
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Frameworks for designing and implementing dependable systems using
Coordinated Atomic Actions: A comparative study

Alfredo Capozucca a, Nicolas Guelfi a, Patrizio Pelliccione b,*, Alexander Romanovsky c, Avelino F. Zorzo d

a LASSY, University of Luxembourg, Luxembourg
b Department of Computer Science, University of L’Aquila, L’Aquila, Italy
c Center for Software Reliability, University of Newcastle upon Tyne, England, United Kingdom
d Faculty of Informatics, Pontifical Catholic University of RS, Brazil

a r t i c l e i n f o

Article history:
Received 4 February 2008
Received in revised form 28 May 2008
Accepted 30 May 2008
Available online 13 June 2008

Keywords:
Exception handling
Fault tolerance
Dependable distributed systems

a b s t r a c t

This paper1 presents ways of implementing dependable distributed applications designed using the Coor-
dinated Atomic Action (CAA) paradigm. CAAs provide a coherent set of concepts adapted to fault tolerant
distributed system design that includes structured transactions, distribution, cooperation, competition,
and forward and backward error recovery mechanisms triggered by exceptions. DRIP (Dependable Remote
Interacting Processes) is an efficient Java implementation framework which provides support for imple-
menting Dependable Multiparty Interactions (DMI). As DMIs have a softer exception handling semantics
compared with the CAA semantics, a CAA design can be implemented using the DRIP framework. A new
framework called CAA-DRIP allows programmers to exclusively implement the semantics of CAAs using
the same terminology and concepts at the design and implementation levels. The new framework not only
simplifies the implementation phase, but also reduces the final system size as it requires less number of
instances for creating a CAA at runtime. The paper analyses both implementation frameworks in great
detail, drawing a systematic comparison of the two. The CAAs behaviour is described in terms of Statecharts
to better understand the differences between the two frameworks. Based on the results of the comparison,
we use one of the frameworks to implement a case study belonging to the e-health domain.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Development of modern software systems needs to ensure that
such systems meet challenging functional and quality require-
ments. In the last years a number of instruments and tools have
been proposed to drive the software development process to sat-
isfy high quality requirements. Unfortunately, the main trend is
to focus on the normal behaviour of software systems, ignoring
abnormal behaviour that systems exhibit while facing faults, errors
and failures. It is now becoming clear that rigorous methodologies
for building dependable software should equally support dealing
with such impairments. Fault tolerance is the ultimate technology
that can be used to build a system that complies with its specifica-
tion even when facing the impairments of various types.

Several mechanisms for dealing with system faults have been
developed in the past, including, Recovery Blocks (RB) (Randell,

1975), N-Version Programming (NVP) (Avizienis, 1985), Conversa-
tions (Randell, 1975), and Transactions (Gray and Reuter, 1993).
The last two are specifically targeting fault tolerance of the com-
plex concurrent (distributed) systems.

The general classification of concurrent systems (Lee and
Anderson, 1990, pp. 170–180) identifies three categories of rela-
tions between concurrent processes: they can be independent, or
disjoint, competing and cooperating. The disjoint active compo-
nents (e.g., processes and threads) access the disjoint sets of pas-
sive components (e.g., data, DBs, and objects). Competitive
concurrency between two or more active components exists when
these components are designed separately, are not aware of each
other, but use the same passive components. Cooperative concur-
rency exists when several active components cooperate, i.e., do
some job together and are aware of this. Hoare (1976) explains that
while disjoint processes work on disjoint data spaces, competing
ones work on the same data. It is however guaranteed that this
is done if each of the competing processes had these data at its sole
disposal and that processes cooperate if they update common vari-
ables by commutative operations and in a disciplined way (to guar-
antee a consistent access).

Conversations were specifically developed to ensure fault toler-
ance of cooperative systems, whereas Transactions are used for

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.05.038

* Corresponding author.
E-mail addresses: alfredo.capozucca@uni.lu (A. Capozucca), nicolas.guelfi@uni.lu

(N. Guelfi), pellicci@di.univaq.it (P. Pelliccione), alexander.romanovsky@ncl.ac.uk
(A. Romanovsky), zorzo@inf.pucrs.br (A.F. Zorzo).

1 Some preliminary results included in this paper were presented at 17th
International Symposium on Software Reliability Engineering (ISSRE’06) (see Capo-
zucca et al., 2006).

The Journal of Systems and Software 82 (2009) 207–228

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

Author's personal copy

ensuring fault tolerance and structuring of the competitive sys-
tems. Coordinated Atomic Actions (CAAs) (Xu et al., 1995; Gallina
et al., 2007), on the other hand, were proposed for designing com-
plex distributed systems consisting of components that can coop-
erate and compete. They allow developers to design systems
meeting high availability and reliability requirements. CAAs pro-
vide fault tolerance by means of cooperative exception handling
and employ, where necessary, the action level abort as part of
the more general exception handling. CAAs have been successfully
used in several case studies (Di Marzo Serugendo et al., 1999;
Romanovsky et al., 2003; Xu et al., 2002; Zorzo et al., 1999) that
demonstrate high usefulness and general applicability of the
approach.

The implementation of systems designed using CAAs was firstly
supported by the Dependable Remote Interacting Processes (DRIP)
(Zorzo and Stroud, 1999) framework. DRIP was initially developed
to provide implementation of the ‘‘Dependable Multiparty Interac-
tions” (DMIs) abstraction (Zorzo, 1999). DMI is a scheme that al-
lows executing a set of participants (objects, threads, or
processes) together. These participants join in an interaction to
produce a temporal intermediate state, they use this state to exe-
cute some activities, and then they leave this interaction to con-
tinue their normal execution. In many ways these features are
similar to the features of CAAs. As a matter of fact, the DMI concept
was developed by the same group that proposed the CAA concept.
The main difference between DMI and CAA schemes is in the way
they deal with exceptions. DMIs have a more relaxed exception
handling semantics than CAAs as they support a chain of recovery
levels for dealing with exceptions. CAAs only allow one recovery
level. This is why a CAA design can be achieved in terms of DMIs
and then implemented using DRIP.

Although CAAs could be implemented using the DRIP frame-
work, this is not straightforward since DRIP components are not
mapped directly into CAA concepts. Furthermore, the designer
could even forget, or decide to avoid, some of the components that
would be needed for the correct implementation of the CAA con-
cept. This could happen because the designer would have to follow
some specific patterns, otherwise the CAA semantics could be lost.
In developing safety–critical applications, relying on a programmer
following specific patterns to implement the application seems to
be a dangerous idea. Therefore, a new framework was proposed,
named CAA-DRIP (Capozucca et al., 2006). This new framework
uses the same terminology as the one used for describing the
CAA concepts, therefore the mapping between the design of a
CAA and its implementation is straightforward.

In this paper, we present a full comparison between DRIP and
CAA-DRIP, showing that the CAA-DRIP framework is an improve-
ment of the DRIP framework when implementing safety–critical
applications that use the CAA concepts. This comparison is per-
formed by means of a very simple example. We show that even
the performance and the memory consumption of the CAA-DRIP
is better than the previous framework. Furthermore, we put in
practice CAA-DRIP by presenting the full design and implementa-
tion of a safety–critical system, i.e., a Fault-Tolerant Insulin Pump
Therapy system. The aim of this case study is to show that CAA-
DRIP could be applied to a real system.

In order to provide the reader with a clear understanding of the
CAAs abstraction, their characteristics are described using State-
charts (Harel, 1987; Harel and Naamad, 1996). There has been a
considerable work on formal description of CAAs, for example,
using Temporal Logic (Xu et al., 2002), Timed CSP (Veloudis and
Nissanke, 2000) and B (Tartanoglu et al., 2004). Here a clean formal
high level description of the CAA behaviour is offered both to com-
plement previous CAA formalisations and to be used by program-
mers as a reference to drive the CAA implementation phase. The
Statecharts modelling language provides a good approach to ex-

press complex behaviours. It enables viewing the description at
different levels of details and makes even very large specifications
manageable and comprehensible.

Furthermore, some of the CAA concepts were improved in the
past years, as well as several new issues were introduced since
the first CAA description was given. For example, a new composite
type of CAA has been described in Tartanoglu etal. (2004), Di Marzo
Serugendo et al. (1999), and Romanovsky et al. (2003) and the way
external objects are dealt with is spread throughout several papers
(Tartanoglu et al., 2004; Xu et al., 1995). In this paper, all these fea-
tures are collected and described.

After a detailed description of the CAAs mechanism semantics
(Section 2), both DRIP and CAA-DRIP frameworks (Section 3) are
introduced. The same section explains how programmers have to
deal with the frameworks to achieve the implementation of certain
CAA design and what the advantages/disadvantages with respect
to each other are. Section 4 describes a case study implemented
using the CAA-DRIP framework that provides better support
according to the comparison previously made. Finally, the paper
closes with conclusions and future work.

2. Coordinated Atomic Actions

Coordinated Atomic Action (CAA) is a fault-tolerant mechanism
that uses concurrent exception handling to achieve dependability
in distributed and concurrent systems. The aim of this conceptual
framework is to allow engineers/designers to structure (in the
sense of software architecture) software in such a way that they
comply with their specification in spite of faults having occurred.

As above-mentioned in the introduction, CAAs unify the fea-
tures of two complementary concepts: conversation and transac-
tion. For coping with these two concepts, the conceptual
framework divides objects in two categories according to their
use. Objects used to achieve cooperation and to perform coordi-
nated error recovery (i.e., conversation) among the participants
are called shared objects. On the other hand, those objects that
have been designed and implemented separately from the applica-
tion, which are accessed concurrently (i.e., competitive concur-
rency) and for which certain properties (like the ACID properties)
have to be ensured, are referred as external objects. Precisely,
the transactional aspects included by CAAs allow us to deal with
the external objects.

