
Deployment in the Space Sector

© Space Systems Finland

SW Environment

- SSF develops software that runs on embedded platforms
- User requirements usually have performance and hard real-time requirements
- Memory, processsing power, bandwith are usually limited.

The space sector has the same problems as everyone else...

- Identifying conflicting/missing requirements happens too late in many cases
- Managing requirements tracing and evolution
- Cost of testing is too high, but there is no viable alternative
- Many requirements are not testable

SSF OBJECTIVES in DEPLOY

11 11111

Define basic modeling methodology

- Compatible with space standards
- Special emphasis on supporting typical space architectures

- Identify methodological challenges
- Identify tool problems and missing features

Requirements Evolution

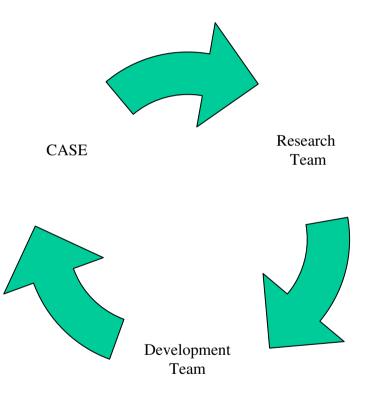
- Tool support
- Evolution management
- Flowing down requirement changes

Process Integration

- Integrate formal engineering into the existing development model
- Where can work be saved in the current process?
- Which phases require more work?
- Are there things that should be done in a completely different way?

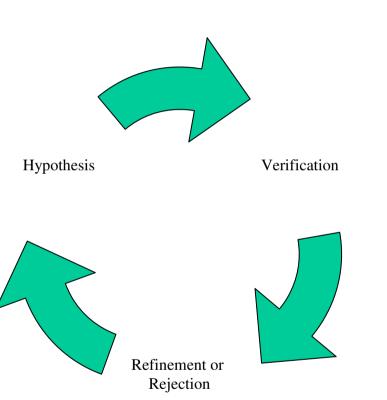
Approach & Organisation

-11 - Hilli



© Space Systems Finland

A case-based approach

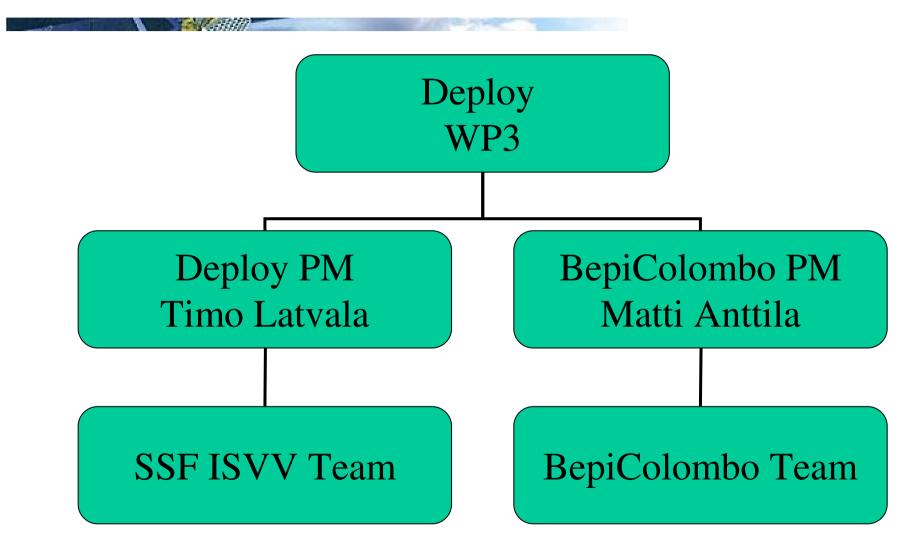

- The case generates problems for research team
- The research team explores solutions
- The development team implements and tries solutions

Solutions are hypothesis driven...

