
(LP)2, an Adaptive Algorithm for Information Extraction
from Web-related Texts

Fabio Ciravegna

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street,

S1 4DP Sheffield, UK
F.Ciravegna@dcs.shef.ac.uk

in Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction and Mining to be held in conjunction with
the 17th International Conference on Artificial Intelligence (IJCAI-01), Seattle, August, 2001

mailto:F.Ciravegna@dcs.shef.ac.uk
http://www.smi.ucd.ie/ATEM2001/

Abstract

(LP)2 is an algorithm for adaptive Information
Extraction from Web-related text that induces
symbolic rules by learning from a corpus tagged
with SGML tags. Induction is performed by
bottom-up generalisation of examples in a
training corpus. Training is performed in two
steps: initially a set of tagging rules is learned;
then additional rules are induced to correct
mistakes and imprecision in tagging. Shallow
NLP is used to generalise rules beyond the flat
word structure. Generalization allows a better
coverage on unseen texts, as it limits data
sparseness and overfitting in the training phase.
In experiments on publicly available corpora the
algorithm outperforms any other algorithm
presented in literature and tested on the same
corpora. Experiments also show a significant
gain in using NLP in terms of (1) effectiveness
(2) reduction of training time and (3) training
corpus size. In this paper we present the
machine learning algorithm for rule induction.
In particular we focus on the NLP-based
generalisation and the strategy for pruning both
the search space and the final rule set.

1. Introduction
By general agreement the main barriers to wide use
and commercialization of Information Extraction
from text (IE) are the difficulties in adapting systems
to new applications. Classical IE systems often rely
on approaches based on Natural Language Processing
(NLP) (e.g. using parsing) [Humphreys et al. 1998;
Grishman 1997]. Most current IE systems require the
involvement of IE experts for new applications
development [Ciravegna 2000]. This is a serious
limitation for the wider acceptance of IE, especially
in the Internet realm: most small/medium enterprises
(i.e. the backbone of the New Economy) cannot
afford to hire specialists in IE. For this reason there
is an increasing interest in applying machine learning
(ML) to IE in order to build adaptive systems. Up to
now, the use of ML has been approached mainly in
an NLP-oriented perspective, i.e. in order to reduce
the amount of work to be done by the NLP experts in
porting systems across free text based scenarios
[Cardie 1997; Miller et al. 1998; Yangarber et al.
2000].
In the last few years Information Extraction from
texts (IE) has been focusing progressively on the
Web, i.e. away from the newspaper-based text IE
analysed in the MUC conferences. This is due both to

the reduction of strategic funds available for research,
and to the increase in the potential IE applications in
the Web realm. The Web emphasises the central role
of texts such as emails, Usenet posts and Web pages.
In this context, extralinguistic structures (e.g. HTML
tags, document formatting, and stereotypical
language) are elements used to convey information.
Linguistically intensive approaches as used in
classical IE systems [Grishman 1997, Humphreys et
al. 1998] are difficult or unnecessary or ineffective in
such cases. For this reason a new research stream on
adaptive IE has arisen at the convergence of NLP,
Information Integration and Machine Learning. The
goal is to produce IE algorithms and systems
adaptable to new Internet-related
applications/scenarios by using only an analyst’s
knowledge (i.e. knowledge on the domain/scenario
itself) [Kushmerick 1997; Califf 1998; Muslea et al.
1998; Freitag and McCallum 1999; Soderland 1999;
Freitag and Kushmerick 2000]. As result successful
commercial products have been created and there is
an increasing interest in IE in the Internet market.
Currently available technology is very effective when
applied to highly structured HTML pages, but less
effective with unstructured texts (e.g. free texts). In
our opinion, this is because most successful
algorithms tend to avoid any generalisation over the
flat word sequence. When they are applied to
unstructured texts, data sparseness becomes a
problem. Data sparseness is relevant for: (1) the size
of the training data, the more sparse the data are, the
more examples are needed for training; (2) quality of
results, sparse data cause the generated rules to be
applicable to a limited number of cases, overfitting
the training examples, and therefore affecting
effectiveness on unseen cases.
This paper presents (LP)2 (Learning Pattern by
Language Processing), an adaptive IE algorithm
designed in this new stream of research that makes
use of shallow NLP in order to overcome data
sparseness when confronted with NL texts, while
keeping effectiveness on highly structured texts.
Experimentally the algorithm outperforms any other
algorithm presented in the literature on a number of
testbeds. In particular we focus on the machine
learning algorithm for rule induction, on the NLP-
based generalisation and the strategy for pruning both
the search space and the final rule set.

