of action systems see [5].

Note that in this paper we only deal with preservation of safety properties in refine-
ment. We avoid treating preservation of liveness in the form of convergence of hidden
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Figure 1. Simple concurrent program with atomic steps identified

events (absence of divergence) and preservation of event enabledness (absence of dead-
lock). Further discussion of the proof obligations needed for this may be found in [12].

2. An example of treating concurrency in Event-B

In this section we outline how Event-B can be used to model a concurrent system. An
Event-B machine consists of some state variables, a set of events, each with its own
unique name, and an initialisation action. A machine proceeds by firstly executing the
initialisation. Then, repeatedly, an enabled event is selected and executed. A system
deadlocks if no event is enabled.

Our approach to modelling concurrency in Event-B is straightforward. We identify
the atomic steps that can take place in the system being modelled and make these events.
We introduce appropriate state variables to control the order of execution of our chosen
events and appropriate state to represent the purpose of the system.

Figure 1 presents a very simple concurrent program written in a fairly conventional
structured programming notation (note this is not Event-B). The process consists of a
main process Main and N subprocesses Inc(p) where p ranges between 1 and N . The
program has a single shared variable x that is initialised to 0. Each subprocess increments
x exactly once. The execution of an individual assignment x := x + 1 by a subprocess is
assumed to be atomic. Once each subprocess completes its simple task, the main process
outputs the value of x. Despite its simplicity, we can ask some important questions about
this program:

• What does this program achieve?
• Why does it work?
• How would we verify that it works?

We will address these questions by building an Event-B model of the concurrent
program. In order to do this we identify the atomic steps that can take place in the pro-
gram. The callout comments in Figure 1 identify these steps. The initialisation of x is an
atomic step. Each subprocess executes a single atomic step when it increments x. The



Context C
Sets PROC

Constants N

Axioms
axm1 : finite(PROC)
axm2 : N = card(PROC)

Figure 2. Context for program model.

final atomic step is to output x. So there are N + 2 atomic steps . Rather than having a
separate event for each subprocess Inc(p), we will use a single event, parameterised by
p, to model the atomic steps of the subprocesses. So our Event-B model will have three
events: the initialisation, Inc and Out. This may be seen in the machine M in Figure 3.
When modelling multiple instances of some entity (such as a subprocess) in Event-B, it
is convenient to use a given type to identify instances. Figure 2 shows the context for our
model. It defines a set PROC, to represent subprocess instances and a constant N . The
set PROC is assumed to be finite with cardinality N .

In addition to the variable x, machine M contains two variables for modelling the
control of execution of events. Variable Inc ⊆ PROC represents the set of processes
for which the increment event has occurred. Variable Out ∈ BOOL is true when the
output event has occurred. In this case the initialisation of the program is modelled by
the standard initialisation clause of the machine M so we do not need a control variable
for the initialisation. The Inc event can occur for process p provided Inc has not already
occurred for process p. This constraint is modelled by guard grd1 of Inc. The action
act1 of the Inc event adds the value p to the set Inc which prevents the event occurring
for that value of p again. The Out event can occur provided Inc has occurred for all
processes (grd1) and Out has not occured (grd2). The parameter v! represents the output
value produced by the Out event.

Interaction and control

We see in machine M two different uses of event parameters. In the Inc event, the
parameter p is used to identify the process whose atomic step the event occurrence is
modelling. In the Out event, the parameter v! is being used to represent an output value
produced by an atomic step. We treat these differently in how we interpret the model but
we do not treat them differently in proof.

Machine M also illustrates a convention we will adopt about variables for control-
ling event execution. When we want to limit the occurrence of an event we will introduce
a variable with the same name as the event, e.g., Inc and Out in M . If we want a single
execution of one instance of the event, we specify the control variable for that event to
be of type boolean, initially set to false, and model the control as in the Out event of
machine M . If we require multiple instances of execution of the event we specify the
control variable to be a set of some type T , where T is a type used to identify instances,
e.g., Inc ⊆ PROC in M . Execution of such an event with instance value i will add
the value of i to the set to indicate that the instance has occurred and to prevent it from
occurring again. This is illustrated in the Inc event of machine M .



Machine M Sees C
Variables x, Inc, Out

Invariants x ∈ N, Inc ⊆ PROC, Out ∈ BOOL

Initialisation x := 0, Inc := {}, Out := FALSE

Event Inc =̂

any p
where

grd1 : p ∈ PROC \ Inc

then
act1 : Inc := Inc ∪ {p}
act2 : x := x + 1

end
Event Out =̂

any v!
where

grd1 : Inc = PROC

grd2 : Out = FALSE

grd3 : v! = x

then
act1 : Out := TRUE

end

Figure 3. Event-B machine for the simple concurrent program.

Event traces of the model

In the CSP process algebra, process behaviour can be given a formal semantics in terms
of traces of obervable events of a process. We can do the same with our model of the
simple concurrent program. Consider the case where we have two subprocesses so that
PROC = {p1, p2} and N = 2. The event traces of the model are as follows:

〈 Inc.p1, Inc.p2, Out.2 〉 〈 Inc.p2, Inc.p1, Out.2 〉

Each event trace represents a record of a possible execution trace of the model. Here we
are ignoring the initialisation event since it always occurs exactly once at the beginning
of a trace. The parallel execution of the subprocesses is modelled by interleavings of
the atomic steps of the processes. Here the two possible interleavings of Inc.p1 and
Inc.p2 represented by the two events traces model their concurrent execution. The event
traces provide a definition of the observable behaviour of the model using an interleaving
semantics. We will treat this more precisely in Section 3.



