
Abstract
(LP)2 is a covering algorithm for adaptive Infor-
mation Extraction from text (IE). It induces
symbolic rules that insert SGML tags into texts
by learning from examples found in a user-
defined tagged corpus. Training is performed in
two steps: initially a set of tagging rules is
learned; then additional rules are induced to
correct mistakes and imprecision in tagging. In-
duction is performed by bottom-up generaliza-
tion of examples in the training corpus. Shallow
knowledge about Natural Language Processing
(NLP) is used in the generalization process. The
algorithm has a considerable success story.
From a scientific point of view, experiments re-
port excellent results with respect to the current
state of the art on two publicly available cor-
pora. From an application point of view, a suc-
cessful industrial IE tool has been based on
(LP)2. Real world applications have been devel-
oped and licenses have been released to external
companies for building other applications. This
paper presents (LP)2, experimental results and
applications, and discusses the role of shallow
NLP in rule induction.

1. Introduction
By general agreement the main barriers to wide use and
commercialization of Information Extraction from text
(IE) are the difficulties in adapting systems to new ap-
plications. The classical IE has been focusing on appli-
cations to free texts; therefore systems often rely on ap-
proaches based on Natural Language Processing (NLP)
(e.g. using parsing) [Humphreys et al. 1997; Grishman
1997]. Most systems require the manual development of
resources (e.g. grammars) by a user skilled in NLP [Ci-
ravegna 2000]. There is an increasing interest in apply-
ing machine learning (ML) to IE in order to build adap-
tive systems. Up to now, the use of ML has been ap-
proached mainly in an NLP-oriented perspective, i.e. in
order to reduce the amount of work to be done by the
NLP experts in porting systems across free text based

scenarios [Cardie 1997; Miller et al. 1998; Yangarber et
al. 2000]. Given the current technology, IE experts are
still necessary.
In the last years, the increasing importance of the Inter-
net has stressed the central role of texts such as emails,
Usenet posts and Web pages. In this context, extralin-
guistic structures (e.g. HTML tags, document format-
ting, and ungrammatical stereotypical language) are
elements used to convey information. Linguistically in-
tensive approaches are difficult or unnecessary in such
cases. For this reason a new research stream on adaptive
IE has arisen at the convergence of NLP, Information
Integration and Machine Learning. The goal is to pro-
duce IE algorithms and systems adaptable to new Inter-
net-related applications/scenarios by using only an ana-
lyst’s knowledge (i.e. knowledge on the domain/scenario
itself) [Kushmerick 1997; Califf 1998; Muslea et al.
1998; Freitag and McCallum 1999; Soderland 1999;
Freitag and Kushmerick 2000]. Such algorithms are very
effective when applied on highly structured HTML
pages, but less effective on unstructured texts (e.g. free
texts). In our opinion this is because most successful
algorithms make scarce (or no) use of NLP, tending to
avoid any generalization over the flat word sequence.
When they are applied to unstructured texts, data
sparseness becomes a problem.
This paper presents (LP)2, an adaptive IE algorithm de-
signed in this new stream of research that makes use of
shallow NLP in order to overcome data sparseness when
confronted with NL texts, while keeping effectiveness
on highly structured texts. This paper first introduces the
algorithm, discusses experimental results and shows how
the algorithm compares successfully with the current
state of the art. The role and importance of shallow NLP
for overcoming data sparseness is then discussed. Fi-
nally a successful industrial system for adaptive IE built
around (LP)2 is presented and some conclusions and fu-
ture work are drawn.

2.The Rule Induction Algorithm
(LP)2 learns from a training corpus where a user has
highlighted the information to be extracted with differ-

Adaptive Information Extraction from Text
by Rule Induction and Generalisation

Fabio Ciravegna
Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello Street,
S1 4DP Sheffield, UK

F.Ciravegna@dcs.shef.ac.uk

ent SGML tags. It induces symbolic rules that insert
SGML tags into texts in two steps:

1. Sets of tagging rules are induced by bottom-up
generalization of tag instances found in the training
corpus. Shallow knowledge about NLP is used in the
generalization process.

2. Correction rules are induced that refine the tag-
ging by correcting mistakes and imprecision

This section presents and discusses these two steps.