2 Types of Induced Rules
(LP)2 learns rules by generalising over a set of
examples marked via SGML tags in a training
corpus. It induces two types of symbolic rules:
tagging rules and correction rules. This section

presents the types of rules the algorithm induces,
while section 4 focuses on rule generalisation.

2.1 Tagging Rules
A tagging rule is composed of a left hand side,
containing a pattern of conditions on a connected
sequence of words, and a right hand side that is an
action inserting an SGML tag in the texts. Each rule
inserts a single SGML tag, e.g. </speaker>. This
makes (LP)2 different from many adaptive IE
algorithms, whose rules recognize whole slot fillers
(i.e. insert both <speaker> and </speaker>, [Califf
1998, Freitag 1998] or even multi slots, [Soderland
1999]. As positive examples the tagging rule
induction algorithm uses SGML tags inserted by a
user in a training corpus. The rest of the corpus is
considered a pool of negative examples. For each
positive example the algorithm: (1) builds an initial
rule, (2) generalizes the rule and (3) keeps the k best
generalizations of the initial rule.
In particular (LP)2’s main loop starts by selecting a tag
in the training corpus and extracting from the text a
window of w words to the left and w words to the
right. Each information stored in the 2*w word
window is transformed into a condition in the initial
rule pattern, e.g. if the third word is “seminar”, a
condition word3=“seminar” is created.
Each initial rule is then generalised (see next
sections) and the k best generalisations are kept:
retained rules become part of the best rules pool.
When a rule enters such pool, all the instances
covered by the rule are removed from the positive
examples pool, i.e. they will no longer be used for
rule induction ((LP)2 is a sequential covering
algorithm). Rule induction continues by selecting
new instances and learning rules until the pool of
positive examples is void.

2.2 Contextual Rules
When applied to the test corpus, the best rules pool
provides good results in terms of precision, but
limited effectiveness in terms of recall. This means
that such rules insert few tags (low recall), and that
such tags are generally correct (high precision). This

is because jus
match the ab
selection. In o
it is necessary
recall without
of the non-b
application to
among tags a
of such rules
inserting tags
other tags (
independent:
<tagx> alwa
concatenated
presence of a
presence of a
“anchor tag”
be summarize
of the presen
tag rules are n
context is r
constraint use
rules. In part
non-best rules
inserted by th
rules will be
rules were abl
rules are ca
consider a rul
a capitalized
a best rule as
the corpus, bu
open <speak
the best rule
<speaker>, b
“Anchor tags”
the right of
anchor tag is
opposite cas
Reliability for
the same error
In conclusion
both the best r

1 Here we use
is more intuiti

Condition Action
Word=? Insert Tag

the
seminar

at stime
4

pm
Figure 1: Starting rule (with associated NLP
knowledge) inserting <stime> in the sentence
``the seminar at <stime> 4 pm …''

 w
a

p

Figure 2:
shown) shif
position.
condition action
ord wrong tag move tag to
t

4 </stime>
m </stime>

A a correction rule. The action (not
ts the tag from the wrong to the correct
t a limited number of rules are able to
solute reliability condition required for
rder to reach acceptable effectiveness,

 to identify additional rules able to raise
 affecting precision. (LP)2 recovers some
est rules and tries to constrain their
 make them reliable. Interdependencies
re exploited to constrain the application
. As mentioned, (LP)2 learns rules for
 (e.g., <speaker>) independently from
e.g., </speaker>). But tags are not

