
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Improving reliability of cooperative concurrent systems with exception
flow analysis

Fernando Castor Filho a,*, Alexander Romanovsky b, Cecília Mary F. Rubira c

a Informatics Center, Federal University of Pernambuco, Av. Prof. Lus Freire s/n, 50740-540 Recife, PE, Brazil
b School of Computing Science, Newcastle University, Newcastle NE1 7RU, UK
c Institute of Computing, State University of Campinas, P.O. Box 6176, 13084-971 Campinas, SP, Brazil

a r t i c l e i n f o

Article history:
Received 2 January 2008
Received in revised form 3 December 2008
Accepted 8 December 2008
Available online 24 December 2008

Keywords:
Exception handling
Coordinated error recovery
Verification
B method
Alloy

a b s t r a c t

Developers of fault-tolerant distributed systems need to guarantee that fault tolerance mechanisms they
build are in themselves reliable. Otherwise, these mechanisms might in the end negatively affect overall
system dependability, thus defeating the purpose of introducing fault tolerance into the system. To
achieve the desired levels of reliability, mechanisms for detecting and handling errors should be devel-
oped rigorously or formally. We present an approach to modeling and verifying fault-tolerant distributed
systems that use exception handling as the main fault tolerance mechanism. In the proposed approach, a
formal model is employed to specify the structure of a system in terms of cooperating participants that
handle exceptions in a coordinated manner, and coordinated atomic actions serve as representatives of
mechanisms for exception handling in concurrent systems. We validate the approach through two case
studies: (i) a system responsible for managing a production cell, and (ii) a medical control system. In both
systems, the proposed approach has helped us to uncover design faults in the form of implicit assump-
tions and omissions in the original specifications.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Applications that could potentially endanger human lives or
lead to great financial losses are usually made fault-tolerant
(Anderson and Lee, 1990) so that they are capable of providing their
intended service, even if only partially, when errors occur. Fault-tol-
erant systems include mechanisms for detecting errors in their
states and recovering from them. There are two main types of error
recovery (Anderson and Lee, 1990): backward and forward. The for-
mer is based on rolling a system back to its previous correct state
and generally uses either diversely implemented software or sim-
ple retry; the latter involves transforming the system into any cor-
rect state, is typically application-specific and relies on an
exception-handling mechanism (Cristian, 1989; Goodenough,
1975).

Usually, a significant part of the system code is devoted to error
detection and handling (Cristian, 1989; Weimer and Necula, 2004).
Cristian (1989) claimed that, for telephone switching applications,
this often amounted to more than two thirds of the overall system
code. A more recent study (Weimer and Necula, 2004) of a set of
open-source applications written in Java discovered that between

1% and 5% of the program text consisted of exception handlers
(catch blocks) and clean-up actions (finally blocks). In another
study (Reimer and Srinivasan, 2003), focusing on five large-scale
applications based on the Java Enterprise Edition (Bodoff, 2004)
platform, the ratio of the number of exception handlers to that of
operations in each application varied between 0.058 and 1.79. Fi-
nally, some of us have conducted yet another study (Castor Filho
et al., 2006), involving four applications. Two of them were pro-
duced in industry and two in academia. In this case, the ratio of
the number of handlers to that of operations ranged from 0.099
to 0.208.

In spite of the pervasiveness of error detection and handling
code, it is usually the least understood, tested or documented
(Cristian, 1989) in a system. This is mainly due to the tendency
among developers to focus on the normal activity of applications
and only deal with the code responsible for error detection and
handling at the implementation phase. What is more, there are
other issues that aggravate this situation in distributed systems,
such as the high cost of reaching an agreement, the lack of a global
view on the system state, multiple concurrent errors, difficulties in
ensuring error isolation, etc. All of these factors complicate the
development of reliable systems in general and of mechanisms
that make them reliable in particular. The overall result is that
the parts of a system responsible for making it reliable are usually
the source of design faults (Cristian, 1989; Reimer and Srinivasan,
2003; Weimer and Necula, 2004).

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.12.015

* Corresponding author. Tel.: +55 81 92251458.
E-mail addresses: fcastor@acm.org (F. Castor Filho), alexander.romanovsky@

newcastle.ac.uk (A. Romanovsky), cmrubira@ic.unicamp.br (C.M.F. Rubira).

The Journal of Systems and Software 82 (2009) 874–890

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

Author's personal copy

For the desired levels of reliability to be achieved in a system,
error detecting and handling mechanisms should be systematically
applied from the early phases of development (Rubira et al., 2005).
Moreover, the construction of these fault tolerance mechanisms
should follow a rigorous or formal development methodology (Ber-
nardeschi et al., 2002). In this manner, these mechanisms are made
more reliable and do not introduce new faults into the system.

1.1. Problem

The concept of coordinated atomic (CA) actions (Xu et al., 1995)
was developed by combining distributed transactions and atomic
actions. The latter are used to control cooperative concurrency
and to implement exception handling (Campbell and Randell,
1986), whereas the former (Gray and Reuter, 1993) are used to
maintain the consistency of resources shared by competing ac-
tions. CA actions function as exception-handling contexts for coop-
erative systems, and exceptions raised in an action are handled
cooperatively by all of its participants. If two or more exceptions
are concurrently raised, an exception resolution mechanism (Camp-
bell and Randell, 1986) is employed to identify an exception that
represents all the exceptions raised concurrently (a resolved excep-
tion) in order to handle it. Many case studies (Beder et al., 2000;
Romanovsky et al., 2003; Xu et al., 2002; Zorzo et al., 1999) have
shown that CA actions are a powerful and useful tool for structur-
ing large distributed fault-tolerant systems. In this paper, we view
CA actions as representative of mechanisms for exception handling
in distributed systems.

In order for CA actions to be applicable in constructing complex
real-world systems with strict dependability requirements, soft-
ware development based on CA actions needs to be supported with
rigorous models, techniques, and tools. Several approaches have
been proposed to formalize the CA action concept aiming to either
offer a more complete and rigorous description of the concept (Va-
chon and Guelfi, 2000) or to verify CA action-based designs (Xu
et al., 2002). However, there is an important aspect of CA actions
that has not been properly addressed by existing work, and that
is coordinated exception handling. This is surprising, since excep-
tion-handling complements other techniques in improving reli-
ability, such as atomic transactions, and promotes the
implementation of specialized and sophisticated error recovery
measures. Moreover, in some distributed applications, a roll back
is not possible or is prohibitively expensive. In this scenario, excep-
tion handling may be the only sensible choice available.

Some authors (Buhr and Mok, 2000) claim that mechanisms for
involving multiple participants in order to cooperatively handle
exceptions are difficult for both implementation and use. We be-
lieve, however, that programmers will make more mistakes in an
ad hoc implementation of cooperative exception handling than in
applying well-defined mechanisms provided by such general
frameworks as CA actions. There is thus a need for techniques
and tools that would mitigate the inherent complexity of exception
handling in a concurrent setting and help developers in specifying
and designing systems that make use of this feature.

In this paper, we examine the problem of specifying a CA ac-
tion-based design in a way that would allow automatic verification
of whether it exhibits certain properties that are relevant to coor-
dinated exception handling. Our aim is to understand what would
be required of modeling exception propagation and handling in
this1 design. Comprehension and documentation of exception
propagation in non-concurrent software systems is by itself a com-
plex issue and an active research area (Cacho et al., 2008,; Castor
Filho et al., 2006; Fu and Ryder, 2007; Jiang et al., 2004; Robillard
and Murphy, 2003). Concurrency is a serious complicating factor
for exception propagation. In CA action-based design, a participant
can not only raise and handle exceptions, but also spawn new ac-

tions that are, themselves, exception-handling contexts involving
multiple participants. What further aggravates matters is that it
is possible for two or more exceptions to be concurrently raised in-
side an action. A model of actions and their participants must con-
template every possible combination of exceptions or, at least,
explicitly point out combinations that cannot happen in practice.
Moreover, it should make it possible to specify how participants
react when faced with different sets of concurrently raised excep-
tions. Finally, since exception handling is closely related to action
structuring, it should also model the nesting and composition
(Romanovsky et al., 2003) of CA actions and how these affect
exception propagation and handling.

1.2. Proposed approach

In this paper, we present an approach to modeling CA action-
based design that makes it possible to automatically verify these
models using a constraint solver. The main component of the pro-
posed approach is a formal model of CA actions that specifies the
structuring of a system in terms of actions, as well as information
relevant to exception flow amongst these actions. This model can
be directly specified using well-known specification languages,
such as Alloy (Jackson, 2002) or B (Abrial, 1996), and automatically
verified using tool sets associated with them. The proposed ap-
proach makes it possible to check whether a CA action-based soft-
ware system satisfies several key properties.

This paper is organized as follows. The next section provides
some background on CA actions, the B method and notation, and
the Alloy specification language. Section 3 presents the proposed
approach, including a description of the generic CA action model
and some of the properties that it helps to verify. Section 4 formal-
izes the basic properties of the generic CA action model. We then
illustrate the feasibility and usefulness of the proposed approach
in two case studies. Section 6 reviews related work, and the last
one sums up the paper and outlines directions for future work.

2. Background

In order to present our approach, we need to introduce several
topics first. We begin with CA actions, a scheme for building fault-
tolerant concurrent systems that employ exception handling. We
then proceed to describe two formal specification languages, Alloy
(Jackson, 2002) and B (Abrial, 1996). These languages are examples
of formal notations that can be used in combination with the ap-
proach proposed here in order to specify and verify some proper-
ties of fault-tolerant distributed systems based on CA actions.
Both are similar to Z (Woodcock and Davies, 1996), declarative in
nature, and supported by automated verification tools. It is impor-
tant to stress, however, that they were designed with very different
goals in mind.

2.1. Coordinated atomic actions

CA actions are a unified scheme for coordinating complex con-
current activities and supporting error recovery among multiple
interacting components. It helps to decrease the overall system
complexity and simplify development by structuring the system
in terms of nested recovery units. A CA action is designed as a
set of roles cooperating inside it and a set of resources accessed
by these roles. An action starts when its roles are taken by partic-
ipants. A participant abstracts away the underlying unit of concur-
rency, i.e., it can be a process, a thread, an active object, or any
similar mechanism. In the course of the action, participants can ac-
cess external resources. The latter must be accessed according to
the ACID (atomicity, consistency, isolation, durability) properties

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 875

Author's personal copy

and must provide means for these properties to be enforced. Action
participants either reach the end of the action and produce a nor-
mal outcome or get involved in coordinated handling if one or
more exceptions are raised within the action. If handling is suc-
cessful the action completes by producing a normal outcome.

The CA action scheme enforces a clear difference between inter-
nal exceptions (which are raised in the action and have handlers in-
side the action) and external exceptions, which are signaled outside
the action when the action cannot deliver the expected results. The
latter are used to report partial action outcomes, abort effect, fail-
ure to achieve a consistent result by action participants, etc. Inter-
nal exceptions are encapsulated in the action, whereas external
ones are visible in the action interface as they have to be dealt with
by the containing action. When several exceptions are concur-
rently raised in a CA action, an exception resolution mechanism
is used to define a resolved exception that represents all the excep-
tions that were raised. The resolved exception is then handled
cooperatively by all the action roles. Exception resolution uses a
data structure called the exception resolution graph, which maps
sets of exceptions that can be concurrently raised to resolved
exceptions. When an action cannot handle a resolved exception,
its roles attempts to perform backward error recovery. If they suc-
ceed, the action is described as having aborted, because the system
is still left in a consistent state. If the roles are unable to perform
backward error recovery, the action fails and no guarantees can
be given concerning the state of the system. In both cases, an
exception is signaled to the enclosing context in order to indicate
that the action did not perform as expected.