As it is shown in Fig. 1, one CAA characterises an orchestration
of operations executed by a group of roles, which exchange infor-
mation among themselves through shared objects, and/or access to
external objects (concurrently with other CAAs) to achieve a com-
mon goal. For the enclosing context where the CAA is embedded,
this common goal is seen as the service it provides and which is
computed atomically (i.e., there is not any visible intermediate
state). To make use of this service, a set of participants gets to-

CAA

R1

R2

R3

P1

P2

P3

Synchronisation
upon entry

Synchronisation
upon exit

pre-condition
check

post-condition
check

Time

Object

Roles

Object access

Particpants

CAA
transactional
area

R 1,2,3

P1,2,3

Fig. 1. A simple CAA.

208 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

gether by invoking the roles the CAA is composed of. Therefore, in
the general case, there is a relationship one-to-one between partic-
ipants (i.e., CAA outside world) and roles (i.e., internal world) to in-
voke the service.

Looking into the internal behaviour of a CAA, it starts when all
its roles have been activated and they meet a pre-condition. The
CAA finishes when all of them have reached the CAA end, and a
post-condition is satisfied. This behaviour returns a normal out-
come to the enclosing context. If for any reason an exception has
been raised in at least one of the roles, appropriate recovery mea-
sures have to be taken. Facing this situation, a CAA provides a quite
general solution for fault tolerance based on exception handling. It
consists of applying both Forward Error Recovery (FER) and Back-
ward Error Recovery (BER) techniques.

Basically, the CAA exception handling semantics says that once
an exception has been raised, the FER mechanism has to be started.
At this point the CAA can finish normally if FER can fulfil the origi-
nal request (normal outcome) or exceptionally if the original re-
quest is partially satisfied (exceptional outcome). Otherwise, if
the same or another exception is raised during FER, then the FER
mechanism is stopped and BER is started. BER has a main task to
recover every external object to its latest visited error-free state
(roll back). If BER succeed, then the CAA returns the abort out-
come. If for any reason BER cannot be completed, then the CAA
has failed and the failure outcome is signalled to the enclosing
context.

Every external object that is accessed in a CAA must be able to
be restored to its latest visited error-free state (if BER is activated)
and it provides its own error recovery mechanism (Xu et al., 1995).
Therefore, when BER takes place, it restores these external objects
using their own recovery mechanisms. However, sometimes the
designer/programmer may want to or have to use an external ob-
ject that does not provide any recovery mechanism (due to reasons
of cost or physical constraints (Lee and Anderson, 1990, pp. 146–
149)). Therefore, it would be necessary to allow designers/pro-
grammers to specify/implement a hand-made roll back inside the
CAA. This can be achieved by refining the classic BER to deal with
external objects that are restored using their own mechanism
(called AutoRecoverable external objects -AR-) and also to deal
with those that have to be restored by a hand-made roll back
(called ManuallyRecoverable -MR-).

One of the problems of using BER concerns the objects (partic-
ularly external objects) that cannot be restored from their latest
known state. According to the previous information and the CAA
semantics, there would be two different places to handle AR ob-
jects (FER and BER) and only one to handle MR objects (FER). Thus,
when FER fails because an exception has been raised, potentially
any external object could have been left in an unacceptable (non-
specified) state. Then, the BER is executed. If it is successful, the
Abort exception is returned. This outcome corresponds to say that
the system has been left at the same state it had before calling the
CAA.

As the BER would only undo effects on AR objects, it is possible
that an MR object is still in an inconsistent state. Thus, it would not
be true that the system would be in the same state that the one be-
fore calling the CAA (Abort). Basically, the ACID (Atomicity, Consis-
tency, Isolation, and Durability) properties would not be met.

The BER refinement consists of splitting it between automatic
abort (classical roll back) and a hand-made recovery (compensa-
tion). Compensation must be used to specify the explicit manipu-
lation when a CAA has to abort and there is at least one MR object.
Compensation cannot be automatically executed since only the de-
signer/programmer knows what the necessary steps to compen-
sate a particular MR object are. This compensation can even need
the acting of an external agent to help in the recovery (e.g., to call
an operator or a maintenance person to fix something). Compensa-

tion is not the perfect solution to assure the ACID properties, but at
least drives the designers/programmers in that direction.

Originally, the CAA semantics did not clearly distinguish be-
tween AR and MR objects. This distinction is made in order to know
what are the external objects that will be managed by the transac-
tional support when the CAA has to abort (the AR) and those
requiring explicit manipulation to be left in a consistent state
(the MR).

Another important characteristic of CAAs is that they can be de-
signed in a structured way using nesting and/or composition (see
Figs.2 and 3). Nesting is defined as a subset of the participants used
to carry out the roles of a CAA (CAA1). These chosen participants
define a new CAA (CAA2) inside the enclosing CAA (CAA1). The par-
ticipants in CAA2 are a subset of the participants from CAA1, but
they play different roles in each CAA. The activities carried out in-
side of CAA2 are hidden for the other roles (R3) (and other nested or
composed CAAs) that belong to CAA1. External object accesses
within a nested CAA are performed as nested transactions, so that,
if CAA1 terminates exceptionally, all sub-transactions that were
committed by the nested (CAA2) are aborted as well. Each partici-
pant that is playing a role of a CAA can only enter one nested
CAA at a time. Furthermore, a CAA terminates only when all its
nested CAAs have terminated as well. Note that, if the nested
CAA2 terminates exceptionally, an exception is signalled to the con-
taining CAA1.

An important consideration to take into account is about the ob-
jects that are passed to the nested CAA from the enclosing context
(e.g., O1). These objects are considered as external for the nested

CAA2

R1

R2

R3

CAA1

O2 O1

P1

P2

P3

R1’’’

R2’’’

O2

O4 O2O1

CAA3 CAA4

O3O8O4O2O8O4O3

Normal behavior

Forward Error Recovery

Backward Error Recovery

Composite CAAE raised exception

Shared object

AutoRecoverable object

ManuallyRecoverable object

E1

E2

Time

Fig. 2. Coordinated Atomic Actions.

CAA3

R2’

R3’

R1’P1’

P2’
P3’

O6 O7O5

CAA4

R2’’

R3’’

R1’’P1’’

P2’’
P3’’

O5 O7O9

Fig. 3. Composite CAAs.

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 209

Author's personal copy

CAA, thus a shared object belonging to the enclosing CAA becomes
external for the nested CAA. This shows that the terms external and
shared are related to the CAA where they are used.

It is also possible that a nested CAA needs to have access to an
external object that has not been held by its enclosing CAA. More-
over, a nested CAA may also create new objects (O4) that are persis-
tent after its completion. In any case, it is absolutely necessary to
keep a trace on the accessed/created objects by the nested CAA
and to pass this information onto the parent CAA. In this way, the
enclosing CAA has all the information to leave the system in a safe
state if recovery error measures are necessary (Xu et al., 1995).

Composite CAAs (Tartanoglu et al., 2004) are different from
nested CAAs in the sense that the use of composite CAAs is more
flexible. For example, a nested CAA with two roles can only be used
inside an enclosing CAA that is played by at least two participants.
Composite CAAs do not have this type of restriction. A composite
CAA (CAA3) is an autonomous entity with its own roles (R01;R

0
2,

and R03) and objects (O5, O6, and O7). The internal structure of a
composite CAA (CAA3), i.e., participants, accessed objects, and roles,
is hidden from its calling CAA (CAA1).

A role belonging to CAA1 that calls CAA3 synchronously waits for
the outcome. Then, the calling role resumes its execution according
to the outcome of CAA3. If CAA3 terminates exceptionally, its calling
role, which belongs to CAA1, raises an internal exception that is, if
possible, locally handled. If local handling is not possible, the
exception is propagated to all the peer roles of CAA1 for coordi-
nated error recovery.

If CAA3 has terminated with a normal outcome, but the contain-
ing CAA1 has to undo its effects (BER has to take place in CAA1), all
the tasks that were executed in CAA3 will not be automatically un-
done by BER in CAA1. Thus, CAA1 needs to carry out a specific han-
dling in order to guarantee the ACID properties on the external
objects. The specific handling may include a call to another compos-
ite CAA (CAA4) to abort the effects that have been performed by
CAA3. Therefore, every time a composite CAA is being used inside
a CAA, the compensation part of BER must be used. The compensa-
tion allows us to specify hand-made recovery during BER, for exam-
ple to roll back something that a composite CAA has modified.

2.1. Description of the CAAs behaviour

In this section, we provide a precise description of the CAAs
behaviour by means of statecharts (Harel, 1987; Harel and Naa-
mad, 1996). This will avoid ambiguities, omissions, and contradic-
tions in understanding the CAAs behaviour.

More precisely, the goal of this section is to describe how each
possible kind of CAA outcome (i.e., normal, exceptional, abort,
and failure) can be reached. Therefore, the formalisation provides
a high level description of how the CAAs mechanism behaves inter-
nally when the service it provides is requested. Both participants
and roles do not appear in this description since they have been
hidden and abstracted in order to reach a simpler and more under-
standable description.

The specification is shown in Fig. 4. It is composed of a big state
called Enclosing context that initially is in the state S0. The enclos-
ing context contains a CAA, which has been designed to provide a
specific service. The CAA is called by an external user (it can be an-
other system where the CAA is embedded). The invocation of the
service is represented by the event runCAA. This event comes from
the enclosing context. The state Service represents the execution of
the service and it is reached once the runCAA has been emitted and
the CAA pre-condition (represented by the preCond predicate) is
true. If the service is able to satisfy its post-condition (postCond
predicate is true), then the CAA terminates normally. Therefore,
the CAA reaches the state S1 emitting at the same time the Normal
event. Otherwise, if the post-condition is not met or an exception is
raised, the recovery process is started (going to state Recovery).

If an exception is raised (Exception(e) event) during the normal
execution of the CAA (state Service), then a process of exception
handling is triggered (state Recovery). This exception handling pro-
cess is defined as a combination of FER and BER. The first step of
the exception handling process is the exception resolution, which
consists of finding a common exception. In fact, due to the concur-
rent execution of the roles that takes place in the state Service,
more than one exception could be raised at the same time. An algo-
rithm is used to implement the exception resolution. If it succeed
(Resolution predicate is true), the FER mechanism is started, other-
wise the effects of the CAA have to be undone (the BER mechanism
is triggered). Besides, every time the post-condition or the resolu-
tion do not hold an exception is raised. For example, if the event
caaDone occurs and neither the postCond nor Resolution hold, then
an exception will be raised and it will be dealt by the BER mecha-
nism (see, for example, Exception(e) [not (Resolution)]).