2.1 Inducing Tagging Rules
A tagging rule is composed of a left hand side, contain-
ing a pattern of conditions on a connected sequence of
words, and a right hand side that is an action inserting an
SGML tag in the texts. Each rule inserts a single SGML
tag, e.g. <speaker>. This makes (LP)2 different from
many adaptive IE algorithms, whose rules recognize
whole slot fillers (i.e. insert both <speaker> and
</speaker> [Califf 1998; Freitag 1998]) or even multi
slots [Soderland 1999]. The tagging rule induction algo-
rithm uses positive examples from the training corpus
for learning rules. Positive examples are the SGML tags
inserted by the user. All the rest of the corpus is consid-
ered a pool of negative examples. For each positive ex-
ample the algorithm: (1) builds an initial rule, (2) gener-
alizes the rule and (3) keeps the k best generalizations of
the initial rule. In particular (LP)2’s main loop starts by
selecting a tag in the training corpus and extracting from
the text a window of w words to the left and w words to
the right. Each information stored in the 2*w word win-
dow is transformed into a condition in the initial rule
pattern, e.g. if the third word in the window is “semi-
nar”, the condition on the third word in the pattern will
be word=“seminar”. Each initial rule is then general-
ized. In the generalization process (LP)2 uses generic
shallow knowledge about Natural Language as provided
by a morphological analyzer, a POS tagger and a user-
defined dictionary (or a gazetteer). A lexical item (LexIt
in the following) summarizes such knowledge for each
word (e.g., companies) via: a lemma (company), a lexi-
cal category (noun), case information (lowercase) and a
list of user defined classes as defined by a user-defined
dictionary or a gazetteer (if available). An initial rule
and associated information in the LexIts is in Table 1.
Generalization consists in the production of a set of
rules derived by relaxing constraints in the initial rule
pattern. Conditions are relaxed both by reducing the
pattern in length and by substituting constraints on
words with constraints on some parts of the additional
knowledge. Table 2 shows one of the many generaliza-
tions for rule in table 1. The last step of the algorithm is
the selection of the best generalizations. Each generali-
zation is tested on the training corpus and an accuracy
score L=wrong/matched is calculated. For each initial
instance the k best generalizations are kept that: (1) re-
port better accuracy; (2) cover more positive examples;

(3) cover different parts of input1; (4) have an error rate
that is less than a specified threshold.

Condition Associated information Actionword
index word lemma LexCat case SemCat Tag

1 the the Art low
2 seminar seminar Noun low
3 at at Prep low <stime>
4 4 4 Digit low
5 pm pm Other low timeid
6 will will Verb low

Table 1: Starting rule (with associated NLP knowledge)
inserting <stime> in the sentence ``the seminar at
<stime> 4 pm will…''.

The other generalizations are discarded. Retained rules
become part of the best rules pool. When a rule enters
the best rules pool, all the instances covered by the rule
are removed from the positive examples pool, i.e. cov-
ered instances will no longer be used for rule induction
((LP)2 is a covering algorithm). Rule induction continues
by selecting new instances and learning rules until the
pool of positive examples is void.

Condition ActionWord
index Word Lemma LexCat Case SemCat Tag

3 at <time>
4 digit
5 timeid

Table 2: A generalization for rule in table 1. The pattern is
relaxed in length (conditions on words 1, 2 and 6 were re-
moved) and conditions on the other words were substituted
by other constraints.

2.1.1 Learning Contextual Rules
When applied on the test corpus, the best rules pool pro-
vides good results in terms of precision, but limited ef-
fectiveness in terms of recall. This means that such rules
insert few tags (low recall), and that such tags are gener-
ally correct (high precision). Intuitively this is because
the absolute reliability required for rule selection is
strict, thus only some of the induced rules will match it.
In order to reach acceptable effectiveness, it is necessary
to identify additional rules able to raise recall without
affecting precision. (LP)2 recovers some of the rules not
selected as best rules and tries to constraint their appli-
cation to make them reliable. Constraints on rule appli-
cation are derived by exploiting interdependencies
among tags. As mentioned, (LP)2 learns rules for insert-
ing tags (e.g., <speaker>) independently from other tags
(e.g., </speaker>). But tags are not independent. There
are two ways in which they can influence each other: (1)
tags represent slots, therefore <tagx> always requires
</tagx>; (2) slots can be concatenated into linguistic
patterns and therefore the presence of a slot can be a
good indicator of the presence of another, e.g.