Fig. 1 represents a simple system structured using CA actions.
This diagram shows how the units of computation in a system
interact and what information they exchange over a period of time.
The top-level CA action A1 has three roles performed by partici-
pants P1, P2, and P3. Participants P2 and P3 also perform roles R4

and R5, respectively in the nested CA action A2. A nested action de-
fines the exception-handling context within an enclosing action
and serves as a finer-grained damage confinement region. Role
R5 of A2 spawns composed CA action A3 at some point in time be-
fore the completion of A2. R5 is interrupted from the moment A3

starts until it completes. Composed actions are started by roles in
order to perform specific tasks and their life-cycles are bound to
those of their spawning roles. The internal exceptions of an action
are represented by small squares (labeled E1, E2, E3, and E4 in the
figure). Each exception is placed near the role that it is raised by.

The fault tolerance approach to use in developing dependable
systems largely depends on the fault assumptions made and on
the system characteristics and requirements. In spite of all of its
advantages, backward error recovery has a limited applicability.
Modern systems are increasingly relying on forward error recovery
and appropriate exception handling techniques (Cristian, 1989;
Tartanoglu et al., 2003). Examples of such applications include
complex systems involving human beings, COTS components,
external devices, several organizations, movement of goods, oper-
ations on the environment, as well as real-time systems that do not
have time to go back. Service-oriented architectures also clearly

fall into this category (Tartanoglu et al., 2003). The CA actions serve
as a valuable conceptual tool in developing these systems.

2.2. The B method

B is at the same time a formal development method and a mod-
eling notation (Abrial, 1996). A formal B specification is a mathe-
matical model of the required behavior of a system or its part,
represented by a collection of modules called abstract machines.
An abstract machine encapsulates a local state (local variables)
and provides operations (events). The occurrence of events repre-
sents the observable behavior of the system. The event guard de-
fines the conditions under which the body can be executed. B
statements used to describe the body of events are a mixture of
executable statements (e.g., assignments or conditional state-
ments) and abstract statements that use mathematical operations
over sets and functions. The following sections offer examples and
explanations of the B notation where appropriate.

The B Method supports top-down system development. In the
development process, an abstract specification is transformed into
an implementation following a number of correctness-preserving
steps called refinements. The B method generates a number of cor-
rectness conditions, called proof obligations, for each refinement
step. To guarantee that the refined system satisfies (preserves) all
the specified properties, these need to be proved true, thus validat-
ing correctness. B models can also be subject to automated analysis
(model checking) through the use of the ProB constraint solver
(Leuschel and Butler, 2003). However, since ProB uses undecidable
logics, automated model verification must have a bounded scope in
order to guarantee that verification stops.

In this work, we have chosen to use B as a specification lan-
guage in order to realize the system model that we propose in Sec-
tions 3 and 4. This model comprises three components: elements
of CA action-based software systems, relations and functions that
connect and add information to these elements, and predicates
that define rules to which valid systems must adhere.

Some features of the B notation have prompted this choice.
First, it supports the definition of both types of element in a system
and their instances. Moreover, both structural (actions, roles, par-
ticipants) and data (exceptions) elements can be modeled as typed
entities. Second, it is expressive enough to specify the formal mod-
el that we present in Section 4, including the more convoluted
predicates involving transitive closures and high-order relations.
Third, there is a large number of tools that support software devel-
opment based on B, both entirely automated and interactive.
Fourth, it supports the approach to structuring specifications that
we employ. This is similar to software development based on ob-
ject-oriented frameworks: part of a system consists of reusable
code and design (in our case, reusable specification elements and
predicates), whereas the rest of it (specification) is application-spe-
cific. The two parts are connected by the extension mechanisms
provided by the underlying programming (specification) language.

2.3. Alloy specification language

Alloy (Jackson, 2002) is a lightweight specification language for
software design. It is amenable to a fully automatic analysis using
the Alloy Analyzer (AA) (Jackson et al., 2000), as well as providing a
visualizer for making sense of solutions and counterexamples it
finds. Alloy is based on first-order relational logic and, similarly
to other specification languages such as Z (Woodcock and Davies,
1996), supports complex data structures and declarative models.
Alloy aims to be a language for prototyping and verification, built
with automated verification in mind from the start. In fact, Alloy
was devised as the simplest formal language that could still sup-
port the creation of useful models. In this sense, it differs from Z,Fig. 1. A CA action example.

876 F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890

Author's personal copy

a more expressive language, which is intended to support (interac-
tive) theorem proving.

In Alloy, models are analyzed within a given scope, or size (the
maximum number of instances of a type). The analysis performed
by the AA is sound, since it never returns false positives. Yet simi-
larly to B, verification of Alloy models is incomplete because the AA
checks are only conducted up to a certain scope. It is, however,
complete up to the selected scope, i.e., the AA never misses a coun-
terexample that is smaller than the specified scope. As pointed out
in the Alloy tutorial (Jackson, 2004), small scope checks are still
useful for identifying errors. In the next sections, examples and
explanations concerning the Alloy notation are given where
appropriate.

The use of Alloy for specifying and verifying software systems
offers many advantages: (i) it is a very simple language whose
semantics is based on first-order relational logic; (ii) developers
used to object-oriented languages find its syntax easy to learn;
(iii) it has a very fast constraint solver; and (v) at least for small
systems, the graphical counterexamples produced by the AA are
easy to understand, especially when compared to execution traces.
Its main shortcoming is insufficient expressiveness. One conse-
quence of its design goals is that the language lacks several useful
constructs for specifying systems, such as the notion of function or
high-order relations. We understand that these constraints were
intended to simplify automated verification, yet they effectively
limit the ability of developers to specify real systems. In Section
5.2, we describe an example situation where this limited expres-
siveness makes it difficult to apply the proposed approach.

3. Proposed approach

In order to construct robust fault-tolerant systems, it is imper-
ative that developers start taking fault tolerance-related issues into
account at the early phases of development. Our ultimate goal is to
devise a general approach to rigorous development of dependable
distributed systems that use both cooperative and competitive
concurrency. This work specifically addresses the issue of verifying
properties relevant to system structuring and coordinated excep-
tion handling in CA action-based design. The rest of this section
overviews the proposed approach and briefly describes some of
the properties that it helps to verify.

3.1. Overview

Fig. 2 is a schematic representation of the proposed approach to
verifying CA action-based software systems. Developers start by
performing the traditional activities of the software development
process, namely, system analysis and design. In doing that, they as-
sume that the system is concurrent and cooperative. At the same
time, they define scenarios where the system may fail (fault mod-
el), what exceptions correspond to each type of error, and where
and how the exceptions are handled (exceptional activity). The sys-
tem fault model and exceptional activity can be specified in the
way prescribed by some studies (Rubira et al., 2005). The result
of these activities is a model of the CA action-based system. This
model identifies the exceptions that can be raised in each CA action
and how they are handled. It is written in a language for modeling
CA actions, for example, informal diagrams (as presented in Fig. 1),
the Coala (Vachon and Guelfi, 2000) formal language, or the FTT-
UML (Guelfi et al., 2004) profile for the UML.

To verify a CA action-based design, it is necessary to translate it
into a specification language with operational semantics that al-
lows formal verification of properties. Moreover, in accordance
with the proposed approach, the language should allow both data
and structural elements to be defined as typed entities that can be

subtyped. In this paper, we will refer to languages that meet these
criteria as specification languages. If the language for modeling CA
actions has a well-defined semantics like Coala, this translation
can be completely automated by a tool. The translation can also
be automated for informal notations, such as UML profiles, but
only partially (syntactically). Usually some manual intervention
is required to resolve ambiguities. Those developers who are more
familiar with formal methods can write system descriptions di-
rectly in the specification language, and we adopt this approach
in the rest of this paper. The choice of using one or two languages
(one for modeling and one for verification) is based solely on
usability issues.

The formal specification that is produced by translating a CA ac-
tion-based design into the specification language must adohere to
a generic CA action meta-model, which defines the main concepts
of CA actions and how they relate (hereafter referred to as generic
CA action model). In short, this model describes an exception-han-
dling mechanism based on CA actions, focusing on how exceptions
flow amongst system components. In the overview of the generic
CA action model offered in the next section, both the formal spec-
ification and the generic CA action model are described in the spec-
ification language. Up to now, we have specified generic CA action
models using B and Alloy as specification languages (Castor Filho
et al., 2005). Developers can use either of them to formalize a CA
action-based design (but not both simultaneously). The purpose
of having two different specification languages is to show that
the proposed approach is language-agnostic. A developer who in-
tends to employ our approach would therefore need to choose only
one of them or define a generic CA action model for yet another
formal notation.

To verify a system, its formal specification, together with the
properties to be verified, is put into a constraint solver for the spec-
ification language. These properties are predicates that must be
true for the system to be deemed well defined or well designed.
In order to be applicable to any system description adhering to
it, they are specified in terms of the elements of the generic CA ac-
tion model. We have used the AA and ProB constraint solvers to
verify formal specifications in Alloy and B, respectively. If any of
the relevant properties does not hold, the constraint solver pro-
duces a counterexample. Besides generating a counterexample,
each constraint solver includes a graphic visualizer that also helps
to identify the problem.

In the rest of the paper, we focus on the three remaining
activities in Fig. 2, namely, ‘‘Translate CA action-based design into

Fig. 2. Overview of the proposed approach. White rectangles represent activities
and shaded ones stand for artifacts.

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 877

Author's personal copy

specification language” (assuming that the system model is written
directly in the specification language), ‘‘Specify properties of inter-
est” and ‘‘Verify that the formal specification satisfies the proper-
ties”. It is these activities that are directly related to system
verification.

3.2. Generic CA action model

The generic CA action model formally defines an exception-han-
dling mechanism for CA action-based systems. This model can be
instantiated by systems adhering to it so that certain properties re-
lated to the structure and flow of exceptions in the system can be
automatically verified. It is generic in the sense that it does not de-
pend on specific tools, formalisms or approaches to verification. As
mentioned in the previous section, up to now we have specified
generic CA action models using B and Alloy as specification lan-
guages. For verification we employed the constraint solvers avail-
able for these languages. An alternative to using the existing
general-purpose constraint solvers would be to build a specific ver-
ification tool based on the model. The trade-off in this case is be-
tween performance (of verification) and flexibility (ability to
specify new properties that need to be verified).

In our view, the structure of a system is a hierarchy of actions
that contain nested actions and roles. Roles are performed by par-
ticipants, units of computation such as threads and processes; they
can compose additional actions that only make sense in the con-
text of the spawning role. Hence, the main elements of the generic
CA action model are actions, roles, participants, and exceptions.
These elements are represented by objects of a certain type. The
proposed model employs a notion of type that is compatible with
that used in OO languages such as Java and C#. A type T is a set of
instances, while its subtypes T1; T2; . . . ; TN of T are disjoint subsets
of T. Only single inheritance is allowed.