The FER mechanism is represented by the state FER(e) and,
depending on how successfully it can be executed, the CAA may
still terminate normally. The FER finishes normally if it fulfils the
original request and the post-condition (represented by postCond
predicate) is met. Therefore, the state S1 is reached. Otherwise, if
FER(e) satisfies the post-condition but the result that FER provides
to the enclosing context is partial (or degraded) with respect to the

ferPartiallyDone(e)
[postCond]

 / Exceptional(e)

Enclosing

context

Exception(e)
[Resolution]

Exception(e)

runCAA
[preCond]

AbortingError
/ Failure

AbortingOK
 / Abort

caaDone
[not(postCond)
&& Resolution]

caaDone [postCond]/ NormalCAA

S2S3

S1

Recovery

ferDone
[postCond]
 / Normal

Exception(e)
[not(Resolution)]

Compensation

Roll back

BER

FER(e)

Service

S0

ferDone(e)
[not(postCond)]

Fig. 4. CAA behaviour.

210 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

original request (ferPartiallyDone(e) event), the CAA finishes excep-
tionally. Notice that even if the CAA service did not execute accord-
ing to its specification (to leave the enclosing context in state S1),
the enclosing context is left in a specified state (S2).

Finally, if the post-condition cannot be satisfied by FER or other
exceptions have been raised again, the CAA must roll back using
BER (state BER). If BER is applied successfully (AbortingOk event),
the CAA publishes the event Abort and the enclosing context
reaches the same state (S0) where it was before calling the CAA
service. If BER is unsuccessful (AbortingError event) then the CAA
must emit the Failure event. In this case the enclosing context is
left in the state S3.

3. DRIP and CAA-DRIP frameworks

CAA is a conceptual framework since it establishes concepts and
relationships along with their respective semantics. It has been
conceived to engineer dependable distributed and concurrent sys-
tems. However, considering the fact that it is only a conceptual
framework, the implementation phase is fully relied on the pro-
grammers’ knowledge and experience. In order to facilitate the
programmers’ task, two frameworks have been developed: DRIP
(Zorzo and Stroud, 1999) and CAA-DRIP (Capozucca et al., 2006).

Actually, the CAA-DRIP has been developed using as starting
point the DRIP framework. The main improvement brought by
CAA-DRIP is that it provides support only for the CAA concepts
and behaviour described in Section 2. Therefore, it allows program-
mers to match every CAA concept with its respective piece of code
that implements it. As mentioned in the introduction, DRIP, on the
other hand, was developed to support a different abstraction, i.e.,
DMIs (Zorzo, 1999).

Both frameworks were designed as a set of Java (J2SE, 2007)
classes and interfaces. The instantiation of these classes and the
gluing of them together will create the needed CAAs (a CAA is
represented as a set of classes). The models in Figs. 5 and 6 show
the DRIP and CAA-DRIP UML class diagram, respectively. On both
frameworks, the Manager class is the controller for the Role class
and has references to external and shared objects. The manager

object that is chosen as the leader2 is the responsible for synchron-
ising roles upon entry and upon exit, execution of the exception
resolution algorithm and for keeping information about shared ob-
jects. Each framework has a set of roles that are responsible for
executing the normal behaviour of the CAA. The main difference
between the two frameworks resides on the way they handle
exceptions.

The DRIP framework deals with exceptions in the following way
(remember that DRIP was built for a different abstraction). All
exceptions that are raised inside the roles that execute the normal
behaviour of the CAAs will be handled by different sets of manag-
ers and roles. More precisely, each exception is handled by a differ-
ent set of managers and roles. If another exception is raised during
the handling of an exception, then a roll back action has to be per-
formed (see Section 2). Using DRIP this is possible, but a new set of
roles and managers have to be created to perform this activity. The
programmer has to develop this new set of roles and managers,
along with the code to recover all external objects, and to signal
the right result to the enclosing action (abort if external objects
were recovered, or failure if they were not). In Fig. 5, the arrow acti-
vates represents the managers for the normal behaviour activating
those roles that will perform the FER or the BER, when an excep-
tion takes place.

As mentioned before, to leave some decisions to the program-
mer could result in a final system that could not respect the cor-
rect semantics of CAAs. Furthermore, the recovery of external
objects that provide such facility could be performed automati-
cally, alleviating the programmer of such task. The signalling of
the correct result, when rolling back, could also be performed
automatically.

The CAA-DRIP framework is implemented in a way that these
problems are avoided. As can be seen in Fig. 6, the CAA-DRIP
framework provides some extra classes: Handler, Compensator,

Manager

Leader

1

1..n

Exception

1

Role

+preCondition()

+body()

+postCondition()

activates

1

1

SharedObject

ExternalObject

1

0..*
0..*

0..*

<<interface>>

Transactions

+begin()

+commit()

+abort()

<<interface>>

Concurrency

+setLock()

+lockRelease()

controls

1

1

Fig. 5. DRIP UML model.

2 A leader is set to avoid the need of distributed algorithms for all synchronisations.
If the leader fails, the set of managers can apply an election algorithm to decide which
one can act as a new leader. Several different algorithms have already been proposed
for this problem and we will not discuss them in the remaining of this paper.

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 211

Author's personal copy

ManuallyRecoverable, and AutoRecoverable. The objects of these
classes are also managed by a manager object. Using CAA-DRIP, a
CAA consists of a set of managers, roles, handlers and compensa-
tors linked together via a leader manager (represented as an asso-
ciation in Fig. 6).

Basically, the new classes were developed to handle exceptions
using the same concepts as those of CAAs. Therefore, each handler
consists of a set of roles to handle one of the possible exceptions
that are raised during the normal execution of a CAA. If an excep-
tion is raised during the execution of a handler, then a compensa-
tor might be called. The compensator is needed only when the
application being developed uses ManuallyRecoverable objects. If
that is the case, then the programmer has to implement the man-
ual recovery of these objects and the compensator is used for that.
If the application being developed uses only AutoRecoverable ob-
jects, then a compensator is not needed because the managers will
recover them automatically and will signal the correct exception,
i.e., abort or failure.

3.1. Instantiating a CAA

This section shows how to instantiate a CAA using DRIP and
CAA-DRIP. The simple CAA from Fig. 2 is taken as an example to
show how both frameworks have to be employed to achieve its
implementation. We consider that only one exception will be dealt
with, i.e., E1 exception. We also consider that only AutoRecoverable
objects are used in this simple CAA.

Fig. 7 shows the code for instantiating classes using DRIP. In this
figure, three sets of managers and roles are created. The first set
(lines 1–9) is responsible for recovering the CAA when another
exception is raised during the handling of E1. The second set (lines
12–26) is responsible for handling the exception E1. The third set
(lines 29–42) is responsible for the normal execution of the CAA.
In all three sets, firstly the managers are created and then the roles
are created and associated with the manager that will control each
role. The manager that will act as leader is informed during the cre-

ation of a role. Notice that in lines 12–16 three hashtables are cre-
ated. These hashtables contain the topmost exception in the Java
language, i.e., Exception class, and the role for the first set. This role
will be called when an exception is raised inside the handler for
exception E1. Each hashtable will be passed as parameter during
the creation of the managers for the handler of E1. The same pro-
cess is performed for associating the handler for exception E1 with
roles that are created for the normal execution of the CAA (see lines
29–32).

Notice, again, that the roll back is constructed in the same way
as a handler for an exception raised during the normal execution is
constructed. Therefore, there is not any impediment for the pro-
grammer to construct another handler for an exception raised dur-
ing the roll back process. However, this would violate the CAAs
semantics, as explained in Section 2.

Fig. 8 shows the code for instantiating classes using CAA-DRIP.
Basically, all CAA concepts are used during the construction of a
CAA using the CAA-DRIP framework. As a first step, the normal part
of the CAA is declared (lines 1–9). Manager objects and their
respective roles are created in the same way they are created using
the DRIP framework. The second step refers to the definition of the
objects that will handle exceptions. The difference between the
frameworks is on the way these objects are created. Lines 11–14
show how a handler for exception E1 is created. Notice that the
same managers are used to control the handlers. In the DRIP frame-
work, new managers would be necessary to control the handler for
each new exception (see Fig. 7, lines 19–21). The third step to con-
struct the CAA using CAA-DRIP is to link the managers with the
handlers and exceptions that will be handled during the normal
execution of the CAA (lines 16–24).

The final step for creating a CAA using CAA-DRIP would be the
declaration of compensator. In our example, this would not be
needed because we assume that the objects are all AutoRecoverable,
and therefore the framework activates the object recovery. Fig. 9
shows how a compensator would be created (for the same exam-
ple) if at least one of the objects is ManuallyRecoverable.

Manager

Compensator

+recovery()

Handler

+body()

+postCondition()

1

0..1

Leader

1

1..n

Exception
controls

1

0..*

Role

+preCondition()

+body()

+postCondition()

controls

1

1

SharedObject

ExternalObject

1

0..*0..*

0..*

ManuallyRecoverable

AutoRecoverable

<<interface>>

Transactions

+begin()

+commit()

+abort()

<<interface>>

Concurrency

+setLock()

+lockRelease()

1

1..*

Abort

Failure
controls

Fig. 6. CAA-DRIP UML model.

212 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

3.2. Defining and implementing roles, handlers, and shared objects

This section presents how to implement the application related
code for each role. Both frameworks use the same approach and
classes for creating roles and shared objects.

The definition of a role is made by creating a new class that ex-
tends the Role class (see the Java code in Fig. 10 – this code is valid
for both frameworks). The programmer has to re-implement the
body method (lines 24–32). This method receives a list of external
objects as input parameter and it does not return any value. The
defined operations inside this method are executed by the partici-
pant that activated the role.

When the role class is instantiated, the role constructor needs
the role name, the manager object that drives its execution and
the leader manager object used for coordinating the CAA execution
(lines 5–15 of Fig. 10 for the declaration, and lines 7–9 of Fig. 8, for
instance, for the instantiation).