Machine L Sees C
Variables Out

Invariants Out ∈ BOOL

Initialisation Out := FALSE

Event Out =̂

any v!
where

grd1 : Out = FALSE

grd2 : v! = N

then
act1 : Out := TRUE

end

Figure 4. Abstraction of model of simple concurrent program.

Abstract model of the desired behaviour

We have yet to give a precise answer to the question about what the simple concurrent
program achieves. The informal answer of course is that it outputs the value N . We can
specify this formally using an Event-B model that outputs the value N . This is repre-
sented by the machine L of Figure 4 which has a single event Out that simply outputs
N and then disables itself. This model abstracts away from the subprocesses that con-
tribute towards achieving the effect and does not include the variable x that is used to
accumulate the value contributed by the subprocesses.

It is instructive to relate the event traces of the machine L with those of machine M .
L has just a single event trace that outputs N and nothing else. In the case that N = 2,
the single event trace of L is

〈 Out.2 〉

Recall that the event traces of machine M were

〈 Inc.p1, Inc.p2, Out.2 〉 〈 Inc.p2, Inc.p1, Out.2 〉

If we remove the Inc events from these traces we get the trace of L:

〈 Inc.p1, Inc.p2, Out.2 〉 \ Inc = 〈 Out.2 〉

〈 Inc.p2, Inc.p1, Out.2 〉 \ Inc = 〈 Out.2 〉

Removing events from a trace is the standard way of giving a semantics to hidden or
stuttering events and is used, for example, in CSP. By treating the Inc events as a hidden,
traces of M look like traces of L. This illustrates a semantics of refinement of Event-B
models. Machine M is a refinement of machine L since any trace of M in which the Inc
events are hidden is also a trace of L. We will treat this more precisely in Section 3.



Refinement proof

When both machines L and M , with M declared to be a refinement of L, are given to the
Rodin tool several proof obligations are generated and discharged. One proof obligation
turns out not to be provable:

N = card(PROC) // from context C

Inc = PROC // guard grd1 of Out in M

`

x = N

This proof obligation is required to ensure that the output value x produced by the refined
Out event is the same as the output value N produced by the abstract Out event. The
proof obligation lists two hypotheses and a single goal x = N . The task is to prove
the goal under the hypotheses. Unfortunately the goal is not provable under the given
hypotheses since they say nothing about x. To overcome this we need to add an invariant
to the model that will be available as a hypothesis in the proof and will be sufficient to
prove the goal. The proof obligation gives us a clue as to what the invariant should be. A
standard heuristic for constructing an invariant from a goal is to replace a constant by a
variable [11]. The hypotheses above allow us to replace the constant N by card(PROC)
and then PROC by Inc to get the invariant:

x = card(Inc)

The expression card(Inc) represents the number of subprocesses that have completed
their task (which is to increment x) so this invariant specifies that the value of x is equal to
the number of processes that have completed their task. Therefore when all N processes
have completed, x will have the value N and the correct value will be output. By correct
we mean, of course, the value specified in the abstract model L. When the above invariant
is added to the model, all proof obligations are discharged and we are done with proof.

We now have precise answers to the quesions posed at the beginning of this section:

• What does this program achieve? It outputs the value N as specified in the model
L of Figure 4.

• Why does it work? Because it is always the case that x = card(Inc) (the invari-
ant).

• How would we verify that it works? By discharging all proof obligations associ-
ated with showing that model M refines model L.

An important observation is that the verification has helped us uncover why the pro-
gram works by forcing us to discover invariants that are sufficient to discharge the proof
obligations.

3. Behaviour and Refinement

In this section we will be more precise about trace behaviours of machines and its con-
nection with refinement. A trace is a sequence of event labels, where an event label is of



the form ev.i consisting of event name ev and parameter value i. For example, Inc.p1
is an event label with event name Inc and event parameter p1. We can view an Event-B
machine M as a labelled transition system with state space S and event labels E. The
event labels are as just outlined above. The states are given by the possible values of the
machine variables. We view the events as defining a labelled transition relation on the
state space of the following type:

A ∈ E→ (S↔ S)

That is for event label ev.i ∈ E, the event ev with parameters instantiated to i defines
a transition relation on the state space, A(ev.i) ∈ S ↔ S. We can lift A to traces of
event labels giving Ā ∈ seq(E)→ (S ↔ S). For an event trace t, Ā(t) represents the
relational composition of the transition relations of each event label in t. This is defined
inductively over traces as follows:

Ā( 〈〉 ) = ID

Ā( 〈e〉t ) = A(e); Ā(t)

Here ID is the identify relation on states (skip). If I is the set of initial states of a
machine M , then Ā(t)[I] is the set of states reachable by executing trace t. We say that
t is a trace of M if the set of states reachable by executing trace t is non-empty:

t ∈ traces(M) iff Ā(t)[I] 6= ∅

Note that traces are prefix-closed by this definition, that is, if t is a trace then any prefix
of t is also a trace.

In the previous section we saw how the Inc event could be treated as hidden in
order to relate the traces of the refined machine with the traces of the abstract machine.
Since we don’t care about the identity of an event when it is hidden, for convenience
of definition we can asume that all hidden events are combined into a single unlabelled
transition relation H:

H ∈ S↔ S

The definition of the lifted transition relation on event sequences is then modified to take
account of H as follows:

Ā( 〈〉 ) = H∗

Ā( 〈e〉t ) = H∗; A(e); Ā(t)

Now we give a definition to refinement in terms of trace inclusion, that is, machine
M1 is refined by M2 when traces(M2) ⊆ traces(M1). That is, any possible behaviour
of M2 is a possible behaviour of M1.