1 Rules derived from the same seed cover the same portions
of input when ineffective constraints are present.

</speaker> can be used as “anchor tag” for inserting
<stime>2. In general it is possible to use <tagx> to in-
troduce <tagy>. (LP)2 is not able to use such contextual
information, as it induces single tag rules. The context is
reintroduced in (LP)2 as an external constraint used to
improve the reliability of unreliable rules. In particular,
(LP)2 reconsiders low precision non-best rules for appli-
cation in the context of tags inserted by the best rules
only. For example some rules will be used only to close
slots when the best rules were able to open it, but not
close it (i.e., when the best rules are able to insert
<tagx> but not </tagx>). Selected rules are called
contextual rules. As example consider a rule inserting a
</speaker> tag between a capitalized word and a low-
ercase word. This is not a best rule as it reports high
recall/low precision on the corpus, but it is reliable if
used only to close an open <speaker>. Thus it will only
be applied when the best rules have already recognized
an open <speaker>, but not the corresponding
</speaker>. Area of application is the part of the text
following a <speaker> and within a distance minor or
equal to the maximum length allowed for the present
slot3. “Anchor tags” used as contexts can be found either
to the right of the rule space application (as in the case
above when the anchor tag is <speaker>), or to the left
as in the opposite case (anchor tag is </speaker>).
Detailed description of this process can be found in [Ci-
ravegna 2000a]. Reliability for contextual rules is com-
puted by using the same error rate used for best rules,
but only matches in controlled contexts are counted.
In conclusion the sets of tagging rules (LP)2 induces are
both the best rule pool and the contextual rules. Figure 3
shows the whole algorithm for tagging rule induction.
Loop for instance in initial-instances
unless already-covered(instance)
loop for rule in generalise(instance)
test(rule)
if best-rule?(rule)
then insert(rule, bestrules)

cover(rule, initial-instances)
else loop for tag in tag-list

if test-in-context(rule,tag,:right)
then select-contxtl(rule,tag,:right)
if test-in-context(rule,tag,:left)
then select-contxtl(rule,tag,:left)

Figure 3: The final algorithm for rule tagging induction.

2.2 Inducing Correction Rules
Tagging rules when applied on the test corpus report
some imprecision in slot filler boundary detection. A
typical mistake is for example “at <time> 4
</time> pm”, where “pm” should have been part of the
time expression. For this reason (LP)2 induces rules for
shifting wrongly positioned tags to the correct position.

2 In the following we just make examples related to the first
case as it is more intuitive.
3 The training corpus is used for computing the maximum filler
length for each slot.

It learns from the mistakes made in applying tagging
rules on the training corpus. Shift rules consider tags
misplaced within a distance d from the correct position.
Correction rules are identical to tagging rules, but (1)
their patterns match also the tags inserted by the tagging
rules and (2) their actions shift misplaced tags rather
than adding new ones. An example of an initial correc-
tion rule for shifting </stime> in “at <stime> 4
</stime> pm'' is shown in table 4.
The induction algorithm used for the best tagging rules
is also used for shift rules: initial instance identification,
generalization, test and selection. “Wrong Tag” and
“Correct Tag” conditions are never relaxed. Positive
(correct shifts) and negative (wrong shifts of correctly
assigned tags) are counted. Shift rules are accepted only
if they report an acceptable error rate.

3. Extracting Information
In the testing phase information is extracted from the
test corpus in four steps: initial tagging, contextual tag-
ging, correction and validation. The best rule pool is
initially used to tag the texts. Then contextual rules are
applied in the context of the introduced tags. They are
applied until new tags are inserted, i.e. some contextual
rules can match also tags inserted by other contextual
rules. Then correction rules correct some imprecision.
Finally each tag inserted by the algorithm is validated.
There is no meaning in producing a start tag (e.g.
<speaker>) without its corresponding closing tag
(</speaker>) and vice versa, therefore uncoupled tags
are removed in the validation phase.

Condition Additional Information
word Wrong tag correct tag lemma LexCat case SemCat

at at prep low
4 </stime> 4 digit low

pm </stime> pm other low timeid
Table 4: A a correction rule. The action (not shown) shifts
the tag from the wrong to the correct position.