Coming back to Fig. 10, shared objects for coordinating the CAA
roles are defined inside the new class that extends the Role class
(line 3). Once a shared object has been created (line 11) it can be

exported to be used by other roles of the CAA. In order to export
a shared object the programmer has to use the sharedObject meth-
od of the Manager class (line 14). The manager has this information
so other roles can ask their managers for a reference to these
objects.

The other methods that have also to be redefined by the pro-
grammer are preCondition (lines 17–22) and postCondition (lines
34–39). They return a Boolean value and are used as guard and
assertion of the role, respectively. This set of new classes defines
the CAA normal behaviour and their execution corresponds to state
Service in Fig. 4.

The second step is to define the CAA behaviour for dealing with
exceptions (state Recovery in Fig. 4). This is, from an implementa-
tion point of view, different from the DRIP framework. If an excep-
tion has to be handled by FER, then it is necessary to define a
handler for each CAA role. In the DRIP framework this is performed
by creating a new Role class in the same way a Role class is created
for the normal execution.

In the CAA-DRIP framework, on the other hand, the new handler
has to be created similarly to the way a new Role class is created,

Fig. 7. CAA1 definition using DRIP.

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 213

Author's personal copy

but instead of extending the Role class, the new class has to extend
the Handler class. Line 1 from Fig. 10 changes to ‘‘public class Han-
dlerName extends HandlerImpl”. The rest of the code is similar to
the way a new Role class is created.

The last step is to create a roll back process. In the DRIP frame-
work the programmer has to create a new Role class in the same
way he creates a role for dealing with exceptions. In CAA-DRIP,
the programmer has to create a new Compensator class, when
ManuallyRecoverable objects are used in the CAA. Again, in CAA-
DRIP, the differences are: (a) the new class has to extend the Com-
pensator class instead of extending the Role class or the Handler
class; and (b) the name of the method that has to be re-written
is called recovery instead of body. This method receives, as input
parameter, a list with the external objects that need hand-made
recovery. The method has to contain the operations to leave these
external objects in a consistent state (to keep the ACID properties).

3.3. Managing a CAA at runtime

So far we have shown how the classes in the framework are
instantiated and extended to create a CAA. Now we explain how
these objects behave when the CAA is activated. The CAA activation
process begins when each participant starts the role that it wants
to play. The execute method (belonging to the Role class) has to
be used by a participant to start playing a role. When the execute
method is called, the role passes the control to its manager by exe-
cuting controller method (which belongs to the Manager class – see
Fig. 11). The execution of such a method implies the activation of

the manager. Once each manager has been activated the CAA starts
the execution of its life cycle.

The CAA life cycle is coded in the Manager class as a sequence of
operations that it executes after its activation. The Java code in Fig.
12 shows these operations. This figure is divided in different parts
according to the framework employed. The first part corresponds
to the steps that are common for both frameworks and which
are used to perform the service that the CAA provides (i.e., normal
behaviour – Fig. 13) shows a sequence diagram for the normal
behaviour of a CAA). The other parts correspond to the recovery
phase. This phase is coded in different ways in DRIP and CAA-DRIP.
In the following we explain in details those steps that are common
to both framework, as well as those that are specific for each of
them.

3.3.1. Common part: normal behaviour execution
The first activity a manager executes is to synchronise itself

with all other managers that are taking place in the CAA. This is
done by calling the syncBegin method (line 3). Remember that
there is a leader manager that is responsible for this task. This
method blocks until the leader determines that all the managers
have synchronised and the CAA is ready to begin. Once the syncBe-
gin method returns, the manager checks if the pre-condition of the
role is valid (line 5). The preCondition method receives all the exter-
nal objects that will be passed to the role managed by this manager
as parameters. If the pre-condition is not satisfied, then a PreCondi-
tionException will be thrown (line 6) and caught by the catch(Excep-
tion e) block.

If the pre-condition is met, then the manager will execute the
role that is under its control by calling the bodyExecute method
of the Role object (line 9). The invocation of this method by each
manager can be seen as the implementation of the arrow that goes
from state S0 to state Service in Fig. 4.

After the role has finished its execution, the manager tests the
CAA post-condition (line 12). If the post-conditions is satisfied,
then the manager, once again, synchronises with all the other man-

Fig. 8. CAA1 definition using CAA-DRIP.

Fig. 9. A compensator definition for CAA1 using CAA-DRIP.

214 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

agers (line 20) to finish the CAA execution synchronously. Thus,
this sequence of steps corresponds to the arrow that goes from
state Service to state S1 in Fig. 4 and which represents the success
in the CAA execution.

The catch(Exception e) block (from line 16 to 26, if using DRIP; or
until 35 if using CAA-DRIP) is executed when an exception is raised
during the execution of any role belonging to the CAA. In such sit-
uation, the role where the exception was raised notifies its man-
ager. This manager passes the control to the leader manager for
interrupting3 all the other roles that have not raised an exception
(exceptions can be raised concurrently). Once all the roles have been
interrupted the leader executes an exception resolution algorithm to
find a common exception4 from those that have been raised (line

19). When such exception is found, the leader informs all managers
about it. The recovery phase for such exception then has to be
started.

3.3.2. Recovery phase in the DRIP framework
The recovery phase performed by DRIP consists of the activation

of the roles created to act as handler. Each handler deals with the
exception returned by the resolution algorithm. Thus, the first step
is to look for the role object that has been defined (if any) to deal
with the exception returned by the resolution algorithm (line
21). If the role exists, then it is activated and executed. As men-
tioned above, the activation of the role starts when the execute
method is called (line 22). Through the execution of this method,
the controller method (see Fig. 11) is performed, producing in the
end the execution of the role that behaves as handler.

The set of roles behaving as handlers will perform the FER
phase, since their actions can still allow the CAA to finish success-

Fig. 10. Creating a new Role class.

Fig. 11. Activation the manager.

3 Notice that a role will be interrupted only if the role is ready to be interrupted, i.e.,
the role is in a state in which it can be interrupted.

4 In the worst case, the common exception is Exception.

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 215

Author's personal copy

fully. However, there are certain situations that will lead to the
execution of the BER phase. Thus, BER is executed if:5

� the exception resolution algorithm could not find a common
exception (arrow that goes from the state Service to the state
BER in Fig. 4);

� the post-condition associated to the role6 is not met (arrow that
goes from the state FER(e) to the state BER with label fer-
Done(e)[not(postCond)] on Fig. 4), which causes the exception
PostConditionException() to be raised;7

� other exceptions were raised in the FER (arrow that goes from
the state FER(e) to the state BER with the label Exception(e) in
Fig. 4).

The BER phase is defined in the same way as the FER. It means
that a set of roles for such a purpose has to be created by the pro-
grammer to undo the effects produced by the CAA. Thus, when one
of the above-mentioned situations occurs, the roll back of the CAA
will be performed by activating and executing such roles. The acti-
vation and execution are exactly the same as for the FER phase.
Therefore, the DRIP framework makes possible to have as many
handling phases as the programmers want. However, according
to CAA semantics only a two-level nesting is allowed: the first
one to perform the FER phase, and the second one to perform the
BER phase.

Fig. 14 shows a sequence diagram for the DRIP framework when
one exception is raised inside a role of a CAA.

3.3.3. Recovery phase in the CAA-DRIP framework
CAA-DRIP starts the recovery phase by executing the FER phase.

In this phase the first step is to look for the handler associated to
the exception to deal with (line 21). Once the handler was found,
the handlerExecution method (line 22) is called. This method exe-

Fig. 12. Manager execution in DRIP and CAA-DRIP.

5 These situations will also lead to the execution of the BER phase when CAA-DRIP
framework is employed.

6 the pre-condition for a role acting as a handler must be true, so that in CAA-DRIP
there not exist a way to define a pre-condition for a handler.

7 Using the CAA-DRIP framework this exception would be raised by the handler-
Execution() method.

216 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

cutes the specific behaviour coded in the body method of the han-
dler and then it checks if the handler’s post-condition holds. If the
post-condition is held, then the CAA finishes successfully.

The value in roleException variable defines how successfully the
FER execution was. A null value in this variable means that FER has
finished normally (arrow that goes from the state FER to the state
S1 in Fig. 4). Otherwise, it has achieved a partial solution and the
exceptional result (contained in the roleException variable) has to
be returned to the enclosing context (arrow that goes from state
FER to state S2 in Fig. 4).

The BER mechanism (lines 25–28) is responsible for calling the
restoreExecution method (line 26) to undo the CAA effects. Once
this method has been executed, the roleException variable is set
with Abort value (line 28) and the CAA can finish (arrow that goes
from state BER to S0 in Fig. 4.

If for any reason the BER process could not complete its execu-
tion, the CAA will be finished returning Failure (line 32). This state-
ment corresponds to the arrow that goes from state BER to state S3
in Fig. 4.

Fig. 15 shows a sequence diagram for the CAA-DRIP framework
when one exception is raised inside a role of a CAA.

3.4. Comparison between DRIP and CAA-DRIP

The aim at developing CAA-DRIP was to ease the problem of
implementing designs based on CAAs. Thus, the former implemen-
tation support to carry out this step, i.e., DRIP, was fully analysed to
figure out its main weaknesses from both a qualitative and quanti-
tative point of view. This section then first summarises the main
differences between DRIP and CAA-DRIP, and secondly, shows
what are the consequences of such differences in terms of execu-
tion time and memory consumption.

The first difference appears in the development process. CAA-
DRIP allows programmers to deal with the same conceptual con-
cepts (i.e., Role, Handler, Compensator, etc.) used in the design
phase, whereas DRIP either directly does not support some CAA

concepts (e.g., Compensator) or it is implemented in a way that
does not match CAA concepts of the design phase (e.g., a Handler
is implemented in the same way as a Role is). Having such a direct
correlation between design and implementation eases the code
production. Furthermore, it helps also the maintainability of the
code as well as the inspection of the code to detect defects
(testing).