New events may be introduced in Event-B refinement, that is, a refined machine
may have additional events that have no corresponding events in the abstract machine.
New events are required to refine skip. This ensures that they have no effect in terms
of the abstract state. The new events introduced in a refinement step can be viewed as
hidden events not visible to the environment of a system and are thus outside the control
of the environment. In Event-B, requiring a new event to refine skip corresponds to the



process algebraic principle that the effect of an event is not observable. Any number of
executions of an internal action may occur in between each execution of a visible action.

The proof obligations defined for Event-B refinement are based on the following
proof rule that makes use of a gluing invariant J :

• Each M1.A is (data) refined by M2.A under J
• Each M2.H refines skip under J

It can be shown that these are sufficient conditions for trace refinement [8]. In the simple
concurrent program of Section 2 we saw how the gluing invariant x = card(Inc) was
used to discharge the conditions showing that the abstract Out event is refined by the
concrete Out event and that the Inc event in the refined model refines skip.

4. Decomposing Atomicity

In this section we will look at how coarse-grained atomicity can be refined to more fine-
grained atomicity. The approach we take is to treat most of the sub-atomic events of a
decomposed abstract event as hidden events which are required to refine skip.

We have already seen an example of this in our Event-B treatment of the simple con-
current program in Section 2. The abstract model consists of a single event that outputs
the value N . We view the refined model as breaking the atomicity of the output event
by introducing the Inc event that models the behavior of the parallel sub-processes. The
decomposition of the atomicity of the simple concurrent program is modelled diagram-
matically in Figure 5. This diagrammatic notation is based on JSD (Jackson Structure Di-
agrams) by Jackson [14]. Figure 5 is a tree structure with root Out(N) representing the
abstract output event. The diagram shows how the root is decomposed into an initialisa-
tion, the parallel composition of multiple parallel instances of Inc(p) and a refined out-
put event Out(x). The oval with the keyword par represents a quantifier that replicates
the tree below it. In this case it replicates Inc(p) by quantifying over p. An important
feature of this diagrammatic notation, in common with JSD diagrams, is that the subtrees
are read from left to right and indicate sequential control from left to right. This means
that our diagram indicates that the abstract Out(N) event is realised in the refinement
by firstly executing the initialisation, then executing the Inc(p) events in parallel (in an
interleaved fashion as discussed previously) and then executing Out(x).

Another important feature of the diagrammatic notation is the solid and dashed lines
linking children to their parent. The Init and Inc(p) events are linked by a dashed line
which means it must be proven that they refine skip. The abstract and refined Out events
are linked by a solid line which indicates a refinement relation. That is, it must be proven
that Out(x) refines Out(N). In Section 2 the proof obligations that we discharged were
concerned with proving precisely these refinement conditions.

We will study a further example of atomicity refinement which involves more event
interleaving than the simple concurrent program. This is an event for writing a file to a
disk. At the abstract level the entire contents of the file is written in one atomic step as in
the following machine:

Machine File1
Variables file, dsk
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Figure 5. Illustration of the atomicity decomposition

Invariants file ⊆ FILE, dsk ∈ file→ CONT

Event Write =̂

any f, c

where
grd1 : f ∈ file

grd2 : c ∈ CONT

then
act1 : dsk(f) := c

end

Here the contents of the disk are represented by the variable dsk which maps files to
their contents. The Write event has 2 parameters, the identity of the file to be written f
and the contents to be written c. Other events such as creating a file and reading a file are
not shown.

We assume that file content is structured as a set of pages of data so that the type
CONT is defined as follows:

CONT = PAGE 7→DATA

Figure 6 illustrates the decomposition of the Write event into sub-events to model the
writing of individual pages. In the refinement, the writing of individual pages will be
modelled atomically by the PageWrite event and the writing of the entire file is no
longer atomic. The writing of a file is initiated by the StartWrite event and ended by
the EndWrite event. We will allow multiple file writes to be taking place simultane-
ously in an interleaved fashion. This is indicated by the top level parallel quantification
over f (par(f )). We also assume that the pages of an individual file f can be written
in parallel hence the inner parallel quantification over p (par(p)). The occurrence of the
event PageWrite(f, p) models writing of page p of file f .

In order to model the event sequencing implied by Figure 6, we introduce variables
corresponding to the StartWrite and PageWrite events as follows:

Invariants

inv1 : StartWrite ⊆ FILE

inv2 : PageWrite ⊆ FILE × PAGE
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Figure 6. Decomposition of the atomiticy of file write

The types of these variables are determined by the parallel quantification in Figure 6.
When the writing of a file is complete, we will allow the file to be written to again.
Therefore we do not need any variable to model the occurrence of the EndWrite event
for a file, since all the control information for a file will be cleared when the file write
is complete in order to allow the file to be written to again later if required. Now, for
example, the control behaviour of the StartWrite and PageWrite events is as follows:

Event StartWrite =̂

any f
where

grd1 : f ∈ file

grd2 : f 6∈ StartWrite

then
act1 : StartWrite := StartWrite ∪ {f}

end

Event PageWrite =̂

any f, p
where

grd1 : f ∈ StartWrite

grd2 : f 7→ p /∈ PageWrite

then
act1 : PageWrite := PageWrite ∪ {f 7→ p}

end

This control behaviour on its own is not enough. The pages and their contents for a
particular file need to be determined before we start the process of writing to a file. We
introduce a variable writebuf to act as a buffer for the content to be written to disk.
Rather than writing directly to the abstract variable dsk, the PageWrite event will write
the contents of an indivdual page to a shadow disk while the writing is in progress. When
the writing is complete, the contents of the shadow disk is transferred to the disk at the
end of the writing process. These variables are defined as follows:



inv3 : writebuf ∈ StartWrite→ CONT

inv4 : sdsk ∈ StartWrite→ CONT

Note that both are defined on files that are currently being written, i.e., files in the set
StartWrite.