4. Experimental Results
(LP)2 was tested in a number of tasks in two languages:
English and Italian. In each experiment (LP)2 was trained
on a subset of the corpus (some hundreds of texts, de-
pending on the corpus) and the induced rules were tested
on unseen texts. Here we report about results on two
standard tasks for adaptive IE: the CMU seminar an-
nouncements and the Austin job announcements4. The
first task consists of uniquely identifying speaker name,
starting time, ending time and location in 485 seminar
announcements [Freitag 1998]. Table 5 shows the over-
all accuracy obtained by (LP)2, and compares it with that
obtained by other state of the art algorithms. (LP)2 scores
the best results in the task. It definitely outperforms
other symbolic approaches (+8.7% wrt Rapier[Califf

4 Corpora available at www.isi.edu/muslea/RISE/index.html

1998], +21% wrt to Whisk[Soderland 1999]), but it also
outperforms statistical approaches (+2.1% wrt BWI
[Freitag and Kushmerick 2000] and +4% wrt HMM
[Freitag and McCallum 1999]). Moreover (LP)2 is the
only algorithm whose results never go down 75% on any
slot (second best is BWI: 67.7%).

(LP)2 BWI HMM SRV Rapier Whisk
speaker 77.6 67.7 76.6 56.3 53.0 18.3
location 75.0 76.7 78.6 72.3 72.7 66.4

stime 99.0 99.6 98.5 98.5 93.4 92.6
etime 95.5 93.9 62.1 77.9 96.2 86.0

All Slots 86.0 83.9 82.0 77.1 77.3 64.9
Table 5: F-measure (β=1) obtained on CMU seminars. Results
for algorithms other than (LP)2 are taken from [Freitag and
Kushmerick 2000]. We added the comprehensive ALL SLOTS
figure, as it allows better comparison among algorithms. It was
computed by:

ΣΣΣΣslot (F-measure * number of possible slot fillers)
ΣΣΣΣslot number of possible slot fillers ∗100

Concerning (LP)2 results from a 10 cross-folder experiment using
half of the corpus for training. F-measure calculated via the
MUC scorer [Douthat 1998]. Average training time per run: 56
min on a 450MHz computer. Window size w=4.

A second task concerned IE from 300 Job Announce-
ments taken from misc.jobs.offered [Califf 1998]. The
task consists of identifying for each announcement: mes-
sage id, job title, salary offered, company offering the
job, recruiter, state, city and country where the job is
offered, programming language, platform, application
area, required and desired years of experience, required
and desired degree, and posting date. The results ob-
tained on such a task are reported in table 6. (LP)2 out-
performs both Rapier and Whisk (Whisk obtained lower
accuracy than Rapier [Califf 1998]). We cannot compare
(LP)2 with BWI as the latter was tested on a very limited
subset of slots. In summary, (LP)2 reaches the best results
on both the tasks.

Slot (LP)2 Rapier BWI Slot (LP)2 Rapier
id 100 97.5 100 platform 80.5 72.5

title 43.9 40.5 50.1 application 78.4 69.3
company 71.9 69.5 78.2 area 66.9 42.4

salary 62.8 67.4 req-years-e 68.8 67.1
recruiter 80.6 68.4 des-years-e 60.4 87.5

state 84.7 90.2 req-degree 84.7 81.5
city 93.0 90.4 des-degree 65.1 72.2

country 81.0 93.2 post date 99.5 99.5
language 91.0 80.6 All Slots 84.1 75.1

Table 6: F-measure (β=1) obtained on the Jobs do-
main using half of the corpus for training.

5. Discussion
 (LP)2’s main features that are most likely to contribute to
the excellence in the experiments are: (1) the induction
of symbolic rules (see the conclusions), (2) rule gener-

alization via shallow NLP, (3) the use of single tag rules
and (4) the use of correction.
(LP)2 induces rules by instance generalization. Generali-
zation is also used in SRV, Rapier and Whisk. It allows
reducing data sparseness by capturing some general as-
pects beyond the simple flat word structure. Shallow
NLP is the basis for generalization in (LP)2. Morphology
allows overcoming data sparseness due to num-
ber/gender word realizations, while POS tagging infor-
mation allows generalization over lexical categories. In
principle such type of generalization produces rules of
better quality than those matching the flat word se-
quence, rules that tend to report better effectiveness on
unseen cases. This is because both morphology and POS
tagging are generic NLP processes performing equally
well on unseen cases; therefore rules relying on their
results apply successful on unseen cases. This intuition
was confirmed experimentally: (LP)2 with generalization
((LP)2