Another difference between both frameworks is related to the
number of objects to be instantiated for creating a CAA. Let caa
be a CAA composed of n roles which have to handle m exceptions
without any external object to be recovered manually, CAA-DRIP
requires ‘‘2 � nþm � n” objects, whereas DRIP requires
‘‘2 � nþm � ð2 � nÞ þ 2 � n” objects. In case there exist at least one
external object which needs manual recovery, by using CAA-DRIP
the number of objects is ‘‘2 � nþm � nþ n”, whereas by using DRIP
the number remains the same.

Therefore, assuming the worst possible scenario (i.e., manual
recovery must be performed) CAA-DRIP requires ‘‘n � ð3þmÞ” ob-
jects, and DRIP ‘‘2 � n � ð2þmÞ”. When n and m grow large, the
ð3þm) and ð2þmÞ terms have a very close value, turning the ob-
ject rate between CAA-DRIP and DRIP to n=2 � n, i.e., 1=2. Therefore,
CAA-DRIP requires half number of objects than DRIP to create a
CAA. Most of the cut off objects were manager objects. This is
due to the fact that in CAA-DRIP the same manager object can con-
trol roles, handlers and compensators, whereas in DRIP one set of
managers for each set of handlers and compensators would be
necessary.

However, the main quantitative advantage of this reduction of
the number of manager objects consists in considerably decreasing
the number of threads created for executing a CAA (three times
less, in the worst case). The Manager class has been developed to
work as a supervisor in the execution of objects extending from
Role, Handler, and Compensator classes. Thus, at runtime, the place
(i.e., thread) to carry out the computation (i.e., code programmed
into the body method) of such instances is created by a manager
object. Therefore, as the number of manager objects created at
runtime has been considerably decreased, then the number of
threads to be created for executing role, handler and compensator
instances is also much less. All these aspects are summarised in
Table 1.

Performance evaluations regarding response time and memory
consumption were performed to see the impact of the differences
between DRIP and CAA-DRIP. The experiments consisted of mea-
suring (1) the elapsed time and (2) the memory use of a CAA imple-
mented both with CAA-DRIP and DRIP frameworks.

The CAA used to run such experiments was intentionally de-
fined very simple to avoid introducing extra overheads, since the
goal is to measure the frameworks’ overheads. Therefore, the role
played for each participant entering into the CAA is a very simple
arithmetical operation which takes too slight computation time.
Moreover, there is no interaction among roles, which makes the
CAA execution even lighter and faster.

Let Caapi
represent this simple CAA with pi participants entering

into it. Measures of the elapsed time and the memory used8 were
taken for Caapi

with pi going from 100 to 3000 and step 100. Both
for measuring the timing and memory costs, each Caapi

was run 50
times under the same hypothesis and environment conditions to
avoid introducing random measuring errors. These values were used
to calculate the arithmetic mean (here denoted by AVG) of each Caapi

regarding elapsed time and memory used.
The measures for each Caapi

were performed over two represen-
tative cases: the normal behaviour case and the exceptional behav-

Fig. 13. Sequence diagram for the normal behaviour of a CAA.

8 The elapsed time was taken using the Linux/Unix command time, whereas for
measuring the memory used the command employed was top.

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 217

Author's personal copy

iour case. The normal behaviour case represents the scenario
where the Caapi

reaches its goal without executing the recovery
phase. The exceptional behaviour case represents the execution
of the same Caapi

, but where an exception is raised by one arbitrary
role. The tasks to be performed for each handler during the recov-
ery phase are the same as the ones performed by the roles in the
normal phase.

Therefore, the graphs shown in Figs. 16 and 17 are the interpo-
lation of

AVGpi
¼ TimeðCaapi

Þ ¼ 1
50

X50

j¼1

TimejðCaapi
Þ;

with pi ¼ ½100;3000� and step 100 for the normal and exceptional
behaviour of Caapi

, respectively, regarding timing costs (in
milliseconds).

On the other hand, the graphs in Figs. 18 and 19 are the inter-
polation of

AVGpi
¼ MemoryðCaapi

Þ ¼ 1
50

X50

j¼1

MemoryjðCaapi
Þ;

with pi ¼ ½100;3000� and step 100 for the normal and exceptional
behaviour of Caapi

, respectively, regarding memory costs. In the
Appendix can be found the average (AVG) of each Caapi

regarding
timing and memory costs along with their respective standard
deviation (SD) and confidence interval (CI) for a confidence of
95%.

It is worth saying that the memory measurements (in Mb) in-
clude both the amount of physical memory assigned to executable
code, also known as the ‘‘text resident set” size and the amount of
physical memory assigned to the ‘‘data resident set”.9

Fig. 14. Sequence diagram of an exceptional behaviour of a CAA (DRIP framework).

9 The JVM was tuned (i.e., heap of 2 Gb and thread stack of 128 Kb) to allow the
complete execution be run without need of using virtual memory, so that the non-
swapped physical memory a task has used (RES) reported by the command top is an
accurate value for which was looked for.

218 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

The experiments regarding costs in terms of response time re-
flect that the difference between the frameworks is negligible
when the normal behaviour case is considered (Fig. 16). However,
when the exceptional behaviour case is considered, the cost for
executing the Caapi

using DRIP increases considerably, whereas it

remains quite similar when the Caapi
is executed using CAA-DRIP

(Fig. 17). The fact that CAA-DRIP shows similar response times in
both cases (i.e., normal and exceptional) means that the overhead
introduced by the context switch from the normal to the excep-
tional phase is negligible.

Fig. 15. Sequence diagram of an exceptional behaviour of a CAA (CAA-DRIP framework).

Table 1
DRIP vs. CAA-DRIP

Characteristics/framework DRIP CAA-DRIP

Supported abstractions Role Role, Handler, Compensator; Abort and Failure
exceptions

Pre-defined outcomes None Abort and Failure
Normal behaviour implementation Instance of Manager class and

extension of Role class
Instance of Manager class and extension of Role class

FER behaviour implementation Instance of Manager class and
extension of Role class

Extending Handler class

BER behaviour implementation Instance of Manager class and
extension of Role class

Combining automatic roll back and hand-made
recovery (extending Compensator class)

Number of objects to create a CAA with n roles, handling m exceptions
without manual recovery of external objects

2 � nþm � ð2 � nÞ þ 2 � n 2 � nþm � n

Number of objects to create a CAA with n roles, handling m exceptions with
manual recovery of external objects

2 � nþm � ð2 � nÞ þ 2 � n 2 � nþm � nþ n

Number of threads created at runtime to run a CAA with n roles, which deals
with an exception, first by FER and then by BER

3 � n n

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 219

Author's personal copy

In respect of memory consumption costs, experiments show a
better performance of CAA-DRIP compared with DRIP. This is also
a consequence of having reduced the number of threads at runtime
during the recovery phase. Thus, it is not surprising that there are
almost no differences between the frameworks, when the normal
behaviour case is considered (Fig. 18). Therefore, the memory per-
formance improvements achieved by CAA-DRIP come out when
the exceptional behaviour case is considered (Fig. 19).

In conclusion, CAA-DRIP is not only faster (in terms of response
time), but also lighter (in terms of memory consumption) com-
pared to DRIP.

The experiments were performed on a Intel Pentium D-3.2 GHz,
with 4 GB DDR-II of memory RAM, running Debian GNU/Linux 4.0.

The Java(TM) 2 Runtime Environment, Standard Edition (build
1.5.0_14-b03) Java HotSpot(TM) Client VM (build 1.5.0_14-b03,
mixed mode, sharing) was used as virtual machine.

4. The Fault-Tolerant Insulin Pump (FTIP) system

This section presents a complete solution of an application on
the e-health domain. This application was designed using the
CAA concepts and implemented using the CAA-DRIP framework.

The aim of this section is to put in practice what was presented
until now, explaining how to design and implement dependable
systems. The case study is designed using CAAs, while the imple-

Fig. 17. DRIP vs. CAA-DRIP: time costs for Exceptional behaviour.

Fig. 16. DRIP vs. CAA-DRIP: time costs for Normal behaviour.

220 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

mentation is performed only by means of the CAA-DRIP frame-
work. The previous comparative study demonstrated that CAA-
DRIP is the better solution for implementing systems designed by
using CAAs and thus it is the implementation framework that we
chose.

The ‘‘Fault-Tolerant Insulin Pump” (FTIP) therapy is based on
the Continuous Subcutaneous Insulin Injection technique that
combines devices (a sensor and a pump) and software to make glu-
cose sensing and insulin delivery automatic. The idea is to emulate
the way in which the pancreas secretes insulin in the human body.
Therefore, the FTIP system defines a closed-loop, which continu-
ously monitors the patient’s glucose level through the sensor,
and constantly supplies fast-acting insulin into his/her body by
the pump.

This tiny sensor is only a piece of hardware without any embed-
ded software. It has a small integrated transmitter which is used to
communicate wirelessly the patient’s glucose level to the pump.
Every TSensorValue units of time the sensor sends an updated glucose
value. Unlike the sensor, the pump is a more sophisticated device.
This pump includes an on-board computer that carries the embed-
ded software (i.e., FTIP control system) in charge of managing both
the sensor and the pump to perform the treatment. Fig. 20 depicts
the devices taking part in the treatment, and how they are con-
nected to the patient and interact to each other.

The pump is also composed of a motor, and a cartridge with
fast-acting insulin. This motor is connected to a piston rod, which
pushes a plunger forward when the motor is working. Once the
motor is activated, the insulin is delivered to the patient’s body

Fig. 18. DRIP vs. CAA-DRIP: memory costs for Normal behaviour.

Fig. 19. DRIP vs. CAA-DRIP: memory costs for Exceptional behaviour.

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 221

Author's personal copy

by a cannula that lies under the patient’s skin. Therefore, the FTIP
control system interfaces with the motor to administrate the dose
of insulin to be supplied to the patient. Two infrared motion detec-
tors are also included on the pump to get feedback about the
behaviour of the motor and the plunger.