Now, as well as initialising the control for the writing process, the StartWrite event
sets the contents to be written to disk in the write buffer for that file (act2) and sets the
shadow disk for that file to be empty (act3):

Event StartWrite =̂

any f, c
where

grd1 : f ∈ file

grd2 : f 6∈ StartWrite

grd3 : c ∈ CONT

then
act1 : StartWrite := StartWrite ∪ {f}
act2 : writebuf(f) := c

act3 : sdsk(f) := ∅
end

The PageWrite event selects a page of a file that has yet to be written (grd2) and is
in the write buffer (grd3). The parameter d represents the data associated with the page
being written:

Event PageWrite =̂

any f, p, d
where

grd1 : f ∈ StartWrite

grd2 : f 7→ p /∈ PageWrite

grd3 : p 7→ d ∈ writebuf(f)
then

act1 : PageWrite := PageWrite ∪ {f 7→ p}
act2 : sdsk(f) := sdsk(f) C− {p 7→ d}

end

The StartWrite and PageWrite events both refine skip while the EndWrite
event refines the abstract Write event (see the dashed and solid lines in Figure 6). The
EndWrite event occurs once all pages of a file have been written, a condition that is
captured by grd2 below. The effect of the event is to copy the shadow disk to the disk
(act1). The event also clears all the control, buffer and shadow information for the file to
enable the write process to commence all over again (act2 to act5).

Event EndWrite Refines Write =̂

any f, c
where



grd1 : f ∈ StartWrite

grd2 : PageWrite[{f}] = dom(writebuf(f))
grd3 : c = sdsk(f)

then
act1 : dsk(f) := sdsk(f)
act2 : StartWrite := StartWrite \ {f}
act3 : PageWrite := {f}C− PageWrite

act4 : writebuf := {f}C− writebuf

act5 : sdsk := {f}C− sdsk

end

It may seem like we have not really achieved much decomposition of atomicity since
the shadow disk is copied to the disk in one atomic step (act1 of EndWrite). However
our intention is that the disk and the shadow together are both realised on the real hard
disk and that the effect of act1 would be achieved by an update to the page table for the
disk (in later refinements). We assume that updating the page table can reasonably be
treated as atomic. Having the PageWrite event write the individual pages to a shadow
disk also allows us to model fault tolerance quite easily. We add an AbortWrite event
that clears all the control and shadow information for a file write but does not update the
disk:

Event AbortWrite =̂

any f
where

grd1 : f ∈ StartWrite

then
act1 : StartWrite := StartWrite \ {f}
act2 : writebuf := {f}C− writebuf

act3 : sdsk := {f}C− sdsk

act4 : PageWrite := {f}C− PageWrite

end

This event refines skip since it does not modify the dsk variable that appears in the
abstract model. Thus the effect of an abort, which can happen after any number of pages
are written, is to leave the disk in the state it was in before the file write process started
(for the file f ).

It is instructive to compare an event trace of the abstract file model with a corre-
sponding trace of the refinement file model. The following trace represents a behaviour
in which the contents c2 is written to file f2 and then the contents c1 is written to file f1:

〈 Write.f2.c2, Write.f1.c1 〉

Each of these high-level events is realised by several new events (StartWrite,
PageWrite etc). The sub-events of one high-level write may interleave with those of
the other high-level event. For example, the following event trace of the refined model
illustrates this (the events that directly refine an abstract event are highlighted in bold):



〈 StartWrite.f1.c1, PageWrite.f1.p1.c1(p1),

StartWrite.f2.c2, PageWrite.f1.p2.c1(p2),

PageWrite.f2.p1.c2(p1), PageWrite.f2.p2.c2(p2),

EndWrite.f2.c2, PageWrite.f1.p3.c1(p3), EndWrite.f1.c1 〉

This illustrates a scenario in which writing to file f1 is started before writing to f2 is
started but writing of file f2 finishes before writing of file f1.

To recap, we have decomposed the atomicity of the abstract Write event by intro-
ducing new the events StartWrite, PageWrite and AbortWrite and by refining the
Write event with the EndWrite event. Formally, the new events have no connection to
the abstract Write event, only the EndWrite has a fomal connection. However, the di-
agram of Figure 6 describes the intended purpose of the new events which is to represent
the intermediate steps of the file write process that lead to a state where the EndWrite is
enabled. The diagram also plays another role in that it defines the control behaviour of all
the events constituting the write process and this was encoded in Event-B in a systematic
way, i.e., introducing the StartWrite and PageWrite control variables. The additional
modelling elements provided, writebuf and sdsk, were required in order to model ab-
stractly the effect of the various events and their introduction was based on modelling
judgement.

5. Decomposing machines

In this section, we describe a parallel composition operator for machines. The parallel
composition of machines M and N is written M ‖ N . Machines M and N must not have
any common state variables. Instead they interact by synchronising over shared events
(i.e., events with common names). They may also pass values on synchronisation. We
look first at basic parallel composition and later look at parallel composition with shared
parameters. We show how the composition operator may be applied in reverse in order
to decompose system models into subsystem models.