(1) tags represent slots, therefore
ys requires </tagx>; (2) slots can be
into linguistic patterns and therefore the
 slot can be a good indicator of the

nother, e.g. </speaker> can be used as
for inserting <stime>1. (1) and (2) can
d as: <tagx> can be used as indicator
ce of <tagy>. Considering that single
ot able to model such dependencies, the
eintroduced in (LP)2 as an external
d to improve the reliability of some
icular, (LP)2 reconsiders low precision
 for application in the context of tags
e best rules only. For example some

used only to close slots when the best
e to open it, but not to close it. Selected
lled contextual rules. As example
e inserting a </speaker> tag between
word and a lowercase word. This is not
 it reports high recall/low precision on
t it is reliable if used only to close an
er>. Thus it will only be applied when
s have already recognized an open
ut not the corresponding </speaker>.
 used as contexts can be found either to
the rule space application (e.g. when
 <speaker>), or to the left as in the
e (anchor tag is </speaker>).
 contextual rules is computed by using
 rate used for best rules.
 the tagging rule set is composed of
ule pool and the contextual rules.

 examples related to the first case as it
ve.

2.3 Correction Rules
Tagging rules when applied on the test corpus report
some imprecision in slot filler boundary detection. A
typical mistake is for example “at <time> 4

</time> pm”, where “pm” should have been part of
the time expression. For this reason (LP)2 induces
rules for shifting wrongly positioned tags to the
correct position. It learns from the mistakes made in
tagging the training corpus. Correction rules are
identical to tagging rules, but (1) their patterns match
also the tags inserted by the tagging rules and (2)
their actions shift misplaced tags rather than adding
new ones. An example of an initial correction rule for
shifting </stime> in “at <stime> 4 </stime> pm'' is
shown in Figure 2. The induction algorithm used for
the best tagging rules is also used for shift rules:
initial instance identification, generalisation, test and
selection. Positive (correct shifts) and negative
(wrong shifts of correctly assigned tags) are counted.
Shift rules are accepted only if they report an
acceptable error rate.

3. Rule Application for IE
In the testing phase, information is extracted from the
test corpus in four steps: initial tagging, contextual
tagging, correction and validation. The best rule pool
is initially used to tag the texts. Then contextual rules
are applied in the context of the introduced tags.
They are applied until new tags are inserted, i.e. some
contextual rules can match also tags inserted by other
contextual rules. Then correction rules correct some
imprecision. Finally each tag inserted by the
algorithm is validated. There is no meaning in
producing a start tag (e.g. <speaker>) without its
corresponding closing tag (</speaker>) and vice
versa, therefore uncoupled tags are removed in the
validation phase.

4. The Rule Induction Algorithm
The types of rule mentioned above are all induced by
the same algorithm. As mentioned, the initial rule
pattern matches conditions on word strings as found

in a window w around each instance. Then each rule
is generalised. Generalisation is important in in
analysing natural language input, because of data
sparseness due to the high flexibility of natural
language forms. Avoiding generalisation actually
means producing a big rule set composed of rules
covering a limited number of cases each. Such rule
set is very likely to produce very good results on the
training corpus, but very limited accuracy on the test
corpus. This is the well known problem of
overfitting the training corpus: on the one hand the
system learns a number of rules for covering
unrelated cases: if such cases are not found as they
are, the rule will not apply at testing time (leading to
low recall). On the other hand the rule set is sensible
to errors in the training data: such errors can either
prevent some rules derived from correct examples
from being accepted as they report errors (low recall
again during test) or can produce spurious results at
testing time (low precision).
It is therefore important on the one hand to generalise
over the plain word surface of the training example in
order to produce rules able to overcome data
sparseness. On the other hand it is necessary to prune
the resulting rule set in order to reduce overfitting, as
explained in the remainder of the section.