Since the FTIP system is conceived to emulate a complex natural
process performed by the human body, it is imperative that the
system does not fail. Therefore, both the software and the hard-
ware that compose the system must be built using techniques that
allow obtaining products with a high level of reliability. However,
it is worth saying that the safety–criticalness level of the FTIP sys-
tem is much lower compared, for instance, to the one required in
air traffic control systems. It means that despite the FTIP system
should be operating 24 � 7, it can perfectly be stopped (intention-

ally or unintentionally) for a while without compromising the
health of the patient.

The core of the FTIP system is the piece of software embedded
in the pump, which is referred as FTIP control system. Its main
function is to manipulate the pump to deliver the right dose of
insulin based on information sent by the sensor. Since there is no
physical connection between the sensor and the pump, an excep-
tional situation can arise due to a problem in the communication
between them. The level of glucose dropping outside the allowed
range pre-defined by the patient or doctor is another exceptional
situation. To mask random measuring errors, which in this partic-
ular case are due to transient faults of the sensor, the current pa-
tient’s glucose level is obtained as the average of 200 samples.
Thus, this measuring technique is a step forward to the improve-
ment of the FTIP control system’s reliability. Regarding the insulin
delivery, the control system relies on the motor and on the plunger
infrared motion detectors to determine if the pump is working
properly. Therefore, the FTIP control system is able to detect any
of the following critical conditions: (i) no values have been re-
ceived from the sensor for the last TSensor units of time (E1), (ii)
the current patient’s glucose level is out of the safe range (E2),
(iii) the insulin to be delivered to keep the glucose in a safe level
does not drop into the safe range programmed (E3), and (iv) the
insulin is not being delivered properly (E4).

When, at least one of these critical conditions takes place, the
FTIP control system stops the insulin delivery and beeps the
pump’s alarm to alert the patient about the current situation.
The alarm remains ringing until the patient switches it off. Instead,
when the quantity of insulin in the cartridge (E5) is less than the
low limit configuration parameter, the control system will ring
the alarm, as a warning, for only TWarning units of time.

In order to satisfy the previous requirements a set of CAAs that
interact cooperatively among them is defined. Fig. 21 represents
one possible trace of the CAAs behaviours at runtime, in which
any exception is raised. In this Figure is also possible to see where
exceptions could take place. CAA_Cycle is the outermost CAA. It is
composed of four roles: Sensor, Controller, Pump, and Alarm.

Fig. 20. Case study scenario.

CAA_Checking

CAA_Cycle

Pump

Controller

Sensor

Alarm

CAA_Checking

CAA_Cycle CAA_Cycle CAA_Cycle

E5

E2 E5 E5 E5

E1

E2

CAA_
Delivery

CAA_
Calculus

O1

O2

O1

E1

O2

CAA_Calculus

Algorithm_1

Algorithm_2

VotingCheck

Algorithm_3

E3

CAA_Delivery

MotorDetector

PlungerDetector

Motor
E4

O3 O4 O3

AlarmDev

SensorDevO1

MotorDev

Plunger

O2

O3

O4

External
Objects

Fig. 21. CAA design.

222 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

Its main task is to perform repetitively a set of operations while
the safety conditions of the treatment are kept. These operations
are grouped in three basic steps. The first step, which consists of
getting the current patient’s glucose level, is carried out by
CAA_Checking. The second step is to calculate how much insulin
has to be delivered and it is performed by CAA_Calculus. The last
step is performed by CAA_Delivery and consists of delivering the
insulin into the patient.

Sensor, Pump, and Alarm are the roles used to manage the access
to the SensorDev, MotorDev, and AlarmDev devices, respectively.
The Controller role coordinates the other roles of CAA_Cycle to keep
on executing these steps.

As shown earlier, the process to deliver insulin into the patient
is achieved by combining several physical devices (e.g., piston rod,
plunger, etc.) that are activated when the pump’s motor works.
Therefore, there is a relationship between ‘‘insulin delivering”
and ‘‘motor working time” that is part of the domain knowledge
embedded in the system. Taking into account the ‘‘insulin deliver-
ing-motor working time” relationship, CAA_Calculus has been de-
fined to calculate how long the motor of the pump has to work

(TDelivery value). CAA_Calculus has been designed to allow the N-ver-
sion programming technique to be used. In fact, three different
algorithms to compute the TDelivery value are employed to discover
and mask a possible wrong result produced by one of them. In this
manner, the role called VotingCheck acts as supervisor, so that it (i)
invokes the three different versions of the calculation algorithm;
(ii) waits for them to complete their execution; and (iii) compares
the results and makes a decision according the majority. Finally,
this decision, which is either a numeric value or an exception, is
communicated to the enclosing CAA.

Once the Controller role has received the TDelivery value from
CAA_Calculus, CAA_Checking and CAA_Delivery can be performed
in parallel to improve the system performance. Therefore, the Con-
troller role has to synchronise the CAAs to achieve the execution of
the previous described steps. Due to space reasons, Fig. 21 only
shows the accesses to external objects.

The Java code in Fig. 22 shows how the body method of the Con-
troller role is implemented for the CAA_Cycle. CAA_Cycle is executed
repeatedly until the patient stops manually the delivery (by press-
ing the Stop button) or a critical condition has taken place. The

Fig. 22. Body method of Controller class.

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 223

Author's personal copy

Controller role works as a coordinator of the tasks that have to be
carried out in CAA_Cycle. One of these tasks is to launch the com-
posed CAA_Calculus that was described earlier.

The first time that CAA_Cycle is called (lines 7–15), the Controller
role starts to execute CAA_Checking (line 10) in order to get the
information provided by the sensor. Once the role has got the
information, it returns the value to the enclosing context (line
15). After CAA_Cycle has been executed once, the enclosing context
is able to provide the sv value that has been taken in the previous
execution of CAA_Cycle. Therefore, the Controller role gets the sv va-
lue (lines 18–19) and then passes it as an input parameter (line 23)
to CAA_Calculus. The CAA_Calculus execution (line 24) returns the
period of time (tDelivery value) that the motor has to run (lines
26–27).

When the tDelivery value is known, it has to be passed to the
Pump role (line 29). After that, the Pump role receives tDelivery
and then it can call CAA_Delivery to make the delivery of insulin.
While CAA_Delivery is executing, in order to improve performance,
the Controller role launches CAA_Checking (line 33) that is used to
get information from the sensor. This information will be used in
the next iteration of CAA_Cycle.

When the information returned from CAA_Checking and Pump
roles (lines 35–36, and 38, respectively) has been passed to the
enclosing context (lines 40–41) the role can finish its execution
and pass control to the enclosing context where CAA_Cycle is
embedded.

Regarding verification (i.e., the process to ensure the implemen-
tation meets its specification) the chosen approach was testing.
Among the different techniques existing nowadays to test the
dependability of a system, fault injection is one of the most practi-
cal and effective (Ramesh et al., 2004). It provides a way to test the
dependability of the system with respect to certain fault classes
that may need hard-to-reach pre-conditions in order to allow them
to be manifested. Thus, fault injection in this particular case has

been used to evaluate the fault-tolerant aspects included in the
FTIP system to deal with the above-mentioned exceptional situa-
tions (i.e., E1:5).

These exceptional situations are occasioned by natural faults,
i.e., they are caused without any human participation. Therefore,
the states manipulated by the fault injector to allow faults to man-
ifest, are those belonging to the environment where the FTIP con-
trol system is embedded. This environment is only composed of
the sensor and the pump. It does not include the patient as he/
she does not interact directly with the control system. This interac-
tion is achievable through the devices. Therefore, the fault injector
needs to modify the sensor and pump’s states to make the excep-
tional situations of interest effective. This has as advantage that the
fault injector does not represent an intrusion into the FTIP control
system.

Since both the sensor and the pump used to achieve this type of
closed-loop system do not exist in the market yet, they were
implemented by software to allow the testing process to be per-
formed. Thus, as these devices represent the environment for the
FTIP control system, and the fault injector has to operate on it, a
full-integrated tool (called FTIP simulator Correct Project’s Web
Page, 2007) was developed to show the progress of the control sys-
tem and to check its reaction when a fault is injected.

Fig. 23 shows a screen dump of the FTIP simulator. It has a
main console (top-left corner) from where the simulation can
be started/stopped. From this console it is also possible to decide
the form (simple or verbose mode) and the type of information
(e.g., internal CAA-DRIP framework steps regarding the exception
handling manipulation) to be displayed on the output console
(bottom part). An outline of the scenario appears on the back-
ground of the simulator’s central display. In fact, the outline of
the scenario is used as reference to show the execution progress
of the involved CAAs. When a CAA is executing it is coloured. Fig.
24 shows the simultaneous execution of CAA_Checking and

Fig. 23. The Fault-Tolerant Insulin Pump simulator.

224 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

CAA_Delivery (two different colours were used to show such
effect).

The fault injector is another console situated in-between the
main control and the output console. Fig. 24 shows the result of
injecting a fault on the sensor device (i.e., the exceptional situation
E1). Facing to this situation, the FTIP control system performs an
insulin delivery safe-stop and starts ringing the pump’s alarm.

5. Conclusions and future work

This paper puts together all concepts concerning CAAs and
discusses two CAAs implementation frameworks (DRIP and
CAA-DRIP). Based on the analysis of the concepts it provides a
formal description of the CAAs life cycle using the Statecharts
language. This Statecharts description is used to
demonstrate how each life cycle step of applying CAA is con-
ducted depending on the framework employed to develop an
application.

Both DRIP and CAA-DRIP are object-oriented solutions. The for-
mer was conceived to implement systems designed in terms of
DMIs, whereas the later was developed to implement systems de-
signed using CAAs. The only difference between DMIs and CAA is in
the exception handling semantics. The CAA exception handling
semantics is more restricted than the one of DMIs. Despite that,
the DRIP framework can be used to implement a CAA design. How-
ever, the fact that DRIP was not directly targeted for CAAs makes
its use no straight for programmers. CAA-DRIP was developed to
bridge this gap, as it provides only the elements (i.e., roles, han-
dlers, and compensators) necessary for implementing each CAA
concept in a straightforward manner. Furthermore, this one-to-
one mapping between the design model and its respective imple-

mentation allows a reverse engineering process (i.e., getting the
design from the source code).