Table 1 lists the elements of the proposed generic CA action
model, i.e., the main concepts used in the definition of CA actions.
An exception is any instance of type RootException, or some of its
subtypes. The same applies to actions, roles and participants, and
types Action, Role and Participant, respectively. We assume that in-
stances of these types are uniquely identified by their names. The
sets in the table can also be seen as unary relations and are, there-
fore, subject to operations that apply to relations, such as
composition.

We use objects to represent exceptions rather than symbols or
global variables mainly because objects are more flexible and can
encode arbitrary information on the cause of an exception (Garcia
et al., 2001). Also, there are many large and complex software sys-
tems developed nowadays using object-oriented languages, such
as Java and C++, which present exceptions as objects. Additionally,
we avoided choosing a more usual name for the supertype of all
exceptions, such as Exception or Error, in order to afford developers
the flexibility to organize exceptions as required, e.g., by basing
their organization on the adopted programming language. For
example, considering the exception-handling mechanism of Java,
a developer should define at least four exception types: (i) Throw-
able, a subtype of RootException; (ii) Exception, a subtype of Throw-
able; (iii) Error, a subtype of Throwable; and (iv) RuntimeException, a

subtype of Exception. An application-specific exception type would
then be a subtype of one of these.

Additional information is associated with the elements of Table
1 through relations (sometimes functions). For example, a set of ac-
tion roles is defined by the Roles 2 Action� Role relation, which
associates actions with their respective roles. The proposed model
defines 16 different relations that specify three different aspects of
a CA action-based software system: (i) system structure; (ii) excep-
tion flow; and (iii) exception resolution. The well-formedness of a
system adhering to the model is determined by a set of predicates,
or basic properties, defined in terms of these relations and the ele-
ments of the model. Section 3.3 offers some examples of basic
properties, while Section 4 presents a formalization of the generic
CA action model.

The relationship between the generic CA action model and a
system description adhering to it is similar to that between an ob-
ject-oriented framework and a system that instantiates it. The
model defines specific points where it can be extended: extension
points include types that correspond to the elements of CA action-
based systems (basic types). System descriptions instantiate the
model by using element types that extend (in the sense of ob-
ject-oriented inheritance) the basic types. Since the properties of
interest are specified in terms of the elements of the generic CA ac-
tions model, the aforementioned relations and predicates also ap-
ply to system descriptions adhering to the generic CA action model.
This is similar to a method in an OO language that has a parameter
of a type T but also accepts parameters of a type T 0, subtype of T.
This approach separates the tasks of specifying a generic CA actions
model (performed only once for each specification language) from
the task of specifying a system and promotes reuse of properties of
interest and system specifications. Nevertheless, a developer still
needs to understand the generic CA model in order to specify a sys-
tem. Section 5 provides two examples of instantiation of the gen-
eric CA action model.

3.3. Properties to be verified

Properties that a system must satisfy fall into three categories:
basic, desired and application-specific. Basic properties define the
well-formedness rules of the model, i.e., the characteristics of valid
CA actions. They specify the coordinated exception-handling
mechanism and how actions are organized. Below are some exam-
ples of basic properties, stated informally:

(BPA) If a participant performs a role in a nested action, it must
also perform a role in the containing action. Participants
are units of computation (threads, processes) that perform
roles in CA actions. In theory, any participant can perform
a role in a top-level CA action. However, for a nested CA
action, the definition of CA actions requires that only partic-
ipants that perform roles in the containing CA action do so in
the nested one.

(BPB) There are no cycles in action nesting. This property states
that the organization of actions in the system is hierarchical,
and the graph formed by their definitions (including those of
nested and composed actions) has no cycles.

(BPC) The exception resolution mechanism of an action resolves all
possible combinations of concurrent internal exceptions,
unless explicitly stated otherwise. This property guarantees
that every possible combination of concurrently raised
exceptions is contemplated by the exception resolution
graph of each CA action. Some of these combinations must
be resolvable by the mechanism. The resolution graph must
also explicitly account for those combinations of concur-
rently raised exceptions that can happen in theory, but not
in practice.

Table 1
Basic elements of the proposed model.

Element Description

Action Type that defines actions
Role Type that defines roles of actions
Participant Type that defines participants
RootException Type that defines exceptions

878 F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890

Author's personal copy

Desired properties are general properties that are usually con-
sidered beneficial, although they are not part of the basic mecha-
nism of CA actions. They describe important requirements that
most fault-tolerant software systems should meet. In general,
desired properties are based on the assumption that the basic
properties hold. Below are some examples:

(DPA) Top-level CA actions have no external exceptions. This
property states that the system is, in fact, fault-tolerant.
It specifies that all the exceptions that reach top-level
(non-nested, non-composed) CA actions are handled by
these actions, and the latter do not signal any exceptions.
This guarantees that the system never fails catastrophi-
cally due to unhandled exceptions. The Ariane-5 control
system (Lions et al., 1996) is a classic example of a system
that failed to meet this desirable property (it failed due to
an uncaught exception), resulting in a very expensive
accident.

(DPB) All internal exceptions of an action are handled within it, and
therefore no exceptions are propagated. This is a desirable
property that is hard to meet in practice. It states that
the system adheres to the principle that an error should
be handled as close as possible to its detection site
(Anderson and Lee, 1990). For CA actions, it means that
every action in the system is capable of handling all the
internal exceptions that can result from exception resolu-
tion within the action, effectively masking their occur-
rence from the enclosing CA action.

Application-specific properties are rules about the flow of
exceptions in a specific CA action-based application. An example
of an application-specific property is given in Section 5.2. The gen-
eric CA action models we have specified so far include specifica-
tions of several basic and desired properties that can be used
‘‘as-is”. Developers only specify additional desired properties and
application-specific properties, if any.

The rest of this section offers examples of properties of interest
written in Alloy. As mentioned in Section 3.1, in order to verify a CA
action-based design, it is necessary to specify relevant properties in
the specification language. While they do not inherently depend on
any specific language, a specification language is necessary to use
generic constraint solvers, such as ProB and the AA, for verification.
Therefore, the examples we present in the rest of the section could
also have been written in B or, as we show in the next section, in a
language-agnostic manner, without significant difference. Fig. 3
presents a formal specification of property BPA in Alloy.

Fig. 3 defines an Alloy predicate named parts_ok. Alloy predi-
cates are logic sentences that must be checked by the AA. In the
body of the predicate, Roles, NestedActions and RolesPlayed

are names of some relations that associate information with the
elements of the system. The ‘‘.” operator represents relational com-
position (or join). More formally, given two relations A # T1 � T2�
� � � � Tn and B # Tn � Tnþ1 � � � � � Tnþm, A:B yields a relation
C # T1 � T2 � � � � � Tn�1 � Tnþ1 � � � � � Tnþm. Relation C comprises
all the tuples formed by combining tuples from A and B whenever

the last element of a tuple from A is the same as the first of a tuple
from B. For example, given A ¼ fðe1; e2Þ; ðe2; e3Þg and B ¼ fðe2; e4Þ;
ðe2; e5Þ; ðe3; e6Þ; ðe7; e8Þg, A:B yields C ¼ fðe1; e4Þ; ðe1; e5Þ; ðe2; e6Þg. In
the Alloy predicate presented in Fig. 3, A.NestedActions yields
the set of actions nested within action A, assuming that
A 2 Action, where Action is a type, and NestedActions is a
relation associating actions with their nested actions. Predicate
parts_ok states that every role of every nested action is per-
formed by a participant that also performs a certain role in the
enclosing action. The operators all, !, &&, and & represent univer-
sal quantifier, logical negation, logical conjunction and set inter-
section, respectively. The some keyword yields true if its
argument is a non-empty set.

The snippet in Fig. 4 shows a formal specification in Alloy for
property DPA. It states that an action that is not nested within an-
other action and not composed by some role (i.e., top-level CA ac-
tions) has no external exceptions. Operator => represents logical
implication.

4. Formalization of the generic CA action model

In this section, we formally specify the basic properties of the
generic CA action model, using a combination of the basic set the-
ory and relational logic. This formalization is compatible with both
B and Alloy. In the latter case, due to the inability of Alloy to specify
high-order quantifications (Section 5.2), it requires some minor
adjustments. Our account covers three aspects of CA action-based
software systems: (i) system structure, (ii) exception flow and (iii)
exception resolution. These are explained in Sections 4.1–4.3,
respectively.

4.1. System structure

As mentioned in Section 3.2, we consider the structure of a sys-
tem to be a hierarchy of actions that contain nested actions and
roles. System structure is specified in terms of four relations:

� Roles 2 Action M Role.
� NestedActions 2 Action M Action.
� RolesPlayed 2 Participant M Role.
� ComposedActions 2 Role M Action.

Given an action A (an instance of type Action), expressions
fAg:Roles and fAg:NestedActions yield the set of roles of action A
and the set of actions nested within A, respectively. Similarly, given
participant P and role R, {P}.RolesPlayed and {R}.ComposedActions
yield the set of roles that P performs and the set of actions that R
composes, if any, respectively. Table 2 lists some constraints on
relations Roles, NestedActions, RolesPlayed and ComposedActions.
These constraints specify properties that need to be exhibited by
a system specification adhering to the generic CA action model.
Each one is identified by a name matching pattern BPX, where
‘‘BP” stands for basic property and ‘‘X” is a positive integer. Proper-
ties BP1, BP2, BP3, and BP4 specify the following fundamental con-
straints: (1) every action has at least one role; (2) every role of
every action is performed by some participant; (3) a participant
plays at most one role in any given action; (4) each role is part of
exactly one action. In the table, the ‘‘ran” operator yields the rangeFig. 3. Alloy specification of property BPA.

Fig. 4. Alloy specification of property DPA.

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 879

Author's personal copy

of a relation. Property BP5 specifies that all the roles in a nested ac-
tion are performed by participants who also play a role in the
enclosing action. It is a language-agnostic formalization of prop-
erty BPA, specified both informally and formally (in Alloy) in Sec-
tion 3.3. BP6 specifies a similar constraint that targets specifically
composed actions. It states that participants that perform roles in
a composed action only perform roles in other actions if the latter
are nested within the composed one.

BP7 is a simple property specifying that nested actions cannot be
composed and vice versa. However, it does not preclude composed
actions from having nested actions. Conversely, it does not restrict
the roles of nested actions from spawning composed actions.
Property BP8 specifies that a valid system has no action nesting
or composition cycle. It is a formal definition of property BPB (Sec-
tion 3.3). It considers a CA action-based design to be a graph where
actions are vertices and there is an edge between two arbitrary ver-
tices A and B if (i) B 2 fAg:NestedActions or (ii) B 2 ðfAg:RolesÞ:
ComposedActions. If there is a cycle in this graph, the system is con-
sidered invalid. In the table, the ‘‘*” and ‘‘�” operators stand for
transitive closure and the inverse relation, respectively.

4.2. Exception flow

Exception flow is specified in terms of 12 different relations. Six
of them indicate how exceptions flow amongst actions:

� Internal 2 Action M RootException.
� External 2 Action M RootException.
� AbortException 2 Action ? RootException.
� FailException 2 Action ? RootException.
� Resolution 2 Action ? (POW(RootException) ? RootException).
� Excluding 2 Action M POW(RootException).