Parallel Composition of Machines

In general, an event has the form

any x where G then S end

where x is a list of event parameters, G is a list of guards (implicitly conjoined) and S is
a list of actions on the machine variables (implicitly simultaneous). We write G ∧H to
join two lists of guards and S ‖ T to join two lists of actions.

To achieve the synchronisation effect between machines, shared events from M and
N are ‘fused’ using a parallel operator for events. Assume that m (resp. n) represents
the state variables of machine M (resp. N ). Variables m and n are disjoint. The parallel
operator for events is defined as follows:

ev1 = any y where G(y,m) then S(y, m) end

ev2 = any z where H(z, n) then T (z, n) end



Machine V1
Variables v
Invariants v ∈ N
Initialisation v := N

Event B =̂

when
grd1 : v > 0

then
act1 : v := v − 1

end
Event A =̂

begin
act1 : v := N

end

(a) Machine V 1

Machine W1
Variables w
Invariants w ∈ N
Initialisation w := 0
Event B =̂

when
grd2 : w < M

then
act2 : w := w + 1

end
Event C =̂

when
grd1 : w > 0

then
act1 : w := w − 1

end

(b) Machine W1

Figure 7. Machines to be composed in parallel

ev1 ‖ ev2 =̂ any y, z where
G(y, m) ∧H(z, n)

then
S(y, m) ‖ T (z, n)

end

The parallel operator models simultaneous execution of the actions of the events and the
composite event is enabled exactly when both component events are enabled. This mod-
els synchronisation: the composite system engages in a joint event when both systems
are willing to engage in that event. The parallel composition of machines M and N is
a machine constructed by fusing shared events of M and N and leaving independent
events independent. The state variables of the composite system M ‖ N are simply the
union of the variables of M and N .

As an illustration of this, consider machines V 1 and W1 of Figure 7. The machines
work on independent variables v and w respectively. Both machines have an event la-
belled B and to compose these machines we fuse their respective B events. The compo-
sition of both machines is shown in Figure 8. The A event and C event of V W1 come
directly from V 1 and W1 respectively as they are not joint events (i.e., independent
events). The B event is a joint event and is defined as the fusion of the B-events of V 1
and W2. The initialisations of V 1 and W1 are also combined to form the initialisation of
V W1. The joint B event simultaneously decreases v while increasing w, provided v > 0
and w < N .



Machine VW1
Variables v, w
Invariants v ∈ N, w ∈ N
Initialisation v := N, w := 0
Event A =̂

begin
act1 : v := N

end
Event B =̂

when
grd1 : v > 0
grd2 : w < M

then
act1 : v := v − 1
act2 : w := w + 1

end
Event C =̂

when
grd1 : w > 0

then
act1 : w := w − 1

end

Figure 8. Composition of V 1 and V 2.

Decomposition

We have presented V W1 as having been formed from the composition of V 1 and W1.
We can view the relationship between these machines in another way. Let us suppose
we had started with V W1 and decided that we wish to decompose it into subsystems.
The diagram in Figure 9(a) illustrates the dependencies between events and variables in
the machine V W1. For example, the line from the box indicating event A to the circle
indicating variable v represents the fact that event A depends on v, i.e., it may read from
and assign to v. The diagram shows that B is the only event that depends on both v
and w suggesting that B needs to be a shared event if we are to partition v and w into
separate subsystems. This decomposition is illustrated in Figure 9(b) where variables v
and w of V W1 are partitioned into subsystems V 1 and W1 respectively, A is an event
of subsystem V 1, C is an event of subsystem W1 and B is an event shared by both
subsystems.

Event B of system V W1 is partitioned into two parts, one of which will belong in
W1 and the other in W1. Event B has an important characteristic that allows it to be
partitioned in this way. The guards and actions depend either on v or on w but not both.
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Figure 9. Illustration of decomposition a machine

So, guard grd1 and action act1 both depend on v only, while guard grd2 and action act2
both depend on w. This localisation of variable dependency allows us to easily partition
the guards and actions of the B event of V W1 into the separate B events of V 1 and W1
respectively.

Fusion with shared event parameters

We extend the fusion operator to deal with shared event parameters. Events to be fused
must depend on disjoint machine variables but they may have common parameters and
these common parameters are treated as joint parameters in the fused event. In the fol-
lowing, x represents parameters that are joint across events and y and z are local to their
respective events:

ev1 = any x, y where G(x, y, m) then S(x, y,m) end

ev2 = any x, z where H(x, z, n) then T (x, z, n) end

ev1 ‖ ev2 =̂ any x, y, z where
G(x, y,m) ∧H(x, z, n)

then
S(x, y,m) ‖ T (x, z, n)

end

We illustrate the use of shared parameters by extending the V W1 machine slightly.
Assume that instead of increasing v and decreasing w by 1 in the B event, we modify
both v and w by a value i. To do this we give the B event a parameter i which is used to
modify the variables as follows:



Event B =̂

any i
where

grd1 : 0 ≤ i ≤ v

grd2 : w < N

then
act1 : v := v − i

act2 : w := w + i

end

Now we partition the guards and events of B into those that depend on v and those
that depend on w giving the following events:

Event B =̂

any i
where

grd1 : 0 ≤ i ≤ v

then
act1 : v := v − i

end

Event B =̂

any i
where

grd1 : i ∈ Z
grd2 : w < N

then
act1 : w := w + i

end

The shared parameter i means that both of these events will agree on the amount by
which v and w are respectively decreased and increased. In the left hand sub-event, the
guard grd1 constraints the value of the parameter based in the state variable v. In the
right-hand sub-event, the value of i is not constrained other than a typing guard (i ∈ Z).
This means that the left-hand sub-event can be viewed as outputting the value i while the
right-hand sub-event accepts the value i as an input.