The separation of concepts, helping programmers to carry out
the implementation, along with the performance improvements,
are the main reasons why CAA-DRIP represents a better solution
comparing with its ancestor. However, our analysis shows that
there are situations in which the features provided by CAA-DRIP
are not sufficient, e.g., for developing real-time systems. In such
systems, the framework should include features for specifying time
requirements of CAA execution, i.e., starting time, processing time
and deadline. Scheduling policies to make the execution of the
CAAs more predictable would be necessary as well. The required
features that should be included in the CAA-DRIP framework is still
an ongoing research area.

Another issue that is being addressed in this paper is to
understand how much details programmers need to know about
the CAA-DRIP framework. Even if the abstraction level of CAA-
DRIP is the same as in the CAA design, programmers still have
to invest time for learning it. This means that they need to go
through a training process to get experience and gain confidence
in using CAA-DRIP. A framework which is easy to learn and to
get confidence in is known as a white-box framework (Gamma
et al., 1995; Beck and Johnson, 1994). Therefore, it would be
useful to make the framework use more straightforward, in or-
der to speed up the implementation phase. Currently, the devel-
opment of a tool to become CAA-DRIP a black-box framework
(i.e., programmers would not need to know its details to use
it) is being performed. This tool will receive as input a CAA de-
sign described in a domain specific language (Vachon, 2000) and
it will produce automatically the code that implements such
design.

Fig. 24. Injecting a fault on the sensor.

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 225

Author's personal copy

Acknowledgements

This work has benefited from a funding by the Luxembourg
Ministry of Higher Education and Research under the Project Num-
ber MEN/IST/04/04. The authors gratefully acknowledge help from
B. Gallina, A. Campéas, H. Muccini, and P. Periorellis. A. Zorzo is
partially funded by CNPq Brazil. A. Romanovsky is supported by
ICT DEPLOY project.

Appendix A. Experimental results

A.1. Measuring the elapsed time used by a CAA in milliseconds (ms)

A.1.1. Normal behaviour of a CAA using CAA-DRIP and DRIP
frameworks

Part. CAA-DRIP DRIP

AVG SD CI AVG SD CI

100 553.2 4.71 1.31 565.6 108.87 30.18
200 559.4 3.14 0.87 554.6 5.03 1.4
300 611.6 10.17 2.82 608.2 3.88 1.08
400 660.2 1.41 0.39 660 0 0
500 715.8 8.35 2.32 715.8 10.32 2.86
600 765.6 5.41 1.5 746 22.22 6.16
700 818.4 5.1 1.41 808.6 17.96 4.98
800 871.4 4.52 1.25 875.4 5.03 1.4
900 929 10.15 2.81 953.8 27.4 7.59
1000 989.8 14.36 3.98 983.8 8.55 2.37
1100 1151.2 11 3.05 1053.8 18.61 5.16
1200 1258.2 6.61 1.83 1159.8 15.97 4.43
1300 1321.4 18.52 5.13 1250.4 19.37 5.37
1400 1346.4 16.63 4.61 1433.2 31.97 8.86
1500 1456 22.59 6.26 1600.2 19.95 5.53
1600 1576.4 26.86 7.45 1652.2 26.29 7.29
1700 1838.2 21.82 6.05 1693.8 42.03 11.65
1800 2033.2 30.33 8.41 1802.2 28.09 7.79
1900 2157.6 25.6 7.1 1951 33.52 9.29
2000 2377 40.47 11.22 2265.4 34.54 9.57
2100 2553 28.09 7.78 2473 35.24 9.77
2200 2736.8 35.13 9.74 2661.8 40.24 11.15
2300 2981 27.87 7.72 2879.2 56.74 15.73
2400 3273.6 43.79 12.14 3119 54.52 15.11
2500 3445.4 47.13 13.06 3350.8 54.05 14.98
2600 3623.2 55.6 15.41 3728.6 52.68 14.6
2700 3886.8 100.92 27.97 3881.2 66.44 18.42
2800 4251.8 81.83 22.68 4182.4 96.69 26.8
2900 4546.8 98.67 27.35 4487.2 104.26 28.9
3000 4887.8 74.57 20.67 4885.4 116.36 32.25

A.1.2. Exceptional behaviour of a CAA using CAA-DRIP and DRIP
frameworks

Part. CAA-DRIP DRIP

AVG SD CI AVG SD CI

100 606.6 9.17 2.54 760.15 1.23 0.3
200 660.2 1.41 0.39 798.18 24.49 5.91
300 662.2 15.56 4.31 827.27 21.38 5.16
400 809.2 20.49 5.68 981.06 20.47 4.94
500 820.6 3.14 0.87 1073.33 19.16 4.62
600 888.6 48.49 13.44 1141.06 31.43 7.58
700 978.6 9.26 2.57 1388.48 45.28 10.92
800 998.8 25.92 7.19 1652.12 133.58 32.23
900 1126.4 20.97 5.81 2948.48 955.53 230.53

A.1.2. (continued)

Part. CAA-DRIP DRIP

AVG SD CI AVG SD CI

1000 1218 21.09 5.85 7829.39 2753.41 664.29
1100 1327.8 14.47 4.01 13637.27 4660.27 1124.33
1200 1463.4 21.44 5.94 19579.7 7784.68 1878.13
1300 1535.6 39.85 11.05 27750.15 9469.74 2284.66
1400 1554.4 18.86 5.23 40307.88 10747.42 2592.92
1500 1675.6 18.09 5.01 50435.91 12673.61 3057.63
1600 1828.2 30.35 8.41 65625.3 9672.99 2333.7
1700 2056.6 23.44 6.5 76103.94 10229.24 2467.9
1800 2317.4 49.48 13.71 87731.97 10908.8 2631.85
1900 2390.6 44.56 12.35 102946.31 22150.15 5384.88
2000 2691.2 61.13 16.95 121299.51 23143.64 5807.95
2100 2831 44.69 12.39 129872.54 17233.88 4255.68
2200 2982.2 69.08 19.15 145301.13 29256.46 7282.53
2300 3316.8 62.71 17.38 165615.41 48616.42 12200.4
2400 3518.8 61.5 17.05 179458.85 45005.91 11294.34
2500 3664.2 88.67 24.58 199284.26 41827.1 10496.61
2600 3837.2 76.13 21.1 211009 44218.39 11188.8
2700 4146 80.18 22.22 229506.67 39968.04 10113.31
2800 4426.4 89.78 24.89 258589.83 62623.08 15845.82
2900 4730.8 106.96 29.65 262802.54 42845.35 10932.86
3000 5127 109.47 30.34 284491.23 45682.67 11859.6

A.2. Measuring the memory used by a CAA in Mb

A.2.1. Normal behaviour of a CAA using CAA-DRIP and DRIP
frameworks

Part. CAA-DRIP DRIP

AVG SD CI AVG SD CI

100 14 0 0 14 0 0
200 19 0 0 19 0 0
300 24 0 0 24 0 0
400 29 0 0 28.5 0.51 0.14
500 33 0 0 33 0 0
600 38 0 0 39.04 0.2 0.05
700 42.5 0.5 0.14 43 0 0
800 47.52 0.5 0.14 47.48 0.5 0.14
900 51.73 0.45 0.12 53.6 0.49 0.14
1000 55.25 1.22 0.33 58.6 1.44 0.4
1100 65.21 0.89 0.24 60.32 3.4 0.94
1200 71.42 0.64 0.17 70.52 0.89 0.25
1300 75.77 0.83 0.23 76.36 0.72 0.2
1400 81.08 0.76 0.21 78.66 1.1 0.3
1500 84.29 0.82 0.22 83.6 1.65 0.46
1600 88.42 1.75 0.48 89.96 1.95 0.54
1700 93.73 0.92 0.25 95.82 1 0.28
1800 93.73 0.78 0.21 100.1 0.95 0.26
1900 100.65 2.86 0.78 99.56 0.7 0.2
2000 101.71 1.36 0.37 108.48 1.43 0.4
2100 109.33 1.41 0.39 110.28 1.44 0.4
2200 115.61 2.94 0.81 114.08 2.23 0.62
2300 113.06 1.63 0.45 120.92 2.32 0.64
2400 124.8 3.14 0.86 122.54 2.3 0.64
2500 130.39 2.12 0.58 125.4 1.95 0.54
2600 132.63 2.44 0.67 134.6 3.16 0.87
2700 139.2 2.9 0.8 140.64 2.55 0.71
2800 140.57 3.19 0.88 142.8 2.62 0.73
2900 147.71 2.51 0.69 149.74 2.01 0.56
3000 152.86 4.42 1.21 150.98 3.13 0.87

226 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

Author's personal copy

A.2.2. Exceptional behaviour of a CAA using CAA-DRIP and DRIP
frameworks

Part. CAA-DRIP DRIP

AVG SD CI AVG SD CI

100 14 0 0 16 0 0
200 19 0 0 24 0 0
300 24 0 0 31 0 0
400 29.48 0.5 0.14 34.57 2.1 0.58
500 33 0 0 37.08 3.5 0.96
600 38 0 0 52.65 1.32 0.36
700 42.52 0.5 0.14 62.45 1.79 0.49
800 47.58 0.5 0.14 71.16 0.99 0.27
900 53 0 0 77.69 0.68 0.19
1000 60.36 0.53 0.15 83.31 1.2 0.33
1100 67.66 0.59 0.16 85.35 10.26 2.82
1200 73.64 0.48 0.13 90.22 12.75 3.5
1300 77.66 0.63 0.17 86.98 12.59 3.46
1400 83.5 1.04 0.29 89.67 10.92 3
1500 89.04 1.38 0.38 91.39 7.15 1.96
1600 91.72 2.34 0.65 94.51 5.42 1.49
1700 98.34 1.36 0.38 98.59 1.34 0.37
1800 98.42 0.81 0.22 102.51 2.35 0.64
1900 106.74 2.32 0.64 102.49 0.51 0.14
2000 107.94 0.79 0.22 111.16 3.36 0.92
2100 117.02 2.06 0.57 123.34 12.98 3.6
2200 120.86 1.78 0.49 125.98 15.83 4.39
2300 125.12 1.47 0.41 133.78 14.45 4
2400 131.54 1.25 0.35 138.16 15.61 4.33
2500 135.1 1.04 0.29 143.04 19.63 5.44
2600 140.54 2.12 0.59 153.5 19.65 5.45
2700 143.5 1.05 0.29 152.86 22.09 6.19
2800 148.9 2.17 0.6 158.9 17.81 5.04
2900 150.66 1.44 0.4 173.63 23.48 6.64
3000 158.94 2.75 0.76 173.08 20.9 5.91

References

Avizienis, A., 1985. The N-version approach to Fault-Tolerant software. IEEE
Transaction on Software Engineering SE-11 (12), 1491–1501.