G) definitely outperforms a version without gener-
alization ((LP)2

NG) on the test corpus, while having com-
parable results on the training corpus (+57% on the
speaker field, +28% on the location field, +11% overall
on the CMU task). Moreover in (LP)2

G the covering algo-
rithm converges more rapidly than in (LP)2

NG, because its
rules tend to cover more cases. This means that (LP)2

G
need less examples in order to be trained, i.e., rule gen-
eralization also allows reducing the training corpus size.
Not surprisingly the role of shallow NLP in the reduc-
tion of data sparseness is more relevant on semi-
structured or free texts (such as the CMU seminars) than
on documents with highly standardized language (e.g.
HTML pages, or the job announcement task). During the
rule selection phase (LP)2 is able to adopt the right level
of NLP information for the task at hand: in an experi-
ment on texts written in mixed Italian/English we used
an English POS tagger that was completely unreliable on
the Italian part of the input. (LP)2

G reached the same ef-
fectiveness of (LP)2

NG, because the rules using the unreli-
able NLP information were automatically discarded.
This shows that the use of NLP is always a plus, never a
minus.
The separate recognition of tags is an aspect shared by
BWI, while HHM, Rapier and SRV recognized whole
slots and Whisk recognizes multislots. Separate tag
identification allows further reduction of data sparse-
ness, as it better generalizes over the coupling of slot
start/end conditions. For example in order to learn pat-
terns equivalent to the regular expression
(`at’|`starting from’)DIGIT(`pm’|`am’), (LP)2 just
needs two examples, e.g., `at’+`pm’ and `starting
from’+`am’, because the algorithm induces two inde-
pendent rules for <time> (`at’ + `starting from’)
and two for </time> (`am’ + `pm’). In a slot-oriented
rule learning strategy four examples (and four rules) will
be needed, i.e. `at’+`pm’, `at’+`am’, `starting

from’ +`pm’, `starting from’+`am’. In a multislot
approach the problem is worst and the number of train-
ing examples needed increases drastically [Ciravegna

2000a].
Another reason for the good experimental results relies
in the use of a correction step. Correction is useful in
recognizing slots with fillers with high degree of vari-
ability (such as the speaker in the CMU experiment),
while it does not pay on slots with highly standardized
fillers (such as many slots in the Jobs task). (LP)2 using
correction rules reports 7% more in terms of accuracy on
</speaker> than (LP)2 without correction. Imprecision
in tagging was also reported by [Califf 1998] who noted
up to 5% imprecision on some slots (but she did not in-
troduce any correction steps in Rapier).

Slot PRE REC F-measure Slot PRE REC F-measure
Name 97 82 88.9 Email 92 71 80.1
Street 96 71 81.6 Tel. 93 75 83.0
City 90 90 90 Fax 100 50 66.6
Prov. 97 92 94.4 Zip 100 90 94.7
Zip 100 90 94.7

Table 7: Results of a blind test on 50 resumees. This is not a
simple named entity recognition task. A resumee may contain
many names and addresses (e.g. previous work addresses,
name of referees or thesis supervisors and their addresses).
The system had to recognize the correct ones.

6. Developing real world applications
(LP)2 was developed as a research prototype, but it
quickly turned out to be suitable for real world applica-
tions. An industrial system based on (LP)2, LearningPi-
nocchio, was developed. Recently LearningPinocchio
has been used in a number of industrial applications.
Moreover licenses have been released to external com-
panies for further application development. This section
reports about some industrial applications we have di-
rectly developed. The system is used for extracting in-
formation from professional resumees written in English.
It is used on the results of a spider that surfs the Web to
retrieve professional resumees. The spider classifies
resumees by topics (e.g. computer science). LearningPi-
nocchio extracts the relevant information and its output
is used to populate a database. Table 7 shows some re-
sults obtained in such task. Application development
time for the IE task required about 24 person hours for
scenario definition and revision (the scenario was re-
fined by tagging some texts in different ways and dis-
cussing among annotators). Further 10 person hours
were needed for tagging about 250 texts. The rule in-
duction process took 72 hours on a 450MHz machine,
with window size w=4. Finally system results validation
required four person hours.