Independent refinement of subsystems

In Section 3, we saw how the event traces of a machine may be defined and it was pointed
out that such event traces are used to define the behaviour of CSP processes as found
in [13]. Parallel composition of processes in CSP is defined by processes synchronising
over shared events and non-shared events can occur independently in sub-processes. The
semantics of parallel composition in CSP is defined in terms of an operator over traces
that fuses shared events and interleaves non-shared events. Details may be found in [13].
The parallel composition of Event-B machines that we use here achieves the same ef-
fect as CSP parallel composition by synchronising shared events and leaving non-shared
events independent. For example, in composing V 1 and W1, the shared B events are
synchronised by event fusion while the non-shared events, A and C, remain independent
in the composition. It can be shown that this composition of machines results in the same
composition of event traces as found in the CSP definition. Details may be found in [7].
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Figure 10. Decomposition with asynchronous middleware

Significantly parallel composition of event traces is monotonic w.r.t. trace refinement
[13]. Therefore a corollary of the correspondence between CSP parallel composition and
our composition of Event-B machines is that our composition is also monotonic w.r.t.
trace refinement. This means that when we decompose a system into parallel subsystems,
the subsystems may be refined and further decomposed independently. This is a major
methodological benefit, helping to modularise the design and proof effort.

6. Incremental development of a distributed file transfer

In this section we present an incremental development of a simple system for copying a
file from one location to another. We start with an abstract model in which the file copy
occurs in one atomic step. We then refine this by a model in which the contents of the
file is copied one page at a time. The refined model is then decomposed into subsys-
tems. Instead of decomposing into two subsystems that synchronise with each other, we
decompose into three subsystems as illustrated in Figure 10. In this decomposition the
two agents do not synchronise directly with each other. Instead they interact indirectly
through a middleware subsystem. Each agent synchronises directly and separately with
the middleware and this will be used to model asynchronous communication between
the agents. This form of asynchronous communication via middleware can be used to
model many distributed systems that are based on message passing. In order to be able
to decompose in this way, we will need to apply refinement steps that enable the agents
to be decomposed into asynchronous subsystems.

6.1. Abstract model

The model makes use of the following context which introduces the types PAGE and
DATA respectively. A file is modelled as a partial function from pages to data. The
constant file f0 will be used in the initialisation of the machine.

Context C1
Sets PAGE ; DATA
Constants f0
Axioms

axm1 : f0 ∈ PAGE 7→DATA

END
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Figure 11. Refining atomicity of the CopyF ile event

Machine F1 defines the abstract behaviour of the file transfer system. It contains
two variables fileA, representing the contents of the file at the sending side, and fileB
representing the value of the file at the receiving side:

Machine F1
Variables fileA , fileB
Invariants

inv1 : fileA ∈ PAGE 7→DATA
inv2 : fileB ∈ PAGE 7→DATA

The variables are initialised as follows:

Initialisation
act1 : fileA := f0
act2 : fileB := ∅

The abstract machine has one event that simply copies the contents of fileA to
fileB in one atomic step:

Event CopyFile =̂

begin
act1 : fileB := fileA

end

6.2. Breaking atomicity

The atomicity of the CopyF ile event is decomposed in the same way in which the atom-
icity of the Write event was decomposed in Section 4. This is illustrated in Figure 11.
We introduce control variables based on this diagram as well as a buffer buf in which
pages are written one at a time:

Machine F2
Refines F1
Variables fileA , fileB , Start , CopyPage , Finish , buf
Invariants

inv1 : Start ∈ BOOL Control variable
inv2 : CopyPage ⊆ PAGE Control variable
inv3 : Finish ∈ BOOL Control variable



inv4 : buf ∈ PAGE 7→DATA Page buffer

The control behaviour of the Start and CopyPage events is constructed based on
the control implied by the diagram in Figure 11 (in the same way that the control for the
file write process was defined in Section 4). In addition the CopyPage event writes a
page from fileA to buf . We omit the definitions of these events and focus on the Finish

event that refines the abstract CopyF ile event. The Finish event is enabled once all
pages have been copied into buf , i.e., card(buf) = card(fileA). The Finish event
copies buf into fileB and sets the control variable Finish to TRUE:

Event Finish =̂

Refines CopyFile

when

grd1 : Start = TRUE

grd2 : Finish = FALSE

grd3 : card(buf) = card(fileA)

then

act1 : fileB := buf

act2 : Finish := TRUE

end

END

The Finish event gives rise to an unproved proof obligation as follows:

Start = TRUE, card(buf) = card(fileA)

`

buf = fileA

This proof obligation embodies the need to demonstrate that the effect of the Finish

event (which assigns buf to fileB) refines the effect of the CopyF ile event (which
assigns fileA to fileB). The requirement is to show that the value assigned to fileA is
the same in the abstract and refined events hence the goal buf = fileA. Clearly while
we are copying pages from fileA to buf it is not always the case that buf = fileA. But
we would expect that any page-content pair that has been copied into buf is also a pair
of fileA, i.e., that buf ⊆ fileA. Thus we add the following invariant to the model:

inv5 : Start = TRUE ⇒ buf ⊆ fileA

With this invariant available as an additional hypothesis, the above proof obligation can
be discharged since buf ⊆ fileA and card(buf) = card(fileA) together mean that
buf = fileA.
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Figure 12. Splitting events into sender and receiver parts