Beck, K., Johnson, R., 1994. Patterns generate architectures. In: Proceedings
of European Conference on Object-Oriented Programming (ECOOP), pp. 139–
149.

Capozucca, A., Guelfi, N., Pelliccione, P., Romanovsky, A., Zorzo, A., 2006. CAA-DRIP:
a framework for implementing Coordinated Atomic Actions. In: Proceedings of
IEEE International Symposium on Software Reliability Engineering (ISSRE). IEEE
Press, pp. 385–394.

Correct Project’s Web Page. <http://lassy.uni.lu/correct>, 2007.
Di Marzo Serugendo, G., Guelfi, N., Romanovsky, A., Zorzo, A., 1999. Formal

development and validation of java dependable distributed systems. In:
Proceedings of IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE Press, pp. 98–108.

Gallina, B., Guelfi, N., Romanovsky, A., 2007. Coordinated atomic actions for
dependable distributed systems: the current state in concepts, semantics and
verification means. In: Proceedings of IEEE International Symposium on
Software Reliability Engineering (ISSRE). IEEE Press, pp. 29–38.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns Elements of
Reusable Object-Oriented software, fifth ed.. Addison-Wesley Publishing
Company.

Gray, J., Reuter, A., 1993. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann.

Harel, D., 1987. Statecharts: a visual formalism for complex systems. Science of
Computer Programming 8 (3), 231–274.

Harel, D., Naamad, A., 1996. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering Methodology 5 (4), 293–333.

Hoare, C.A.R., 1976. Parallel programming: an axiomatic approach. In: Goos, G.,
Hartmaur, J. (Eds.), Languages Hierarchies and Interfaces LNCS 46. Springer-
Verlag.

Java 2 Platform, Standard Edition (J2SE). <http://java.sun.com>, 2007.
Lee, P., Anderson, T., 1990. Fault Tolerance: Principles and Practice, second ed..

Prentice-Hall.

Ramesh, C., Lefever, R.M., Joshi, K.R., Cukier, M., Sanders, W.H., 2004. A global-state-
triggered fault injector for distributed system evaluation. IEEE Transactions on
Parallel and Distributed Systems 15 (7), 593–605.

Randell, B., 1975. System structure for software fault tolerance. IEEE Transactions
on Software Engineering SE-1 (2), 220–232.

Romanovsky, A., Periorellis, P., Zorzo, A., 2003. On structuring integrated web
applications for fault tolerance. In: Proceedings of International Symposium on
Autonomous Decentralized Systems (ISADS). IEEE Press, pp. 99–106.

Tartanoglu, F., Levy, N., Issarny, V., Romanovsky, A., 2004. Using the B method for
the formalization of Coordinated Atomic Actions. Technical Report CS-TR: 865,
School of Computing Science, University of Newcastle upon Tyne, UK.

Vachon, J., 2000. COALA: a design language for reliable distributed systems. Ph.D.
Thesis, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Suisse,
2000.

Veloudis, S., Nissanke, N., 2000. Modelling Coordinated Atomic Actions in timed
CSP. In: Proceedings of 6th International Symposium on Formal Techniques in
Real-Time Fault Tolerant Systems (FTRTFT), LNCS 1926. Springer-Verlag, pp.
228–239.

Xu, J., Randell, B., Romanovsky, A., Rubira, C.M.F., Stroud, R.J., Wu, Z., 1995. Fault
tolerance in concurrent object-oriented software through coordinated error
recovery. In: Proceedings of IEEE International Symposium on Fault-Tolerant
Computing (FTCS). IEEE Press, pp. 499–508.

Xu, J., Randell, B., Romanovsky, A., Stroud, R., Zorzo, A., Canver, E., von Henke, F.,
2002. Rigorous development of a safety–critical system based on Coordinated
Atomic Actions. IEEE Transactions on Computers 51 (2), 164–179.

Zorzo, A., 1999. Multiparty interactions in dependable distributed systems. Ph.D.
Thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.

Zorzo, A.F., Stroud, R.J., 1999. A distributed object-oriented framework for
dependable multiparty interactions. In: Proceedings of ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM Press, pp. 435–446.

Zorzo, A., Romanovsky, A., Xu, J., Randell, B., Stroud, R., Welch, I., 1999. Using
Coordinated Atomic Actions to design safety–critical systems: a production cell
case study. Software: Practice and Experience 29 (8), 677–697.

Alfredo Capozucca received the MSc. degree in computer science from the National
University of Rosario (Argentine) in 2003. Since 2004 he is member of the Labo-
ratory of Advanced Software Systems (LASSY) at the University of Luxembourg.
From 2004 to 2006 he worked as scientific collaborator in the CORRECT Research
Project. In 2007, he started doing a PhD on Designing Dependable Distributed
Systems with Timing Constraints. His research interests include dependable sys-
tems, fault tolerance techniques, concurrent and distributed systems, architectural
and design description languages, real-time systems and software engineering.

Nicolas Guelfi is professor at the Faculty of Sciences, Technologies and Communi-
cations of the University of Luxembourg since March 1999 where he teaches, direct
PhD students and makes researches in collaboration with national and international
partners. Currently, he is a leading member of Laboratory for Advanced Software
Systems that includes about 25 staff working on 12 national and international
research projects. He is the chairman of the ERCIM working groups on rapid inte-
gration of software engineering techniques (RISE) and he has been the ERCIM
Luxembourgian representative at the executive committee of the ERCIM European
consortium. His main research and development activities concern the engineering
and the evolution of reliable and secure distributed and mobile systems based on
semi-formal methods and transformations. He is the author of around 70 publica-
tions in books, journals, conferences and workshops. Before 1999, he did a PhD
thesis in 1994 at the University of Paris XI-Orsay in France in the field of formal
specification of concurrent systems. In 1994 and 1995, he worked as a research and
teaching assistant at university of Paris XII-Creteil and then joined for 4 years the
Software Engineering Laboratory at the Swiss Federal Institute of Technology in
Lausanne where he has participated to teaching, research projects and PhD thesis
supervision. He has mainly worked on software engineering methods and tools for
distributed systems and has introduced in collaboration with Dr. D. Buchs the
specification formalism CO-OPN which is currently on of the main approaches in
the field of Petri nets and object orientation. He also worked on informal and semi-
formal methodologies applied to the engineering of distributed systems and data
bases. He has been involved in three European ESPRIT BRA projects (DEMON,
CALIBAN, DEVA), five national research project and three technology transfer
projects.

Patrizio Pelliccione is an assistant professor at the University of L’Aquila, Computer
Science Department. He got his PhD degree in the University of L’Aquila, computer
science department. Currently Patrizio is involved in the european project
MANCOOSI (Managing the Complexity of the Open Source Infrastructure) of the
Seventh Research Framework Programme (FP7), in the European project POPEYE
(Professional Peer Environment beYond Edge computing) of the Sixth Framework
Programme Priority 2, Information Society Technologies (FP6-2005- IST-5) and in
the national project ArtDeco (Adaptive InfRasTructures for DECentralized Organi-
zations), a three years Italian project - FIRB 2005. From April 2005 to April 2006
Patrizio was Senior Researcher at the Faculty of Sciences, Technologies and Com-

A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228 227

Author's personal copy

munications of the University of Luxembourg. He was coordinator of the CORRECT
project and Group that is part of the Software Engineering Competence Center
(SE2C). The research topics are mainly in Software Architectures, Software Archi-
tectures Analysis, Component-based systems, Fault-tolerance, Middleware, Model
checking, Formal Methods. In its research activity Patrizio collaborated with several
industries such as Selex Marconi telecommunications, Ericsson, Siemens, TERMA,
etc. Patrizio is chair of the ERCIM international workshop on Software Engineering
for Resilient Systems (SERENE), is editor of a book: Software Engineering of Fault
Tolerant Systems, and is reviewer of several workshops, conferences and journals.

Alexander Romanovsky is a specialist in system dependability and a Professor of
Computer Science in Newcastle University. He received a M.Sc. degree in Applied
Mathematics from Moscow State University and a PhD degree in Computer Science
from St. Petersburg State Technical University. In 1992-1998 he was involved in the
Predictably Dependable Computing Systems (PDCS) ESPRIT Basic Research Action
and the Design for Validation (DeVa) ESPRIT Basic Project. In 1998-2000 he worked

on the Diversity in Safety Critical Software (DISCS) EPSRC/UK Project. Prof Roma-
novsky was a co-author of the Diversity with Off-The-Shelf Components (DOTS)
EPSRC/UK Project and was involved in this project in 2001-2004. In 2004-2007 he
coordinated Rigorous Open Development Environment for Complex Systems
(RODIN) IST Project. He is now the Director of the major FP7 ICT integrated project
on Industrial Deployment of System Engineering Methods Providing High
Dependability and Productivity (DEPLOY). His main research interests are in fault
tolerance, error recovery, exception handling, software architecture, rigorous design
of fault tolerant systems and resilient system engineering.

Avelino F. Zorzo received the BSc and MSc degrees at the UFRGS/Brazil and the PhD
degree from the University of Newcastle upon Tyne, UK. Currently, he is a senior
lecturer at the Pontifical Catholic University of Rio Grande do Sul (PUCRS/Brazil).
Since 2000, he has been a researcher financed by the Brazilian agency CNPq. His
interests include fault-tolerant, distributed and parallel systems. Since 1990, he has
(co)authored more than 60 technical papers on these subjects.

228 A. Capozucca et al. / The Journal of Systems and Software 82 (2009) 207–228