- Hypothesis on key problems
 are actively formulated
- Verification of hypothesis is done as quickly as possible within the case
- Hypothesis are refined or outright rejected.
- Approaching the problem "with an open mind" usually a bad idea

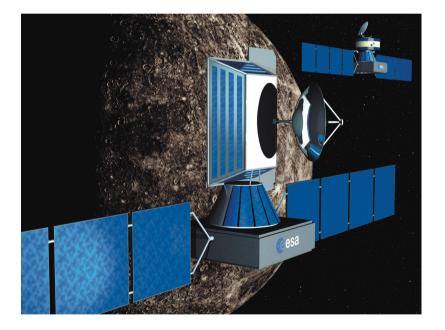
WP3 Organisation

Partners


- Aabo
 - Training
 - Tool support

1 - 11/1

- Cetic
 - Measurement
- UNew
 - Training
 - Consortium Management

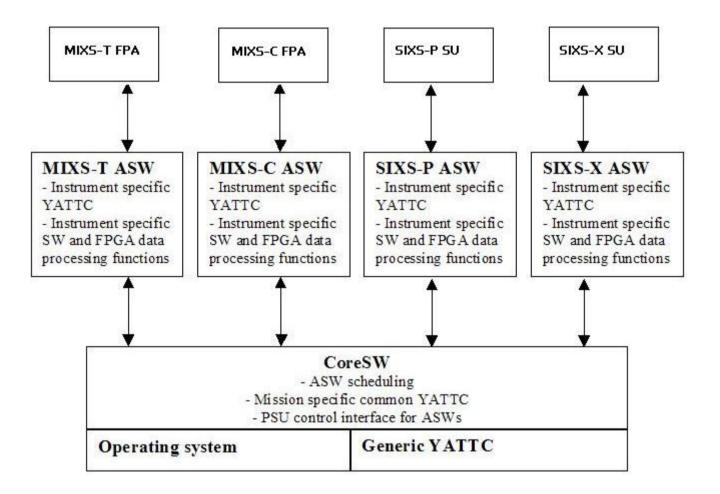

SSF Team

© Space Systems Finland

BepiColombo (2013) 2019-2021

BepiColombo Mission

- ESA's 5th cornerstone mission
- A key mission to study Mercury
- Objectives:
 - Origin and evolution of a planet close to the parent star
 - Mercury as a planet: form, interior, structure, geology, composition and craters
 - Mercury's vestigial atmosphere (exosphere): composition and dynamics
 - Mercury's magnetized envelope (magnetosphere): structure and dynamics
 - Origin of Mercury's magnetic field
 - Test of Einstein's theory of general relativity



- SIXS Instrument: Application Software (SIXS ASW)
- Duration: 1/2007 9/2009:
- MIXS Instrument: Application Software (MIXS ASW)
- MIXS/SIXS Electronic Ground Support Equipment (EGSE)
- Project duration: 1/2007 9/2007:
- SIXS Systems Engineering support (SE support)
- Project ongoing since 9/2005

BepiColombo SW

1 1 Hill

BepiColombo Schedule

- Draft of SW Specification Feb 2008
- Completed SW Specification Dec 2008
- First official build of SW Dec 2008
- Incremental builds of the SW Jan 2009 Oct 2009
- Update of specification Apr 2009
- Update SW Jun 2009
- Qualification Review of SW Sep 2010

How do we get there?

- 11 Hall

© Space Systems Finland

Planning

- Goals for December 2008
 - SSF Deploy team trained in Event-B, including the use of tools
 - Event-B Model of key parts of the MIX/SIXS ASW
 - Preliminary version of SSF contribution to JD1
 - Maturity assessment of the requirements specification

Key Challenges

- Managing conflicting demands on the requirements specification (ECCS vs B)
- Verifying compatibility of architectual design with requirements (especially performance requirements)
- Relationship of architectual design and requirements
- Verifying consistency of architecture
- Verify software budget and scheduling

How do we know if we won?

- Standard quality metrics will be tracked in BepiColombo
- Productivity will be measured
- Engineers will assess usefulness of approach and tools

WP1 Events M1-M12

- Kick-off meeting 7-8 May
- Training Workshop June
- Requirements Engineering Workshop October
- Results workshop January 2009