6.3. Split events to A side and B side

As previously mentioned, we will decompose the file transfer system into three subsys-
tems. We first split some events into an A-part, representing behaviour on the sending
side, and a B-part, representing behaviour on the receiving side. This is illustrated by the
diagram in Figure 12 which shows that the Start event is decomposed into StartA and
StartB. The StartA event represents the sending side deciding to commence the trans-
fer while the subsequent StartB event represents the receiving side recognising that the
transfer has commenced. The StartA event will set a flag StartA to TRUE while the
StartB event will set a flag StartB to TRUE provided StartA is true. The CopyPage
event is decomposed into separate A and B parts in a similar way. We assume that the
sending side will send the size of the file at the start so that the receiving side can know
when all the pages have been received. This means that the sending side does not need
to send a finish message so we need a Finish event on the receiving side only.

We replace the buf variable from the previous level by two variables bufA and
bufB representing the values of the buffers in the A and B sides respectively. We also
introduce variables sizeA and sizeB representing the size of fileA as known at sides
A and B respectively. As indicated by Figure 12, the StartA event refines skip and is
defined as follows:

Event StartA =̂

when
grd1 : StartA = FALSE

then
act1 : StartA := TRUE

act2 : bufA := ∅
act3 : sizeA := card(fileA)

end

As indicated by Figure 12, the StartB event refines the Start event of the previous
level. The receiving side will discover the file size when it starts the transfer so the
StartB event sets the sizeB variable appropriately.



Event StartB =̂
Refines Start

when
grd1 : StartB = FALSE

grd2 : StartA = TRUE

then
act1 : StartB := TRUE

act2 : bufB := ∅
act3 : sizeB := sizeA

end

We omit details of the CopyPageA and CopyPageB events.
The FinishB event refines the Finish event of the previous level (with control

variables related by invariant FinishB = Finish). It is enabled when the number of
pages received reaches the number expected (grd3):

Event FinishB =̂
Refines Finish

when
grd1 : FinishB = FALSE

grd2 : StartB = TRUE

grd3 : card(bufB) = sizeB

then
act1 : fileB := buf

act2 : FinishB := TRUE

end
END

6.4. Introduce message variables

Now consider again the StartB event just presented. Our intention is that this is an event
of the receiving side so we wish to make it an event of the receiver subsystem. This
means it should not refer to variables of the sending side directly since we are aiming
at an asynchronous decomposition. However the StartB event does refer to variables
of the sending side: grd2 refers to the StartA variable and act3 refers to the sizeA
variable.

To break this dependency on variables of the sending side in events of the receiving
side, we introduce variables that duplicate the variables of the sending side (StartM ,
CopyPageM , sizeM and bufM ). These duplicate variables will be separated into a
middleware machine (Figure 10) and become abstract representations of messages in
transit in the middleware.

We refine the StartA event so that it initialises the duplicate variables as well as the
sender variables:

Event StartA =̂



Refines StartA

when
grd1 : StartA = FALSE

then
act1 : StartA := TRUE

act2 : bufA := ∅
act3 : sizeA := card(fileA)
act4 : StartM := TRUE

act5 : bufM := ∅
act6 : sizeM := card(fileA)

end

Now, instead of being enabled when the StartA flag is true, the StartB event is
enabled when the StartM flag is true. Also the value assigned to sizeB is based on
sizeM rather than sizeA as previously:

Event StartB =̂
Refines StartB

when
grd1 : StartB = FALSE

grd2 : StartM = TRUE

then
act1 : StartB := TRUE

act2 : bufB := ∅
act4 : sizeB := sizeM

end

This refinement relies on the invariants StartM = StartA and sizeM = sizeA.

6.5. Separate machines

The previous model is decomposed into three separate machines representing three sub-
systems as illustrated in Figure 10. The three machines are:

• machine mA1 representing a model of the sending agent
• machine mB1 representing a model of the receiving agent
• machine mM1 representing a model of the middleware through which the sender

and receiver interact.

The variables of the previous model are partitioned amongst the three machines. The
sender interacts with the middleware through synchronisation over actions (StartA and
CopyPageA). Similarly, the receiver interacts with the middleware through synchroni-
sation over actions (StartB and CopyPageB). There is no direct interaction between
the sender and receiver - all communication is via the middleware machine.

Figure 13 provides an architectural overview of the decomposition illustrating how
the variables and events are distributed amongst the subsystems. The variables allocated
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Figure 13. Architectural illustration of decomposition

to each subsystem are listed in italic in the relevant box for that subsystem, e.g., the
sender subsystem contains the variables fileA, StartA etc. The smaller labelled boxes
indicate the synchronised shared events. For example, the StartA event is shared be-
tween the sender and the middleware representing a synchronised interaction between
these subsystems.

Let us look at how the StartA event is split into the sender event and the middleware
event. We would like guard grd1 to become a guard of the sender event. We would
like actions act1..act3 to become actions of the sender event and actions act4...act6 to
become actions of the middleware event. However, this is not possible since act6 refers
to card(fileA). We cannot have an event of the middleware referring to a variable of the
sender. We overcome this by adding a parameter s to the event whose value is the same
as card(fileA) and use this in the action act6:

Event StartA =̂
Refines StartA

any s
where

grd1 : StartA = FALSE

grd2 : s = card(fileA)
then

act1 : StartA := TRUE

act2 : bufA := ∅
act3 : sizeA := card(fileA)
act4 : StartM := TRUE

act5 : bufM := ∅
act6 : sizeM := s

end

The parameter s that we have just introduced will become a shared parameter when the
StartA event is split into separate sender and middleware events.