The remaining six specify how exception flow works for roles of
actions:

� Raises 2 Role M RootException.
� Generates 2 Role M RootException.
� Signals 2 Role M RootException.
� Masks 2 Role M RootException.
� Aborts 2 Role M RootException.
� Propagates 2 Role ? (RootException ? RootException).

Relations AbortException, FailException, Resolution, and Propa-
gates are in fact partial functions. In the rest of this subsection, each
of these relations is explained in more detail. We begin by describ-
ing the relations associated with roles and then explain those that
refer to actions.

4.2.1. Relations and properties connected with roles
We use two distinct relations to indicate the exceptions that

each role is capable of handling. We are only interested in the effect
the handler has on the flow of exceptions, whether it stops excep-

tion propagation or not; modeling the behavior of the actual excep-
tion handlers is beyond the scope of this work. The Masks relation
specifies exceptions that are masked by a role. By ‘‘masked” we
mean that the component can take an action that stops the propa-
gation of the exception and makes it possible for the system to re-
sume its normal activity. In the scope of cooperative concurrent
systems based on CA actions, an action A is capable of effectively
masking an exception E if and only if, for every one of its roles
R 2 fAg:Roles, E 2 fRg:Masks. The Propagates relation describes
exception handlers that do not stop the propagation of exceptions.
These handlers end their execution by signaling the same exception
or a new one. Propagates specifies a cause–consequence relation-
ship between an exception that a role catches and one that it sig-
nals. Given a role R and exceptions E and E0, if fEg:unionðfRg:
PropagatesÞ ¼ E0, we say that role R propagates exception E0 from
exception E and handles E by propagating it. The ‘‘union()” operator
that appears above represents the generalized union over a set of
sets. We employ it to obtain a set of instances from a set of sets
of instances of the same type. For example, if Propagates ¼
fR1j ! fE1j ! E2g;R2j ! fE3j ! E4gg, the expression fR1;R2g:
Propagates yields ffE1j ! E2g; fE3j ! E4gg, whereas unionðfR1;
R2g:PropagatesÞ yields fE1j ! E2; E3j ! E4g.

When a role is not capable of appropriately handling an excep-
tion, it might still be able to fail gracefully by returning to a state
that is guaranteed to be consistent, through using a backward error
recovery mechanism. The Aborts relation indicates whether a role
can perform backward error recovery upon receipt of an exception.
If, for a role R and an exception E, Rj ! E 2 Aborts, we say that role
R aborts on exception E. Properties BP9, BP10 and BP11 specify that
the sets of exceptions that roles mask, propagate from and abort on
are disjunct. Properties BP10 and BP11 are more complex than BP9
because Propagates is a Role! ðRootException! RootExceptionÞ
function, whereas Masks and Aborts are Role$ RootException rela-
tions. The ‘‘dom” operator yields the domain of a relation.

The generic CA action model uses three different relations to de-
scribe the throwing of exceptions. The Raises relation lists the
exceptions that each role can raise within its parent action. The ac-
tion treats these exceptions as internal exceptions. Property BP12
defines this relation as the conjunction of the exceptions generated
by each role and the external exceptions of the actions that it com-
poses. The Generates relation specifies the exceptions generated by
roles when erroneous conditions are detected. These conditions are
dependent on the semantics of the application and on the assumed
fault model. For reasoning about exception flow, it is the fact that
the exception was raised that is important rather than the error
that caused an exception to be raised. Finally, the Signals relation
associates roles with the exceptions they throw when unable to
mask a resolved exception. The exceptions signaled by a role are
considered external exceptions of the parent action. Property
BP13 of Table 3 defines Signals in terms of three relations: Masks,
Propagates and Resolution. The latter is explained in the next sub-
section. Essentially, the set of exceptions signaled by a role com-
prises (i) the resolved exceptions that it does not handle (by

Table 2
Properties that define valid structuring of a CA action-based system.

Property Constraint

BP1 "A 2 Action �j{A}.Roles j > 0
BP2 ran(Roles) = ran(RolesPlayed)
BP3 "A 2 Action � "P 2 Participant �j{P}.RolesPlayed

T
{A}.Rolesj 6 1

BP4 "R 2 Role �jRoles.{R}j = 1
BP5 "A 2 Action � "NA 2 {A}.NestedActions � "NAR 2 {NA}.Roles� $P 2 Participant � NAR 2 {P}. RolesPlayed ^ {P}.RolesPlayed

T
{A}.Roles – {}

BP6 "CA 2 (Action.Roles).ComposedActions � "P 2 Participant � {P}.RolesPlayed
T

{CA}.Roles – { }
)– ($A 2 Action � A – CA ^ {A}.Roles

T
{P}.RolesPlayed – {} ^ A R {CA}.* NestedActions)

BP7 ran (NestedActions)
T

ran (ComposedActions) = {}
BP8 "A 2 Action � A R {A}.*((Roles.ComposedActions

S
NestedActions))

880 F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890

Author's personal copy

either masking or propagating) and (ii) the exceptions it
propagates.

4.2.2. Relations and properties associated with actions
For actions, the most important relations relevant to exception

flow are Internal and External. The Internal relation specifies the
exceptions that each action raises internally. Conversely, External
specifies what exceptions an action signals to enclosing actions
or spawning roles (in the case of composed actions). Properties
BP14 and BP15 of Table 3 give definitions for the Internal and Exter-
nal relations, respectively. The set of internal exceptions of an ac-
tion comprises the exceptions that its roles raise combined with
the external exceptions of its nested actions. The set of external
exceptions of an action is composed by the exceptions that its roles
signal combined with the exceptions on which it fails or aborts.
Relation AbortException specifies the exceptions on which the ac-
tions in the system are capable of aborting. An action aborts on
an exception when it is unable to handle the exception, but every
one of its roles is capable of returning to a consistent state through
backward error recovery upon receipt of that exception. The FailEx-
ception relation associates actions with the exceptions that they
signal when they fail. An action fails when it is unable to signal
an exception and does not implement a backward error recovery
mechanism. Property BP16 of Table 3 defines constraints on the
AbortException relation. It specifies that the roles of an action can
perform backward error recovery upon receipt of a certain resolved
exception if an only if the action is capable of aborting. The fact
that an action A is capable of aborting is represented by associating
it with an exception in the AbortException relation.

As pointed out in Section 2, a resolved exception is one that re-
sults from exception resolution, the process that translates a set of
concurrently raised exceptions into a single exception representing
multiple errors. The exception resolution graph of an action maps
each set of exceptions that can be concurrently raised within the ac-
tion to an exception that the roles of the corresponding action can
attempt to handle. The Resolution relation specifies the exception
resolution graph for each action in a system. It is possible that not
all the combinations of exceptions that can be raised by each role
can actually be raised concurrently. For example, even though roles
R1 and R2 raise exceptions E1 and E2, respectively, they never do so
at the same time. The Excluding relation explicitly states which po-
tential combinations of internal exceptions cannot be raised con-
currently at runtime. This relation is necessary because a valid
action must work properly for any combination of internal excep-
tions that can be concurrently raised, unless explicitly stated other-
wise. Exception resolution is discussed in more detail in the next
section.

Property BP17 places constraints on the FailException relation.
This property specifies the sufficient conditions for the existence
of an exception whose purpose is to indicate the catastrophic fail-
ure of an arbitrary action A. More specifically, it states that if the

roles of A receive a resolved exception RE, there is a certain excep-
tion E such that Aj ! E 2 FailException if (i) action A does not abort
on RE; (ii) upon receipt of RE, two or more roles of A signal (do not
mask) exceptions, and these exceptions are distinct. The two dis-
tinct exceptions may be signaled because (a) at least two different
roles of A, upon receipt of E, propagate distinct exceptions, or (b) at
least one role of A does not mask or propagate E, and at least one
other role propagates a different exception upon receipt of E. The
‘‘/” operator in property BP17 stands for domain restriction. Given
a set S and a relation R, S / R is the set of ordered pairs xj ! y of R
whose ‘‘x” element is also an element of S. For example, given
S ¼ fa; bg and R ¼ faj ! c; ej ! b; bj ! f ; dj ! gg, the domain
restriction S / R is the set of pairs faj ! c; bj ! fg. In the same vein,
the ‘‘.” operator stands for range restriction.

4.3. Exception resolution

As mentioned in the previous section, the Resolution relation is
associated with exception flow. However, an exception resolution
graph is a complex data structure whose well-formedness depends
on conditions that are not directly related to exception flow. There-
fore, we believe that it makes sense to separately describe the
predicates that specify valid exception resolution graphs and their
relationship with actions. We present these predicates in Table 4.
Property BP18 specifies that every action has an exception resolu-
tion graph. Property BP19 imposes constraints on the domains of
valid exception resolution graphs. It states that exception resolu-
tion within an action must involve only exceptions that can be
actually raised by the roles of the action, or external exceptions
of its nested actions. The same applies to sets of exceptions explic-
itly excluded from exception resolution, as specified by the Exclud-
ing relation. Property BP20 states that a set of exceptions cannot at
the same time be resolved by the exception resolution graph of an
action and be excluded from it.

Property BP21 of Table 4 is a formal specification of property
BPC of Section 3.3. It states that, for any set ES of concurrently
raised exceptions in the exception resolution graph of an action
A, each exception in the set must have been raised by a different
role or nested action of A and none of them may have contributed
more than one element to ES. This property guarantees that excep-
tion resolution graphs are consistent, i.e., they do not depict impos-
sible situations, such as a single role raising two or more
exceptions at the same time (though it might potentially raise
many different exceptions). Property PB21 uses a special keyword,
‘‘let”, to define a macro. This notation means that, wherever the
comma-separated identifiers immediately following the ‘‘let” key-
word appear in the rest of the predicate, they should be replaced
by the expressions following the ‘‘=” operator. For example, in
property BP21, the expression fRRjRR 2 POWððfAg:Roles / RaisesÞ.
ESÞg should be used wherever the identifier RE appears.

Table 3
Properties that describe a valid flow of exceptions amongst the elements of a system.

Property Constraint

BP9 Masks
T

Aborts = {}
BP10 Aborts

T
{R,EjR 2 dom(Propagates) ^ E 2 dom(union({R}.Propagates))} = {}

BP11 Masks
T

{R,EjR 2 dom(Propagates) ^ E 2 dom(union({R}.Propagates))} = {}
BP12 Raises = Generates

S
ComposedActions.External

BP13 "A 2 Action �"R 2 {A}.Roles � {R}.Signals = (ran(union({A}.Resolution)) n{R}.Masks
ndom(union({R}.Propagates)))

S
(ran(union({A}.Resolution))).(union({R}.Propagates))

BP14 Internal = Roles.Raises
S

NestedActions.External
BP15 External = Roles.Signals

S
AbortException

S
FailException

BP16 "A 2 Action � ($E 2 RootException � E 2 ran(union({A}.Resolution)) ^ ("R 2 {A}.Roles � E 2 {R}.Aborts)), {A}.AbortException – {}
BP17 "A 2 Action � ($E 2 ran(union({A}.Resolution)) �– ($E0 2 RootException � {E}.union(({A}.Roles).Propagates) = {E0} ^ (("R 2 {A}.Roles

� E 2 dom(union({R}.Propagates))) _ E = E0)) ^– (:({A}.Roles / {R}.Masks) . {E}j + 2 6 j{A}.Rolesj) ^ E R {A}.AbortException)) j{A}.FailExceptionj = 1

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 881

Author's personal copy

Below is an example to illustrate property BP21. Given an action
A1, roles R1;R2;R3, and exceptions E1; E2; E3; E4, let us assume the
following:

� fA1g:Roles ¼ fR1;R2;R3g.
� fA1g:NestedActions ¼ fg.
� Raises ¼ fR1j ! E1;R2j ! E2;R2j ! E3;R3j ! E4g.
� Excluding ¼ fg.