4.1 Rule Generalisation
There are two ways in which the algorithm
generalises the initially induced rules: on the one
hand constraints in the initial pattern are dropped
(e.g. patterns are reduced in length or some forms of
wildcards are used) this allows to model cases that
slightly differ (e.g. « at 4 pm » and « at 5 pm » can be
modelled by the rule « word=at, word=*,
word=pm »). On the other hand conditions on single
elements are relaxed by using NLP-based
information. Shallow Natural Language Processing
is used to associate additional knowledge to each
word in the initial pattern via a morphological
analyser (providing lemma + case information), a
POS tagger (lexical category, e.g. noun) and a user-
defined dictionary (or a gazetteer, if available)
(Figure 3). Conditions on each element in the rule
pattern are relaxed by substituting constraints on
words with constraints on some parts of the
additional knowledge (Figure 4). In the example
mentioned above (« at 4 pm » and « at 5 pm ») the

P

Condition Action Word
index

Word Lemma LexCat Case SemCat Tag
3 at Stime
4 Digit
5 timeid

Figure 4: One generalisation for the rule above.
Condition Additional Knowledge Action word
index Word Lemma LexCat case SemCat Tag

1 The the Art low
2 Seminar Seminar Noun low
3 at at Prep low stime
4 4 4 Digit low
5 pm pm Other low timeid
6 will will Verb low

Figure 3: The rule in figure 1 with associated NL
knowledge.

rule « word=at, lexCat=DIGIT, word=pm » is able to
better generalise over the two cases than the rule
using a wildcard.

We have implemented different strategies for rule
generalisation. The naïve version of the algorithm
[Ciravegna 2001] [Ciravegna2001b] generates all the
possible rules in parallel. Each generalisation is then
tested separately on the training corpus and an error
score E=wrong/matched is calculated. For each
initial rule, the k best generalisations are kept that: (1)
report better accuracy; (2) cover more positive
examples; (3) cover different parts of input. The
naïve generalisation is quite expensive in
computational terms. Here we describe a more
efficient version of the algorithm that uses a general
to specific beam search for the best k rules in a way
similar to AQ [Michalski 1986]. It starts by
modelling a specific instance with the most general
rule (the empty rule matching every instance) and
specialises it by greedily adding constraints.
Constraints are added by incrementing the length of
the rule pattern, i.e. by adding conditions on terms.
Figure 6 shows the search space for an example of
this type of generalisation for the case in which

conditions are set only on words. The induction
algorithm is shown in figure 5. This algorithm is as
effective as the naïve one, but it is more efficient, as
it allows a very efficient rule testing. As a matter of
fact the matches of a specialised rule can be

Figu
only
“4”

InduceRuleFromInstance(instance)
RuleSet=startRulesFromEmptyRule(instance);
Loop while notEmpty(RuleSet) {
Loop for rule1 in butLast(RuleSet){

for rule2 in butFirst(RuleSet)
ruleSet=combineRules(rule1, rule2);
add(ruleSet, finalRuleSet);
} }

return finalRuleSet;
}

startRulesFromEmptyRule (instance){
tag=instance.tag
loop for distance from 0 to 2*w {
do word=instance.pattern[distance]

/* w-position is the distance between
the current word and the tag to be
inserted */

collect generateRule(word,tag,w-position)
} }

Figure 5: the basic algorithm for non NLP-based generalisation

Word1=at,
action=<stime>
matches: 0,12,15,44,72,134,146,230,250

action=<stime>,
Word1=4
matches: 12,27,72,112,134,230,245

Word1=at,
action=<stime>,
Word2=4
matches: 12,72,134

Word1=seminar,
Word2=at
action=<stime>
matches: 0,12,134

action=<stime>,
Word1=4,
Word2=pm
matches: 12,134

Word1=seminar,
Word2=at,
action=<stime>,
Word3=4
matches: 12,134

Word1=at,
action=<stime>,
Word2=4
Word3=pm
matches: 12,134

Word1=seminar,
Word2=at,
action=<stime>,
Word3=4
Word3=pm
matches: 12,134

action=<stime>
matches: all the corpus

Word1=seminar,
Word2=*
action=<stime>
matches: 0,4,12,134,222,232

action=<stime>,
Word1=*
Word2=pm
matches: 12,27,72,134,245

r0

r1 r2 r3 r4

r5 r6 r7

r8 r9

r10

re 6: pattern generalisation for "the seminar at <stime> 4 pm will" with window w=2 (conditions on words
). The rule action is inserted in the part of the pattern where the tag is inserted. For example r6 matches “at” +

 and inserts a tag after “at”. The “matches” fields contain indeces in the corpus where rules apply.