TAG F(1) TAG F(1)
Geograph Area 0.70 Organiz. Name 0.86
Currency 0.85 Company Share
Stock Exchange Name 0.85
 Name 0.91 Type 0.92
 Index 0.97 Category 0.86

ALL SLOTS 0.87
 Table 8: Results of blind test on financial news (300 texts).

Two other applications were developed for Kataweb, a
major Italian Internet portal. The goal was to extract
information from both financial news and classified ads
written in Italian and published on the portal pages.
LearningPinocchio is used both to generate hyperlinks
for cross-referencing texts and to retrieve texts querying
the content. The application is currently under final test
at the customer’s site. Table 8 shows experimental re-
sults on financial news.

7. Conclusions and Future Work
(LP)2 is a successful algorithm. On the one hand it out-
performs the other state of the art algorithms on two
very popular IE tasks. It is important to stress the fact
that (LP)2 outperforms also statistical approaches, be-
cause in the last years the latter largely outperformed
symbolic approaches. There is a clear advantage in using
symbolic rules in real world applications. It is possible
to inspect the final system results and manually
add/modify/remove rules for squeezing additional accu-
racy (it was not done in the scientific experiments, but it
was in the applications).
On the other hand (LP)2 was the basis for building
LearningPinocchio, a tool for building adaptive IE ap-
plications that is having a considerable commercial suc-
cess. This shows that adaptive IE is able produce tools
suitable for building real world applications by a final
user by using only analyst’s knowledge.
Future work on (LP)2 will involve both the improvement
of rule formalism expressiveness and the further use of
shallow NLP for generalization. Concerning the im-
provement in rule formalism expressiveness we plan to
include some forms of Kleene-star and optionality op-
erators. Such improvement has shown to be very effec-
tive in both BWI and Rapier. Concerning the use of
shallow NLP for generalization (i.e., one of the keys of
the success in (LP)2) there are two possible improve-
ments. On the one hand (LP)2 will be used in cascade
with a Named Entity Recognizer (also implemented by
using (LP)2). This will allow further generalization over
named entity classes (e.g., the speaker is a person, so it
is possible to generalize over such class in the rules). On
the other hand (LP)2 is compatible with forms of shallow
parsing such as chunking. It is then possible to preproc-
ess the texts with a chunker and to insert tags only at the
chunk borders. This is likely to improve precision in
border identification.
An interesting question concerns the limits of the tag-
ging-based IE approach used by many adaptive systems,
(LP)2 included. Classic MUC-like IE is based on tem-
plate filling. Template filling is more complex than tag-
ging, as it implies to decide about both coreference of
expressions (are “John A. Smith” and “J. Smith” the
same person? Two seminars have been identified in a
text: are they separate events or are they coreferring?),
and slot pairing (two seminars and two speakers have
been identified: which is the speaker of the first semi-

nar?). (LP)2 is able to apply default strategies for tem-
plate merging that solve simple cases of coreferences
and slot pairing. Such strategies are powerful enough to
cope with many real world tasks, but in some other cases
they are not effective enough. For example in the re-
sumees application the customer was interested in re-
trieving also the triples degree/university/year. Learn-
ingPinocchio was able to correctly highlight such infor-
mation, but often it was not able to pair them correctly,
therefore they were not used to populate the database,
but only to index texts. Even if some ad hoc strategies
would have probably solved the problem in the specific
case, it is quite clear that this is a major limitation in the
approach. Classical MUC-like IE systems use sophisti-
cated strategies for coreference resolution and template
merging, very often based on a mix of NLP knowledge
and domain knowledge [Humphreys et al. 1998]. Two
problems prevent the use of such techniques. On the one
hand deep NLP is not effective in many applications in
the Internet realm (e.g. how can you parse an e-mail?).
On the other hand it is not clear how to elicit the domain
knowledge for coreference from an analyst (adaptability
via analyst’s knowledge is a strong constraint as men-
tioned above). Adaptive template filling is an issue
worth exploration that we are currently investigating.
We work in the direction of further using shallow NLP
for improving template filling and merging. To some
extent this is also a step in the direction of bridging the
gap between classical NLP based IE systems and fully
adaptive systems.