We are now in a position to partition the StartA event into the sender event mA1 :
StartA and the middleware event mM1 : StartA.

Event mA1:StartA =̂



any s
where

grd1 : StartA = FALSE

grd2 : s = card(fileA)
then

act1 : StartA := TRUE

act2 : bufA := ∅
act3 : sizeA := card(fileA)

end

Event mM1:StartA =̂

any s
where

grd1 : s ∈ N
then

act1 : StartM := TRUE

act2 : bufM := ∅
act3 : sizeM := s

end

6.6. Introducing message types

In this section we show how more explicit datatypes representing messages can be intro-
duced and used in the file transfer middleware. We introduce a type representing general
message structures MESS and a type MID representing message identifiers associated
with messages. We regard elements of MESS as structured messages, each of which
has an identifier field. This identifier field is represented by a projection function idF
mapping MESS to MID:

axm1 : idF ∈MESS→MID

We define a subtype of MESS called StartMESS representing the messages that
can be sent from sender to receiver to start a file transfer. Each StartMESS has a size
field sizeF which is used to indicate the size of the file to be transferred.

axm2 : StartMESS ⊆MESS

axm3 : sizeF ∈ StartMESS→ N

Since StartMESS is a subset of MESS, each StartMESS will also have an idF
field.

We introduce another subtype of MESS called PageMESS representing mes-
sages that are used to transfer pages from sender to receiver. Each PageMESS has a
page field and a data field.

axm4 : PageMESS ⊆MESS

axm5 : pageF ∈ PageMESS→ PAGE

axm6 : dataF ∈ PageMESS→DATA



We assume that the two subtypes are distinct:

axm7 : StartMESS ∩ PageMESS = ∅

We refine the communications medium by replacing StartM with a set of
StartMESS messages and replace bufM with a set of PageMESS messages. It also
contains a variable mid representing the set of message identifiers already used. This
allows for specification of a freshness constraint on the choice of message identifier.

Machine mM2
Refines mM1
Variables StartMS , CopyPageMS , mid
Invariants

inv1 : StartMS ⊆ StartMESS
inv2 : CopyPageMS ⊆ PageMESS
inv3 : mid ⊆MID

The relationship between the abstract sets of the previous model of the communi-
cations medium and the message sets that replace them is given by the following gluing
invariants:

inv4 : StartMS 6= ∅ ⇒ StartM = TRUE

inv5 : ∀m· m ∈ StartMS ⇒ sizeF (m) = sizeM

inv6 : ∀m· m ∈ CopyPageMS ⇒ pageF (m) ∈ CopyPageM

inv7 : ∀m· m ∈ CopyPageMS ⇒ pageF (m) 7→ dataF (m) ∈ bufM

Now the StartA event of the middleware is parameterised by a message m whose
idF field is fresh. The relationship between the parameter m and the abstract parameter
s is given by the witness statement which specifies that the size parameter s equals the
value of the size field of m. The selected message identifier is added to the set mid
indicating that it should not be used again.

Event mM2:StartA =̂
Refines mM1:StartA

any m
where

grd1 : m ∈ StartMESS

grd2 : idF (m) /∈ mid

witness
s : s = sizeF (m)

then
act1 : StartMS := StartMS ∪ {m}
act2 : mid := mid ∪ {idF (m)}

end

The previous StartB event of the middleware is enabled when StartM = TRUE.
This is refined by there being a message m in initMS:



Event mM2:StartB =̂
Refines mM1:StartB

any m
where

grd2 : m ∈ StartMS

witness
s : s = sizeF (m)

end

The CopyPageA and CopyPageB events are refined in a similar way. Details are omit-
ted.

7. Concluding

Our initial exploration of JSD structure diagrams as a means of representing the struc-
ture of atomicity decomposition was influenced by the work of Ball [6] on the use of
KAOS [10] goal diagrams for a similar purpose. Our event refinement diagrams are dif-
ferent in construction to the refinement diagrams developed by Back [3]. Back’s dia-
grams expose the containment and refinement relationships between general components
and subcomponents. In Back’s diagrams, enclosing components may be replicated in
order to simultaneously illustrate refinements between subcomponents and between en-
closing components. In our diagrams the higher level events can be viewed as enclos-
ing components and these only appear once at the top level. Back’s diagrams are neutral
with respect to the operator used to compose components. In our diagrams the operators
(sequential and parallel) are built in.

It was shown how Event-B can be use to model and reason about distributed systems
from a high-level global view down to a detailed distributed architectural view. It was
shown how refinement and decomposition can be used to introduce distribution of state
and control and to introduce message passing between components.

The key ideas that we covered include concurrency and atomicity in Event-B mod-
els, refining the atomicity of events in refinement and decomposing models into sub-
models based on synchronous interaction between subsystems. In this context we treat
distributed systems as a special case of concurrency where the only shared variables are
buffers used for message-passing. This is very convenient as it allows us to reason about
key properties of systems using simpler global abstractions of state and then refine these
to distributed systems.

This incremental style of development has been applied to many distributed systems
including a replicated database [16] and an electronics funds transfer system [9].
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