In this setting, if domðunionðfA1g:ResolutionÞÞ = f fE1g, fE2g, fE3g,
fE4g, fE1; E2g, fE1; E3g, fE1; E4g, fE2; E4g, fE3; E4g, fE1; E2; E4g,
fE1; E3; E4gg, then A1 will be valid according to BP21, since (i) every
possible combination of concurrently raised exceptions is
contemplated by the exception resolution graph; and (ii) it does
not include any combinations of exceptions that cannot be concur-
rently raised. However, if the set fE1; E2; E3gwas also an element of
domðunionðfA1g:ResolutionÞÞ, the resolution graph of A1 would not
be valid because exceptions E2 and E3 cannot be raised concur-
rently: they can only be raised by role R2, which can raise only
one exception at a time.

5. Case studies

In this section we present two case studies we have conducted
in order to assess the proposed approach. The first one consists in
applying the proposed approach to one of the CA actions of the
well-known Fault-Tolerant Production Cell system (Lewerentz,
1995; Xu et al., 1998), which has been thoroughly studied in the
CA action literature (Canver et al., 1998; Xu et al., 2002; Zorzo
and Stroud, 1999; Zorzo et al., 1999). The second case study exam-
ines the usefulness of the proposed approach to formally modeling
and verifying the informal CA action-based design of an embedded
control system for treating patients with diabetes. The system,
called the Fault-Tolerant Insulin Pump Therapy, has strict depend-
ability requirements (Capozucca et al., 2006).

5.1. Fault-tolerant production cell

The Fault-Tolerant Production Cell is a factory control system
responsible for production of forged metal plates. The production
cell comprises six electro-mechanical devices (Xu et al., 1998):
two conveyor belts (a feed belt and a deposit belt), an elevating ro-
tary table, two presses, and a rotary robot that has two orthogonal
extensible arms equipped with electromagnets. These devices are
connected to a set of sensors that provide useful information to a
controller and a set of actuators through which it can control the
whole system. The task of the cell is to get a metal blank from its
‘‘environment” via the feed belt, transform it into a forged plate
by using a press, and then return it to the environment via the de-
posit belt.

As mentioned previously, various case studies presenting CA ac-
tion-based design of the Fault-Tolerant Production Cell have been
published in recent years (Canver et al., 1998; Xu et al., 2002; Zorzo
and Stroud, 1999; Zorzo et al., 1999). Therefore, it is natural that

we use part of it as a case study to illustrate our own approach
to developing CA action-based systems. To keep the presentation
brief, we focus on a single CA action, LoadPress1, and the actions
nested within it. This action was partially explained elsewhere
by Xu et al. (1998). We use their partial description of the system
as the basis for the application of our approach to LoadPress1.

5.1.1. CA action-based design
The LoadPress1 CA action controls the extensible arms of the ro-

bot in order to get a blank from the rotary table and put it on press
#1 (that will be called Press1 here). Fig. 6 presents a diagram of
this CA action. For simplicity, it does not show accesses to shared
resources or interactions between participants. The structure of
the action indicates the workflow of its execution. First, the robot
rotates to a position where it can get a blank from the table, uses
the magnet of its first arm to get the blank, and rotates to a position
where it can reach Press1 (CA action RotateRobot). At the same
time, Press1 moves to its middle position so that it can receive
the blank (CA action MovePress1ToMiddle). The robot then extends
its first arm and drops the blank on Press1 (CA action Extend-

Arm1). After that, it retracts the arm and returns to its original po-
sition (CA action RetractArm1).

Various types of exceptions can occur within LoadPress1. These
exceptions are related to either the robot or the press. As shown
in Fig. 5, the production cell involves two presses. For simplicity,
we consider that the second press is redundant and only activated
when the first one fails, in order to prevent an interruption in the
processing of metal blanks. In practice, however, one would expect
the two presses to work concurrently, so that a failure of one of the
presses would result in a degraded service mode.

In this case study, the system is able to successfully mask a fail-
ure of one of the presses. An error in any other system component,
however, means that the production cell is unable to perform. Er-
ror handlers then attempt to avoid catastrophic failure by leaving
the cell in a safe state, e.g., robot arms retracted, robot turned
off, presses turned off, etc. Whenever an exception propagates to

Table 4
Properties specific to exception resolution graphs.

Property Constraint

BP18 Action = dom(Resolution)
BP19 "A 2 Action � union(dom(union({A}.Resolution))

S
{A}.Excluding) # ({A}.Roles).Raises

S
({A}.NestedActions).External

BP20 "A 2 Action � dom(union({A}.Resolution))
T

{A}.Excluding = {}
BP21 "A 2 Action � "ES 2 dom(union({A}.Resolution))

S
{A}.Excluding � let RE = {RRjRR 2 POW(({A}.Roles / Raises) . ES)},

NE = {NNjNN 2 POW(({A}.NestedActions / Exernal) . ES)} � $ER 2 RE, EN 2 NE � jERj + jENj = jESj ^ ran(ER)
S

ran(EN) = ES
("r 2 dom(ER) � j{r}.ERj = 1) ^ ("e 2 ran(ER) � jER.{e}j = 1) ^ ("e 2 dom(EN) �jEN.{e}j = 1) ^ ("e 2 ran(EN) �jEN.{e}j = 1)

BP22 "A 2 Action � "ES 2 POW({A}.Internal) � ES 2 dom(union({A}.Resolution)) _ ES 2 {A}.Excluding

Fig. 5. Schematic view of the Fault-Tolerant Production Cell (Xu et al., 1998).

882 F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890

Author's personal copy

a top-level CA action, an alarm is activated to notify the human
operators of the error. Table 5 lists exceptions that can occur with-
in LoadPress1. Exception E2 was originally ‘‘retract motor fails”.
However, since the robot arms have motors for both retracting
and extending, we have made an addition to the original descrip-
tion. For brevity, in the model shown in Fig. 6 and in the rest of this

section, we assume that only four amongst the 10 exceptions in
Table 5 are internal to CA action LoadPress1: E1, E3, E6 and E8. Also,
we assume that at most two exceptions can be raised concurrently
within LoadPress1 and that no exceptions can be raised within the
CA actions nested within LoadPress1.

5.1.2. Applying the proposed approach
We modeled CA action LoadPress1 in B using the proposed ap-

proach. The snippet in Fig. 7 presents part of the resulting specifi-

Table 5
Exceptions in the CA action-based design of the Fault-Tolerant Production Cell.

Exc. Description

E1 Failure of the robot’s position or rotary sensors
E2 Retract or extend motor does not respond
E3 Arm 1 magnet fails
E4 Robot’s rotary motor fails
E5 The robot has a stuck or lost blank
Arm1Failure Generic exception type to denote a failure of the first

arm of the robot
E6 Failure of Press1’s blank or position sensors
E7 Press1’s motor fails
E8 Press1 has a stuck or lost blank
Press1Failure Generic exception type to denote a failure of Press1

Fig. 6. Partial CA action-based design of the Fault-Tolerant Production Cell.

Fig. 7. B specification of the Fault-Tolerant Production Cell.

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 883

Author's personal copy

cation. This specification is written in the Abstract Machine Nota-
tion (Abrial, 1996), an ASCII notation for B. The MACHINE clause
specifies the name of the B machine, i.e., of the (sub)system that
this specification models. The SETS clause specifies the possible
types of element in a model by means of B carrier sets. A carrier
set in B defines a set of data elements whose internal representa-
tion is not important. In our approach, we employ carrier sets to
define types of both structural elements (actions, roles, partici-
pants) and exceptions. A B carrier set is akin to the given sets in
Z (Woodcock and Davies, 1996). The SETS clause in the specifica-
tion of Fig. 7 states that there is one action in the system called
LoadPress1, two roles named RobotSensor and RobotArm,
and so on.

The VARIABLES clause, which in B is employed to specify vari-
ables of a model, specifies the relations defining the proposed
exception flow model. Type constraints for these variables are
specified by the INVARIANT clause. For example, it states that
Roles is an Action$ Role relation. Both clauses are part of the gen-
eric CA action model. imported by different system descriptions.
This subject is further discussed in the next section. The INI-

TIALISATION clause assigns values to the variables defined under
VARIABLES. In the example of Fig. 7, it states that action Load-

Press1 has roles named RobotSensor and RobotArm. It also
states that LoadPress1 has at least two external exceptions: Gen-
eralFailure and Arm1Failure. We briefly explain our use of
the OPERATIONS clause later in this section.

Since we have applied the proposed approach to a partial (pur-
posefully incomplete) specification (Xu et al., 1998), some of the
problems we encountered may have been addressed in subsequent
work on the Fault-Tolerant Production Cell. Nonetheless, it is
worth pointing out that the application of the proposed approach
did identify several important issues that should have been in-
cluded in the system specification. For example, the original spec-
ification does not clarify what should be done when two or more
devices fail concurrently (e.g., Press1 fails and the robot fails as
well). However, as can be seen from the structure of the system,
this is a real possibility (e.g., E1 and E8 from Fig. 6 could be raised
concurrently within LoadPress1) and our generic CA action model
requires that this is addressed. Therefore, we introduced an addi-
tional exception, naming it GeneralFailure, that is signaled by Load-

Press1 to its enclosing context. As its name indicates, it signals a
generalized failure in the production cell (e.g., because both the
press and the robot failed).

Additionally, the application of the proposed approach high-
lighted the need to understand how the internal and external
exceptions of LoadPress1 relate. For example, the action has an
external exception Press1Failure and an internal one press1_failure.
It is not, however, clear from the system specification what each
one means and, most importantly, what (if any) is the causality
relation between them. We claim that the proposed approach
highlights this issue because it requires us to explicitly indicate

the internal exceptions that, when raised, might result in the sig-
naling of a given external exception. If this information is not given
in a B specification adhering to the proposed approach, ProB will
complain during verification.

We specify the basic properties of the generic CA action model
in B under the OPERATIONS clause of the B machine. Each opera-
tion evaluates a guarded condition (corresponding to the conjunc-
tion of some of the basic properties) and assigns the value ‘‘yes” to
an auxiliary variable if it is true, and ‘‘no” otherwise. Under the
INVARIANTS clause, we specify an invariant that says that each
such auxiliary variable must always have the ‘‘yes” value. There-
fore, if a basic property is violated, the value ‘‘no” will be assigned
to one of the auxiliary variables, and ProB will point out an invari-
ant violation. For example, if we modify the specification presented
in Fig. 7 so that role RobotArm raises exception E3 but does not
generate it, ProB detects an invariant violation due to the roles-

Consistent operation (Fig. 8).
The B snippet in Fig. 8 defines an operation named rolesCon-

sistent that does not take any input parameters. The body of the
operation consists of a guarded command. The guard specifies that,
for every action Act and every role R of Act (operator ‘‘!” indicates
universal quantification), the set of exceptions that R raises com-
prises the exceptions that it generates combined (n/ is the set un-
ion operator) with the set of exceptions signaled by actions that it
composes. If the guard evaluates to true, the ‘‘yes” value is assigned
to the RolesConsistent auxiliary variable, indicating that no
invariant violations occurred. Otherwise, the variable receives the
‘‘no” value, signaling a violation. In the example of Fig. 8, the nota-
tion A[{B}], where B is a single element and A is a relation, is
equivalent to {B}.A, where ‘‘.” represents a relational join.