computed as the intersection of the matches of two
more general rules, making testing an order of
magnitude more efficient (see figure 6). The actual
algorithm is more complex than shown, as it also
relaxes conditions on words in rule patterns by using
conditions on some parts of the NLP-based
additional knowledge associated to each word. In
order to introduce this type of generalisation the
algorithm in figure 6 is modified so that RuleSet
does no longer contain rules, but sets of rules derived
by concurrent generalisation of the lexical items. The
final algorithm is shown in figure 7.

4.2 Rule Set Pruning
Pruning is performed both for efficiency reasons (so
to reduce the search space during generalisation) and
to reduce overfitting. Pruning removes rules that
either are unreliable, or whose coverage overlaps
with those of other rules.
There are two types of unreliable rules: those with a
high error rate (i.e. performing poorly on the training
corpus) and those reporting a very limited number of
matches on the training corpus, so that it is not easy
to foresee what their behaviour at test time will be.
In order to prune the final rule set from such
elements, rule accuracy is tested against a maximum
error threshold set by the user before running the
algorithm. Rules that do not pass the test are
discarded as soon as they are generated and tested.

They are no longer considered for IE, but they are
considered for further specialisation, as they could
become reliable after the addition of some more
constraints. At the end of training the algorithm tries
to optimise the error threshold by restricting the rule
selection condition, therefore excluding some other
rules. It tests the results of the reduced rule set on the
training corpus and stops pruning the moment in
which there is a reduction of accuracy (seen as the
mean of precision and recall).
Rules are also pruned at induction time when they
cover too few cases in the training corpus and
therefore they cannot be safely used at test time
because the amount of training data does not allow to
guarantee a safe behaviour at run time. Such rules are
detected at generation time and any further
specialisation depending from them is stopped. In
this way the search space for the rule is reduced and
the algorithm is more efficient. For example with a
threshold on minimum coverage set to 3 cases, rules
9 and 10 would have never been generated in the
example in figure 6. Again the user can set a priori
the minimum coverage threshold and such threshold
will be optimised at the end of training in a way
similar to the error threshold optimisation.

InduceRuleFromInstance(instance)
RuleSet=startRulesFromEmptyRule(instance);
Loop while notEmpty(RuleSet) {
NewRuleSetS={}
Loop for ruleSet1 in butLast(RuleSet){

for ruleSet2 in butFirst(RuleSet)
ruleSet=combineRuleSet(ruleSet1, ruleSet2);
pruneRuleSet(ruleSet);
add(ruleSet, newRuleSetS);
add(ruleSet, finalRuleSets);
}
RuleSet=NewRuleSetS;
}
PruneRuleSets(finalRuleSets)
}

startRulesFromEmptyRule (instance)
tag=instance.tag
Loop for distance from 0 to 2*w {
word=instance.pattern[distance]

/* w-position is the distance between
the current word and the tag to be
inserted */

generateRuleSet (word, tag, w-position)
}

generateRuleSet(word, tag, position){
Loop for condit in NLPGeneralisations(word)
Collect generateRule(condit, tag, position)

}

PruneRuleSet (ruleSet){
For rule in ruleSet
if (not(subsumedRule(rule, RuleSet)))
collect rule

}

subsumedRule (rule, ruleSet){
loop for ru in ruleSet
if (ru!=rule)
if((ru.score<=rule.score) and

(includes(ru.coverage,rule.coverage)))
return true;

return false;
}

Figure 7: the final algorithm for rule generalisation by starting from an initial rule.