Acknowledgments
I developed (LP)2 and LearningPinocchio at ITC-Irst,
Centro per la Ricerca Scientifica e Tecnologica, Trento,
Italy. LearningPinocchio is property of ITC-Irst, see
http://ecate.itc.it:1025/cirave/LEARNING/home.html.
The financial application mentioned above was jointly
developed with Alberto Lavelli. Thanks to Daniela Pet-
relli for revising this paper. Errors, if any, are mine.

References
[Califf 1998] Mary E. Califf, Relational Learning Tech-
niques for Natural Language IE, Ph.D. thesis, Univ. Texas,
Austin, www.cs.utexas.edu/users/mecaliff

[Cardie 1997] Claire Cardie, `Empirical methods in infor-
mation extraction', AI Journal, 18(4), 65-79, 1997.

[Ciravegna et al. 2000] Fabio Ciravegna, Alberto Lavelli,
and Giorgio Satta, `Bringing information extraction out of
the labs: the Pinocchio Environment', in ECAI2000, Proc.
of the 14th European Conference on Artificial Intelli-
gence, ed., W. Horn, Amsterdam, 2000. IOS Press.

[Ciravegna 2000a] Fabio Ciravegna, `Learning to Tag for
Information Extraction from Text’ in F. Ciravegna, R.
Basili, R. Gaizauskas (eds.) ECAI Workshop on Machine

Learning for Information Extraction, Berlin, August 2000.
(www.dcs.shef.ac.uk/~fabio/ecai-workshop.html)

[Douthat 1998] Aaron Douthat, `The message understanding
conference scoring software user's manual', in the 7th Mes-
sage Understanding Conf., www.muc.saic.com

[Freitag 1998] Dayne Freitag, `Information Extraction from
HTML: Application of a general learning approach', Proc.
of the 15th National Conference on Artificial Intelligence
(AAAI-98), 1998.

[Freitag and McCallum 1999] Dayne Freitag and Andrew
McCallum: `Information Extraction with HMMs and
Shrinkage’, AAAI-99 Workshop on Machine Learning for
Information Extraction, Orlando, FL, 1999,
www.isi.edu/~muslea/RISE/ML4IE/

[Freitag and Kushmerick 2000] Dayne Freitag and Nicholas
Kushmerick, `Boosted wrapper induction’, in F. Ciravegna,
R. Basili, R. Gaizauskas (eds.) ECAI2000 Workshop on
Machine Learning for Information Extraction, Berlin, 2000,
(www.dcs.shef.ac.uk/~fabio/ecai-workshop.html)

[Grishman 1997] Ralph Grishman, ` Information Extraction:
Techniques and Challenges, . In Information Extraction: A
Multidisciplinary Approach to an Emerging Information
Technology, in M.T. Pazienza, (ed.), Springer, 97.

[Humphreys et al. 1998] K. Humphreys, R. Gaizauskas, S.
Azzam, C. Huyck, B. Mitchell, H. Cunningham, Y. Wilks:
`Description of the University of Sheffield LaSIE-II System
as used for MUC-7’. In Proc. of the 7th Message Under-
standing Conference, 1998 (www.muc.saic.com).

[Kushmerick et al. 1997] N. Kushmerick, D. Weld, and R.
Doorenbos, `Wrapper induction for information extrac-
tion', Proc. of 15th International Conference on Artificial
Intelligence, IJCAI-97, 1997.

[Miller et al. 1998] S. Miller, M. Crystal, H. Fox, L. Ram-
shaw, R. Schwartz, R. Stone and R. Weischedel, `BBN:
Description of the SIFT system as used for MUC-7', In
Proc. of the 7th Message Understanding Conference, 1998
(www.muc.saic.com).

 [Muslea et al. 1998] I. Muslea, S. Minton, and C. Knoblock,
`Wrapper induction for semi-structured, web-based infor-
mation sources', in Proc. of the Conference on Autonomous
Learning and Discovery CONALD-98, 1998.

 [Soderland 1999] Steven Soderland, `Learning information
extraction rules for semi-structured and free text', Machine
Learning, (1), 1-44, 1999.

[Yangarber et al. 2000] Roman Yangarber, Ralph Grish-
man, Pasi Tapanainen and Silja Huttunen: ``Automatic
Acquisition of Domain Knowledge for Information Ex-
traction'' In Proc. of COLING 2000, 18th Intern. Confer-
ence on Computational Linguistics, Saarbrücken, 2000.