The B snippet in Fig. 9 presents the specification of basic prop-
erty BP16 (Section 4.2). This predicate specifies that, if all the roles
in an action Act can perform backward error recovery upon receipt
of a certain resolved exception, then the action is capable of abort-
ing. In our generic CA action model, this is represented by the exis-
tence of a pair {Act ´ E} 2 AbortException, where E is an
exception.

The predicate in Fig. 9 states that, for each action Act in a sys-
tem, if there is an exception in the exception resolution graph of
Act to which a set of concurrently raised exceptions is mapped,
and this exception is in the Aborts set of every role of Act, then
there is an exception mapped to Act in AbortException. This
mapped exception is signaled by Act to indicate to an enclosing
action that it has failed but was able to perform backward error
recovery. Operator ‘‘#” represents existential quantification in B.

In conducting this case study, we have analyzed a number of
papers, technical reports and specific scenarios. Nevertheless, we
have not found any suggestion as to what the system should do
when three or more exceptions are raised concurrently within an
action. At first, we assumed that this was simply due to space con-
straints. A more in-depth study, however, has shown a fundamen-

Fig. 8. A B operation specifying a property of interest.

884 F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890

Author's personal copy

tal limitation in the use of CA actions. In accordance with the exist-
ing definitions of CA actions (Vachon and Guelfi, 2000; Xu et al.,
1995), our model requires that developers either describe an
exception resolution graph comprising every combination of
exceptions that can be concurrently raised within each action in
a system or explicitly specify cases that cannot happen in practice.
This requirement of CA actions is intended to improve fault toler-
ance, as it produces concurrent systems that are capable of grace-
fully handling any possible combination of system errors. At the
same time, however, it reduces the scalability of CA actions in gen-
eral and exception resolution graphs in particular. The size of the
resolution graph grows exponentially with the number of excep-
tions that can be raised concurrently within a given context. For
example, if we included all the eight internal exceptions of Table
5 (E1–8) in our model, we would end up with more than 250 differ-
ent combinations. Although there are cases that cannot happen in
practice (e.g., when the same role raises two different exceptions at
different moments), they still have to be addressed, one by one, by
the Excluding relation. It should be stressed that this problem is not
specific to the proposed approach, but is typical of the use of
exception resolution graphs in general. Our approach simply high-
lights this limitation because it adheres to the definition of CA ac-
tions and requires CA action-based design to contemplate every
possible combination of concurrently raised exceptions.

5.2. Fault-Tolerant Insulin Pump Therapy

The Fault-Tolerant Insulin Pump Therapy (Capozucca et al.,
2006) (FTIPT) is a control system for treating patients with diabetes
with strict reliability requirements. The system is based on the
Continuous Subcutaneous Insulin Injection technique (Capozucca
et al., 2006) and involves several sensors and actuators that must
function concurrently and continuously. These sensors and actua-
tors are wearable devices worn by patients undergoing treatment.
The dose of medicine administered by the system includes two
types of insulin: rapid action insulin (RAI) and long action insulin
(LAI). Sensors and actuators exchange information through wire-
less communication channels. Sensors send information about
the vital signs of a patient to a server located in a hospital. The lat-
ter forwards this information to a doctor who defines the amount
of insulin to inject. The server then communicates with the actua-
tors that use pumps to administer the established dose of insulin.

Both sensors and actuators may fail. Sensors can fail by stopping
to send information about a patient’s vital signs. However, when
they do send information, the latter is assumed to be correct. Actu-
ators can also fail – among other things, because there is not en-
ough insulin to apply the required dose. Whenever an error is
detected, treatment is interrupted and an alarm located in a re-
mote emergency room is activated. We assume that the wireless
channels do not fail.

5.2.1. CA action-based design
Capozucca et al. (2006) use CA actions to design and implement

the FTIPT. The system is organized as a set of actions that structure
the execution of sensors and actuators. Coordinated exception han-
dling is used as the main fault tolerance mechanism, since it is not
possible to roll back when insulin has been administered to a pa-
tient. The CA action-based design devised by the authors is infor-
mal and specified using diagrams and textual descriptions.

Fig. 10 presents a diagram of the system. For simplicity, it does
not show accesses to shared resources or interactions between par-
ticipants. CA action CAA Cycle controls the overall execution of the
system and determines the amount of insulin that must be injected
for each pump on the basis of the patient’s vital signs. Actions CAA

Sensors and CAA Actuators are spawned by roles ControllerChecking

and ControllerExecuting of actions CAA Checking and CAA Executing,
and are responsible for collecting the patient’s vital signs and
administering the insulin, respectively. Each of these composed
CA actions has three roles. Roles A_RAIP and A_LAIP of CAA Actua-

tors spawn composed CA actions CAA RAIP and CAA LAIP, respec-
tively. The latter two control the two pumps that will administer
the two types of insulin.

Seven different types of exceptions can be raised in the system
(Table 6). For most of these errors, exception handling consists in

Fig. 9. B specification of property BP16.

Fig. 10. CA action-based design of the Fault-Tolerant Insulin Pump Therapy.

Table 6
Exceptions in the CA action-based design of the FTIPT.

Exc. Description

E1 Heart Rate (HR) sensor does not respond
E2 Blood Glucose (BGC) sensor does not respond
E3 Delivery limit reached
E4 Rapid action insulin pump (RAIP) does not respond
E5 Rapid action insulin pump (RAIP) stops during delivery
E6 Long action insulin pump (LAIP) does not respond
E7 Long action insulin pump (LAIP) stops during delivery

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 885

Author's personal copy

stopping the treatment and activating the alarm in the emergency
room. In some cases, such as when the value of a sensor cannot be
obtained, the handler will try again once before giving up.

5.2.2. Applying the proposed approach
We have modeled the CA action-based design described in the

previous section in Alloy. The specification snippet in Fig. 11 shows
part of the Alloy specification of the system. Its complete specifica-
tion is available elsewhere (Castor Filho et al., 2005).

In Alloy, a signature (sig keyword) specifies a type. Keyword
one indicates that a signature has exactly one instance.1 We use
signatures for modeling actions, roles, participants and exceptions
(signature Key will be explained below). Additional information is
associated with these elements using relations (Section 3.2). These
relations are explicitly instantiated by facts, i.e., predicates that the

AA must assume to be true when evaluating constraints. For in-
stance, fact SystemStructure in the snippet in Fig. 11 states,
among other things, that CA action CAAChecking has two roles,
ControllerChecking and ParamsChecking, and no nested ac-
tions. Moreover, it states that participant P1 performs roles Con-

trollerChecking and ControllerCycle of actions
CAAChecking and CAACycle, respectively. Moreover, fact Excep-
tionFlow states, among other things, that roles BGC and HR raise
exceptions E1 and E2, and that these are internal exceptions of CA
action CAASensors. The open clause in the beginning of the speci-
fication imports the definitions of the basic types of the proposed
model: Action, Role, Participant and RootException. More-
over, it imports the predicates that specify the basic properties of
CA actions and certain predefined desired properties.

Fact ExceptionResolution in the specification in Fig. 11 de-
scribes the exception resolution graph of the FTIPT. It uses sub-
types K1 and K2 of signature Key to associate internal and
external exceptions of action CAASensors. Key is an auxiliary sig-
nature defined in the Alloy version of the generic CA action model.
It is necessary because the exception resolution graph of an action

Fig. 11. Alloy specification of the Fault-Tolerant Insulin Pump Therapy.

1 In Alloy, a type is simply a set of instances. Moreover, for the sake of uniformity
and ease of use, Alloy treats instances (single elements) as unitary sets. Therefore, a
singleton type can be treated as an instance of itself in a specification. For example,
signature CAACycle defines both the homonym type and its sole instance.

886 F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890

Author's personal copy

is a function from sets of exceptions to exceptions. Since it is not
possible to define high-order relations in Alloy, we used a pair of
relations, with one associating internal exceptions to keys (ToRe-
solve), one key for each mapping, and the other associating each
key to an external exception (ResolvedTo). Fact ExceptionRes-
olution states that exceptions E1 and E2 are both resolved to
exception AlarmEXC. We would like to emphasize that this work-
around used for specifying the exception resolution graph of an ac-
tion is not necessary in the B version of the generic CA action
model.

The positive outcome of our work on developing the formal
specification of the FTIPT case study is that it has helped us to iden-
tify a number of shortcomings in the original informal description
of the system. These were discovered in the process of formalizing
and verifying the system.

According to the original system description, the handlers for
exceptions E4 and E6 ‘‘must stop the delivery of insulin and ring
the danger alarm”. This statement does not identify, however,
which CA action will be responsible for ringing the alarm when
one of these exceptions is raised. Even though we are not explicitly
modeling the actual alarm, this information is still relevant. If the
alarm is to be activated by a CA action other than that where the
exception was raised, an exception should be propagated from
the CA action where the error was detected to the one that will ring
the alarm. However, no such exception exists in the original design
of the system.

For simplicity, we could assume that a certain role in the CA ac-
tion where an exception is raised is responsible for ringing the
alarm. However, this is not the best option since it disperses the
responsibility of activating the alarm through the entire applica-
tion, partially defeating the purpose of decomposing the system
into actions. In the end, we decided to add a new exception named
AlarmEXC to the system specification. This exception is signaled
by actions CAASensors, CAARAIP and CAALAIP, and propagated
all the way up to CAACycle, where it is handled. In our later dis-
cussion of the matter with the authors of the original case study,
it transpired they had intended to make it possible to signal fail-
ures to the most external CA actions; however, the paper does
not propose any means for achieving this. In order to explicitly
establish that AlarmEXC can only be handled by CAACycle, we
have specified this constraint as an application-specific property
(Fig. 12). Assuming the basic properties hold, it states that, for
any action other than CAACycle, if AlarmEXC is an internal excep-
tion, it is also external. Moreover, it states that CAACycle handles
AlarmEXC.