There is a further level of pruning based on
overlapping rule coverage: all the rules whose
coverage is subsumed by that of others more general
ones are removed from the selected rule set. Again
the goal is to determine the minimum subset of rules
that maximises the accuracy of IE on the training
corpus. Rules whose coverage is subsumed by those
of other rules can be safely removed, as their
contribution to the final results is irrelevant. Such
type of pruning requires comparing not only
coverage, but also the reliability of the involved rules
(otherwise the algorithm would only produce one
rule, i.e. the empty initial rule!). In general rules
subsumed by other rules with the same (or minor)
error rate can be safely removed during rule
induction. Rules subsumed by ones with worse error
rate are pruned when the final error and covering
threshold have been determined, as it is necessary to
see if the subsuming rule will survive such rule
pruning process.
A problem arises in pruning at every level when two
rules cover the same set of examples with the same
error rate. In this case the following heuristic is used.
If the number of covered cases is limited, then the
one with most specific conditions is chosen (e.g. one
using condition on words). This is because the
training corpus does not provide enough evidence
that the rule is reliable and a rule requiring a
sequence of words is less likely to produce spurious
results at test time than one requiring sequences of
conditions on the additional knowledge (e.g. on
lexical categories). Otherwise, the rule with the most
generic conditions is selected (e.g. testing lexical
categories), as it is more likely to provide coverage
on the test corpus.

5. Experimental Results
(LP)2 was tested in a number of tasks in two
languages: English and Italian. Here we report results
on two standard tasks for adaptive IE: the CMU
seminar announcements and the Austin job
announcements2. The first task consists of uniquely

2

identifying speaker name, starting time, ending time
and location in 485 seminar announcements, [Freitag
1998]. Figure 5 shows the overall accuracy obtained
by (LP)2, and compares it with that obtained by other
state of the art algorithms. (LP)2 definitely
outperforms other NLP-based approaches (+8.7% wrt
Rapier [Califf 1998], +21% wrt to Whisk [Soderland
1999]), but it also outperforms non-NLP approaches
(+2.1% wrt BWI, [Freitag and Kushmerick 2000],
and +4% wrt HMM, [Freitag and McCallum 1999]).
Moreover (LP)2 is the only algorithm whose results

180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560

2

Generalisation

No Generalisation

ta
er

Slot (LP)2 Rapier BWI Slot (LP)2 Rapier
id 100 97.5 100 Platform 80.5 72.5

title 43.9 40.5 50.1 Application 78.4 69.3
company 71.9 69.5 78.2 Area 66.9 42.4

salary 62.8 67.4 Req-years-e 68.8 67.1
recruiter 80.6 68.4 Des-years-e 60.4 87.5

state 84.7 90.2 Req-degree 84.7 81.5
city 93.0 90.4 des-degree 65.1 72.2

country 81.0 93.2 post date 99.5 99.5
language 91.0 80.6 All Slots 84.1 75.1

Figure 8: F-measure (β=1) for misc.jobs.offered using
1/2 corpus for training. Whisk obtained lower accuracy
than Rapier, [Califf 1998]. We cannot compare (LP)2 with
BWI as the latter was tested on a limited subset of slots

 Corpora at www.isi.edu/muslea/RISE/index.html.

0
20
40
60
80

100
120
140
160

0 1 2 3 4 5 6 7 8 9 10 11 1

Figure 9: the effect of generalisation in reducing da
sparseness: number of rules (on y) covering numb
of cases (on x : we show up to 12 cases)

 (LP)2 BWI HMM SRV Rapier Whisk
speaker 77.6 67.7 76.6 56.3 53.0 18.3
location 75.0 76.7 78.6 72.3 72.7 66.4

stime 99.0 99.6 98.5 98.5 93.4 92.6
etime 95.5 93.9 62.1 77.9 96.2 86.0

All Slots 86.0 83.9 82.0 77.1 77.3 64.9

Figure 10: results (F-measure β=1) obtained on CMU
seminars in a 10 experiments using 1/2 corpus for
training. See [Ciravegna 2001b] for details on the
experiments.

never go down 75% on any of the slots.
A second task concerned IE from 300 Job
Announcements taken from misc.jobs.offered, [Califf
1998]. (LP)2 outperforms both Rapier and Whisk (Figure
8).