After finishing the specification of the system in Alloy, we tried
to verify the basic CA action properties using the AA. In a few sec-
onds, the latter presented a counterexample indicating that the
specification failed to satisfy a relevant property. A careful analysis
of the counterexample revealed that property BP21 of the previous
section was being violated. This happened because the case where
exceptions E1 and E2 are raised concurrently in action CAASen-

sors was not covered by the exception resolution mechanism of
the action. This is a direct violation of basic property BP22 (Section
4.3). To fix the specification, we extended the resolution mecha-
nism of the action so that, when these two exceptions are raised
concurrently, they are resolved to AlarmEXC. However, a discus-
sion of this problem with the authors of the original case study re-

vealed that these two exceptions are actually never raised
concurrently in practice. Hence, we modified the Alloy specifica-
tion accordingly. The generic CA action model defines a relation,
Excluding, intended to exclude combinations of internal excep-
tions that are never raised concurrently from the exception resolu-
tion graph of an action. This relation is already taken into account
by the basic CA properties defined by the generic CA action model.
By default, no combinations are excluded. The following line was
introduced in the specification of the system:

CAASensors:Excluding ¼ ðE1þ E2Þ� > K3

6. Related work

Several models have been proposed for formalizing the CA ac-
tion concept with the intention either to give a more complete
and rigorous description of the concept or to verify systems de-
signed using CA actions. In this section, we briefly describe the
most significant amongst these formalizations, comparing them
to our own work. The COALA framework (Vachon and Guelfi,
2000) was proposed to allow system developers to model complex
distributed/concurrent systems. Within this framework a formal-
ization of the CA action concept is developed using CO-OPN/2 (Buc-
hs et al., 1993), an object-oriented language based on Petri nets and
partial order-sorted algebraic specifications. Although CO-OPN/2
specifications are amenable to mechanical verification (through
translation to ‘‘regular” Petri nets), no attempt is made to specify
systems properties or verify systems described in COALA. The
authors’ main goal is to devise a semantically precise specification
language for CA actions.

Another model used for formalizing the CA action concept is the
ERT (ERT stands for extraction, refusals and traces) (Koutny and
Pappalardo, 1998). Refusals and traces are notions that come from
semantic models of CSP; the term extraction refers to a specific
technique used to relate systems specified at different levels of
abstraction. This model does not have as strong a focus on excep-
tion flow as ours. Hence, there are many properties that we can
verify, especially those relevant to exception resolution, that can-
not be directly specified using the ERT-based model.

A mathematical framework, based on Timed CSP, for represent-
ing the use of CA actions in real-time safety-critical systems is pro-
posed in Veloudis and Nissanke (2000). It allows the interactions
between concurrently functioning pieces of equipment to be mod-
eled – and their behavior to be reasoned about – in an abstract
way. The framework models dynamic system structuring using
CA actions and explicitly uses events representing synchronization
between items and the control system to allow the action context
to be changed dynamically. Unlike our approach, the framework
was not developed for dealing with erroneously behaving action
participants. However, it helps to achieve a better understanding
of the CA action concept and can be used in developing general
models incorporating mechanisms that support system safety.

Tartanoglu et al. (2004) have devised a formalization for CA ac-
tions using the B method. More specifically, they have formalized
part of the CA action middleware infrastructure. This work is com-
plementary to ours in that it focuses on an issue that we do not
tackle: the dynamic structure of CA actions, e.g., joining partici-
pants, the start and end of nested CA actions, etc. The authors’ ac-

Fig. 12. An application-specific property of the FTIPT system.

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 887

Author's personal copy

count of how they address issues such as exception flow and reso-
lution is, however, very sketchy. Moreover, they do not discuss
how to model CA action-based applications using their approach,
or how to conduct automated verification.

The concept of Dependable Multiparty Interactions (DMIs) (Zor-
zo et al., 1999) has many similarities with that of CA actions, and is
formally specified using Temporal Logic of Actions (Lamport, 2002)
(TLA). There were several earlier attempts to specify the CA action
semantics using TLA (for example, the one reported in Schwier
et al., 1997). However, none of them has been used to mechanically
verify whether a system model satisfies certain properties. In an-
other work Bertolini et al. (2004) modeled DMIs using Stochastic
Automata Networks, a formalism based on Markov chains. This for-
malization is complementary to ours, as it focuses on the through-
put of a DMI-based system, particularly when failures occur
periodically.

Xu et al. (1999) use a formal approach to model and verify a
safety-critical system designed using CA actions. To model-check
the system controlling a fault-tolerant Production Cell, the state
transition system corresponding to a CA action-based design is ex-
pressed in SMV (Symbolic Model Verifier) (Carnegie Mellon Uni-
versity, 1998) and the properties of the system to be analyzed
are expressed in CTL. This work strongly emphasizes the execution
order of CA actions in a system. The authors also model the excep-
tion resolution graph for the CA actions they design, but the ap-
proach they propose does not include any means for verifying,
for example, whether a resolution graph is valid. Nevertheless, this
work is also complementary to ours, as it models aspects of CA ac-
tion-based systems that ours does not.

Capozucca et al. (2006) describe a framework for implement-
ing systems based on CA actions. Their framework, CAA-DRIP, is
an evolution of the DRIP framework proposed by Zorzo and
Stroud (1999). Complementing the description in CAA-DRIP, the
authors also present a partial formalization of CA actions based
on statecharts (Harel, 1987). This formalization focuses only on
the overall states in which a CA action can be, without going into
the more convoluted mechanisms of CA actions, such as the struc-
turing of the actions that compose a system or exception
resolution.

In a previous work (Castor Filho et al., 2006), some of us have
described an approach to designing and verifying an architectural
view (Krüchten, 1995) that centers on how exceptions flow
amongst architectural components. This work places more empha-
sis on the effect that different architectural styles (Shaw and Cle-
ments, 1996) have on exception propagation than on the
verification of properties associated with exception flow. More-
over, it does not deal with software systems where multiple excep-
tions might be raised concurrently within the same exception-
handling context.

A preliminary version of this paper appeared elsewhere (Castor
Filho et al., 2006). It does not explain the generic CA actions model
(either formally or informally), presents only one case study, does
not show how the proposed approach can be instantiated to the B
notation, or discuss related work. In another earlier study (Castor
Filho et al., 2006) some of us defined a formal exception flow mod-
el for non-distributed software architectures. Although we use a
similar approach in order to define this previous model (a generic
model, applications adhering to the model and mature verification
tools), the generic model itself differs greatly from the one we pres-
ent in this paper. The most important difference is that for cooper-
ative concurrent systems exception-handling contexts are much
more complex. In such systems, a context must involve all the pro-
cessing units that cooperate, and exception handling should also be
performed cooperatively. For non-cooperative systems, contexts
are localized processing units (i.e., exception-handling concerns
only a single component), and exceptions are either handled with-

in them or propagated to an outer context that is also localized. An-
other significant difference is that exception propagation is much
more complex in an exception-handling mechanism that involves
cooperative handling. This shows in many parts of the formal mod-
el and, particularly, in Section 4.3, where we describe how excep-
tion resolution works. This issue does not arise for systems where
only one exception at a time can be raised within an exception-
handling context. Finally, it is important to stress that this previous
work does not include any case studies, whereas in this paper we
present two extensive case studies.

7. Concluding remarks

We have presented an approach to specifying and verifying
cooperative concurrent systems that use exception handling to
achieve fault tolerance. The purpose of this approach is to guaran-
tee that the fault tolerance mechanisms used to build a reliable
system are also reliable. The main contribution of this paper is to
offer a formalization of CA actions that makes it possible to auto-
matically check whether a CA action-based design satisfies certain
properties related to exception handling. The usefulness of the pro-
posed approach has been demonstrated by two case studies. Even
for simple applications, the proposed approach has helped us to
uncover some implicit assumptions in the original designs of the
systems. The problems we have identified are directly related to
the use of exception handling. It would be harder to expose issues
like that using other formal models to specify CA actions because
they focus on different aspects of CA action-based systems, such
as temporal ordering of events (Xu et al., 2002) or dynamic CA ac-
tion structuring (Tartanoglu et al., 2004).

This work does not address all of the important aspects of sys-
tems structured as CA actions. For example, our approach does not
model consistent access to external resources or the dynamic
structure of nested actions. Furthermore, this work does not cover
issues related to synchronization amongst action participants. In
the future, we intend to expand the system model used in our ap-
proach to address these issues and provide a more comprehensive
framework for verifying CA action-based systems. More specifi-
cally, we intend to devise a way to separate the specifications of
the CA actions middleware from CA action-based applications.
Moreover, we are currently working on a rigorous software devel-
opment methodology whose emphasis is on modeling the error-
handling behavior of software systems. This methodology employs
the proposed approach to verification.

The Fault-Tolerant Production Cell case study has shown that
the exception resolution graph approach (Campbell and Randell,
1986) to dealing with concurrently raised exceptions is not scal-
able. This suggests that future research on exception handling for
concurrent systems should pursue more scalable solutions to deal-
ing with multiple exceptions being raised at the same time. An
alternative would be to guarantee that certain parts of an asyn-
chronous system are executed synchronously.

Acknowledgements

Fernando Castor Filho conducted parts of this research while
supported by FAPESP/Brazil, Grants #06/04976-9 and #02/
13996-2. He is currently partially supported by CNPq/Brazil, Grants
#481147/2007-1 and #550895/2007-8. Alexander Romanovsky is
supported by the EPSRC/UK TrAmS platform grant and the FP7
ICT DEPLOY integrated project. Cecília Rubira is partially supported
by CNPq/Brazil, Grants #301446/2006-7 and #484138/2006-5. We
would like to thank the anonymous referees, who provided many
useful comments and suggestions and greatly helped to improve
the paper.

888 F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890

Author's personal copy

References

Abrial, J.R., 1996. The B-Book: Assigning Programs to Meanings. Cambridge
University Press.

Anderson, T., Lee, P.A., 1990. Fault Tolerance: Principles and Practice, second ed.
Springer-Verlag.

Beder, D.M., Romanovsky, A.B., Randell, B., Snow, C.R., Stroud, R.J., 2000. An
application of fault tolerance patterns and coordinated atomic actions to a
problem in railway scheduling. Operating Systems Review 34 (4), 21–31.

Bernardeschi, C., Fantechi, A., Gnesi, S., 2002. Model checking fault-tolerant
systems. Software, Testing, Verification, and Reliability 12, 251–275.

Bertolini, C., Brenner, L., Fernandes, P., Sales, A., Zorzo, A.F., 2004. Structured
stochastic modeling of fault-tolerant systems. In: Proceedings of the 12th
International Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, Vollendam, The Netherlands, pp. 139–146.

Bodoff, S., 2004. The J2EE Tutorial. Addison-Wesley.
Buchs, D., Guelfi, N., 1993. Formal development of actor programs using structured

algebraic petri nets. In: Proceedings of the Fifth International Conference on
Parallel Architectures and Languages Europe. LNCS, vol. 694. Springer-Verlag,
Munich, Germany.

Buhr, P.A., Mok, R., 2000. Advanced exception handling mechanisms. IEEE
Transactions on Software Engineering 26 (9), 1–16.

Cacho, N., Castor Filho, F., Garcia, A., Figueiredo, E., 2008. Ejflow: Taming exceptional
control flows in aspect-oriented programming. In: Proceedings of Seventh ACM
Conference on Aspect-Oriented Software Development.

Campbell, R.H., Randell, B., 1986. Error recovery in asynchronous systems. IEEE
Transactions on Software Engineering SE-12 (8), 811–826.

Canver, E., Schwier, D., Romanovsky, A., Xu, J., 1998. Formal verification of CAA-
based designs: the fault-tolerant production cell. Tech. Rep. 3rd Year Report,
ESPRIT Long Term Research Project 20072 on Design for Validation, November.

Capozucca, A., Guelfi, N., Pelliccione, P., 2006. The fault-tolerant insulin pump
therapy. In: Rigorous Development of Complex Fault-Tolerant Systems. LNCS,
vol. 4157. Springer, pp. 59–79.

Capozucca, A., Guelfi, N., Pelliccione, P., Romanovsky, A., Zorzo, A.F., 2006. CAA-
DRIP: a framework for implementing coordinated atomic actions. In:
Proceedings of IEEE International Symposium on Software Reliability
Engineering, Raleigh, USA, pp. 385–394.

Carnegie Mellon University, 1998. The SMV system. <http://www.cs.cmu.edu/
modelcheck/smv.html>.

Castor Filho, F. Romanovsky, A., Rubira, C.M.F., 2005. Verification of coordinated
exception handling, Tech. Rep. CS-TR-927, School of Computing Science,
University of Newcastle upon Tyne.

Castor Filho, F., Brito, P.H. da S., Rubira, C.M.F., 2006. Reasoning about exception
flow at the architectural level. In: Rigorous Development of Complex Fault-
Tolerant Systems. LNCS, vol. 4157. Springer-Verlag, pp. 80–99.

Castor Filho, F., Brito, P.H. da S., Rubira, C.M.F., 2006. Specification of exception flow
in software architectures. Journal of Systems and Software 79 (10), 1397–1418.

Castor Filho, F., Romanovsky, A., Rubira, C.M.F., 2006. Verification of coordinated
exception handling. In: Proceedings of the 21st ACM Symposium on Applied
Computing, Dijon, France, pp. 680–685.

Castor Filho, F., Cacho, N., Figueiredo, E., Ferreira, R., Garcia, A., Rubira, C.M.F., 2006.
Exceptions and aspects: the devil is in the details. In: Proceedings of the 14th
ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 152–
162.

Coelho, R., Rashid, A., Garcia, A., Ferrari, F.C., Cacho, N., Kulesza, U., von Staa, A., de
Lucena, C.J.P., 2008. Assessing the impact of aspects on exception flows: an
exploratory study. In: Proceedings of the 22nd European Conference on Object-
Oriented Programming, Paphos, Cyprus, pp. 207–234.

Cristian, F., 1989. Exception handling. In: Anderson, T. (Ed.), Dependability of
Resilient Computers. Blackwell Scientific Publications, pp. 68–97.

Fu, C., Ryder, B.G., 2007. Exception-chain analysis: revealing exception handling
architecture in java server applications. In: Proceedings of 29th ACM/IEEE
International Conference on Software Engineering, Minneapolis, USA, pp. 230–
239.

Garcia, A., Rubira, C., Romanovsky, A., Xu, J., 2001. A comparative study of exception
handling mechanisms for building dependable object-oriented software.
Journal of Systems and Software 59 (2), 197–222.

Goodenough, J.B., 1975. Exception handling: issues and a proposed notation.
Communications of the ACM 18 (12), 683–696.

Gray, J., Reuter, A., 1993. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann.

Guelfi, N., Cousin, G.L., Ries, B., 2004. Engineering of dependable complex business
processes using UML and coordinated atomic actions. In: Proceedings of
International Workshop on Modeling Inter-Organizational Systems, pp. 468–
482.

Harel, D., 1987. Statecharts: a visual formulation for complex systems. Science of
Computer Programming 8 (3), 231–274.

Jackson, D., 2002. Alloy: a lightweight object modeling notation. ACM Transactions
on Software Engineering and Methodology 11 (2), 256–290.

Jackson, D., 2004. Alloy home page. <http://sdg.lcs.mit.edu/alloy/default.htm>.
Jackson, D., Schechter, I., Shlyakhter, I., 2000. Alcoa: the alloy constraint analyzer.

In: Proceedings of the 22nd ACM/IEEE International Conference on Software
Engineering, Limerick, Ireland, pp. 730–733.

Jiang, S. et al., 2004. An approach to analyzing exception propagation. In:
Proceedings of the Eighth IASTED International Conference on Software
Engineering and Applications.

Koutny, M., Pappalardo, G., 1998. The ERT model of fault-tolerant computing and its
application to a formalisation of coordinated atomic actions. Tech. Rep. CS-TR
636, School of Computing, University of Newcastle upon Tyne, 1998.

Krüchten, P., 1995. The 4+1 view model of software architecture. IEEE Software, 42–
50.

Lamport, L., 2002. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers, Pearson Education.

Leuschel, M., Butler, M.J., 2003. Prob: a model checker for b. In: Proceedings of the
International Symposium of Formal Methods Europe (FME’2003), LNCS, vol.
2805, Pisa, Italy, pp. 855–874.

Lewerentz, C. (Ed.), 1995. Formal Development of Reactive Systems: Case Study
Production Cell. LNCS, vol. 891. Springer-Verlag.

Lions, J.L. et al., 1996. Ariane 5 – flight 501 failure, Tech. rep., European Space
Agency, 1996.

Reimer, D., Srinivasan, H., 2003. Analyzing exception usage in large java
applications. In: Proceedings of ECOOP’2003 Workshop on Exception
Handling in Object-Oriented Systems.

Robillard, M.P., Murphy, G.C., 2003. Static analysis to support the evolution of
exception structure in object-oriented systems. ACM Transactions on Software
Engineering and Methodology 12 (2), 191–221.

Romanovsky, A., Periorellis, P., Zorzo, A.F., 2003. Structuring integrated web
applications for fault tolerance. In: Proceedings of the Sixth IEEE ISADS, pp.
99–106.

Rubira, C.M.F., de Lemos, R., Ferreira, G., Castor Filho, F., 2005. Exception handling in
the development of dependable component-based systems. Software – Practice
and Experience 35 (5), 195–236.

Schwier, D., von Henke, F., Stroud, R., Xu, J., Romanovsky, A., Randell, B., 1997.
Formalisation of the CA action concept based on temporal logic. In: DeVa –
Design for Validation, 2nd year, ESPRIT LTR 20072, pp. 3–15.

Shaw, M., Clements, P., 1996. A field guide to boxology: preliminary classification of
architectural styles for software systems. In: Proceedings of COMPSAC’96,
Washington, DC, USA.

Tartanoglu, F., Issarny, V., Levy, N., Romanovsky, A., 2003. Coordinated forward error
recovery for composite web services. In: Proceedings of the 22nd IEEE SRDS’03,
Florence, Italy, pp. 167–176.

Tartanoglu, F., Levy, N., Issarny, V., Romanovsky, A., 2004. Using the b method for
the formalization of coordinated atomic actions. Tech. Rep. CS-TR: 865, School
of Computing Science, University of Newcastle, October.

Vachon, J., Guelfi, N., 2000. Coala: a design language for reliable distributed system
engineering. In: Proceedings of the Workshop on Software Engineering and
Petri Nets, Aarhus, Denmark, pp. 135–154.

Veloudis, S., Nissanke, N., 2000. Modelling coordinated atomic actions in timed CSP.
In: Proceedings of the Sixth International Symposium on Formal Techniques in
Real-Time Fault Tolerant Systems, LNCS, vol. 1926, Springer-Verlag, Pune, India.

Weimer, W., Necula, G., 2004. Finding and preventing run-time error handling
mistakes. In: Proceedings of the 19th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 419–433.

Woodcock, J., Davies, J., 1996. Using Z: Specification, Refinement, and Proof.
Prentice-Hall Inc..

Xu, J., Randell, B., Romanovsky, A.B., Rubira, C.M.F., Stroud, R.J., Wu, Z., 1995. Fault
tolerance in concurrent object-oriented software through coordinated error
recovery. In: Proceedings of the 25th Symposium on Fault-Tolerant Computing
Systems, Pasadena, USA, pp. 499–508.

Xu, J., Randell, B., Romanovsky, A., Stroud, R.J., Canver, E., 1998. Developing control
software for production cell: II. Failure analysis and system design using CA
actions. In: Proceedings of the Third International Workshop on Design for
Validation, Louvain-La-Neuve.

Xu, J., Randell, B., Romanovsky, A.B., Stroud, R.J., Zorzo, A.F., Canver, E., von Henke,
F.W., 1999. Rigorous development of a safety-critical system based on
coordinated atomic actions. In: 29th International Symposium on Fault-
Tolerant Computing, pp. 68–75.

Xu, J., Randell, B., Romanovsky, A.B., Stroud, R.J., Zorzo, A.F., Canver, E., von Henke,
F.W., 2002. Rigorous development of an embedded fault-tolerant system based
on coordinated atomic actions. IEEE Transactions on Computers 51 (2), 164–179.

Zorzo, A., Stroud, R.J., 1999. A distributed object-oriented framework for dependable
multiparty interactions. In: ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Denver, USA, 1999, pp. 435–446.

Zorzo, A., Romanovsky, A., Xu, J., Randell, B., Stroud, R., Welch, I., 1999. Using
coordinated atomic actions to design safety-critical systems: a production cell
case study. Software – Practice and Experience 29 (8), 677–697.

Fernando Castor Filho is an Assistant Professor at the Informatics Center, Federal
University of Pernambuco (UFPE), Brazil. He received a Ph.D. in Computer Science in
2006, at the Institute of Computing, State University of Campinas (UNICAMP),
Brazil. His is interested in the construction of large-scale, dependable systems that,
at the same time, are easy to develop and maintain. His main research areas are
exception handling, fault tolerance, aspect-oriented programming, software archi-
tecture, and distributed systems. He has co-authored 35 scientific papers in these
areas and supervises a number of students.

F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890 889

Author's personal copy

Alexander Romanovsky is a specialist in system dependability and a Professor of
Computer Science in Newcastle University. He received a M.Sc. degree in Applied
Mathematics from Moscow State University and a Ph.D. degree in Computer Science
from St. Petersburg State Technical University. In 1992–1998 he was involved in the
Predictably Dependable Computing Systems (PDCS) ESPRIT Basic Research Action
and the Design for Validation (DeVa) ESPRIT Basic Project. In 1998–2000 he worked
on the Diversity in Safety Critical Software (DISCS) EPSRC/UK Project. Prof. Roma-
novsky was a co-author of the Diversity with Off-The-Shelf Components (DOTS)
EPSRC/UK Project and was involved in this project in 2001–2004. In 2004–2007 he
coordinated Rigorous Open Development Environment for Complex Systems
(RODIN) IST Project. He is now the Director of the major FP7 ICT integrated project
on Industrial Deployment of System Engineering Methods Providing High
Dependability and Productivity (DEPLOY). His main research interested are in fault

tolerance, error recovery, exception handling, software architecture, rigorous design
of fault tolerant systems and resilient system engineering.

Cecília Mary Fischer Rubira is an Associated Professor of the Institute of
Computing at University of Campinas (UNICAMP), Brazil. She received her Ph.D. in
Computing Science in 1994, at the Department of Computing Science in the Uni-
versity of Newcastle upon Tyne, UK. Her current research interests are fault toler-
ance, exception handling, software architectures, and component-based software
engineering applied to the development of dependable object-oriented software.
She has co-authored more than 60 scientific papers, book chapters, and books in
these areas, and also supervises a number of M.Sc. and Ph.D. students at UNICAMP.
Contact her at cmrubira@ic.unicamp.br.

890 F. Castor Filho et al. / The Journal of Systems and Software 82 (2009) 874–890