6. Discussion
(LP)2's main features that are most likely to contribute
to the excellence in the experiments are: (1) the use
of single tag rules, (2) the use of a correction phase,
and (3) rule generalisation via shallow NLP
processing. Points 1 and 2 have been discussed in
[Ciravegna 2001b]. Here we focus on the effect of
NLP-based generalisation. (LP)2 induces rules by
instance generalisation through shallow NLP
processing. Generalisation of examples in the training
corpus allows reducing data sparseness by capturing
some general aspects beyond the simple flat word
structure. Morphology allows overcoming of data
sparseness due to number/gender word realisations
(an aspect very relevant in morphologically rich
languages such as Italian), while POS tagging
information allows generalisation over lexical
categories. In principle such types of generalisation
produce rules of better quality than those matching
the flat word sequence; rules that tend to be more
effective on unseen cases. This is because both
morphology and POS tagging are generic NLP
processes performing equally well on unseen cases;
therefore rules relying on their results apply
successful on unseen cases. This intuition was
confirmed experimentally: (LP)2 with generalisation
((LP)2

G) definitely outperforms a version without NLP
generalisation (but with pattern length generalisation)
((LP)2

NG) on the test corpus (Figure 11), while having
comparable results on the training corpus. Moreover

(LP)2
G produces more general rules, i.e. rules covering

more cases (Figures 10 and 11). NLP reduces the risk
of overfitting the training examples. Figure 13 shows
experimentally how (LP)2

G avoids overfitting on the
speaker field (constant rise in f-measure when the
training corpus is increased in size), while (LP)2

NG
present a clear problem of overfitting (reductionof
effectiveness when more examples are provided).
Producing more general rules also implies that the
covering algorithm converges more rapidly because
its rules tend to cover more cases. This means that
(LP)2

G needs less examples in order to be trained, i.e.,
rule generalisation also allows reducing the training
corpus size. Figure 13 shows how on etime (LP)2

G is

l

A

Average ru
Selected ru
Rules cove
Rules cove
Rules cove

Figure 11:
generalisatio
generalisatio
10
20
30
40
50
60
70
80
90

100

100 150 200 243

Speaker Gen Speaker NoGen
etime GEN etime NoGen

Figure 13: effect of training data quantity in the CMU
seminar task : the generalisation-based version
converges immediately to the optimal value for
<etime> and shows a positive trend for <speaker>.
The non NLP based version shows overfitting on
<speaker> and slowly converges on <etime>
40

50

60

70

80

90

100

4 6 8
speaker stime etime
location All Slots

Figure 12: the effect of different window sizes in
learning tagging rules : some fields are not affected
(e.g. location), while others (speaker) are sensible to
window size.
Slot (LP)2
G (LP)2

NG
speaker 72.1 14.5
ocation 74.1 58.2
stime 100 97.4
etime 96.4 87.1
ll slots 89.7 78.2

(LP)2

G (LP)2
NG

le coverage 10.2 6.2
les 887 1136
ring 1 case 133 (14%) 560 (50%)
ring >50 cases 37 15
ring >100 cases 19 3

 comparison between the NLP-based
n version (LP)2

G with the version without
n (LP)2

NG

able to converge at optimal values with 100 examples
only, while accuracy in (LP)2

NG slowly increases with
more training material, even if it is not able to reach
the same accuracy as (LP)2

G , even when using half of
the corpus for training.
Not surprisingly the role of shallow NLP in the
reduction of data sparseness is more relevant for
semi-structured or free texts (e.g. the CMU seminars)
than on highly structured documents (e.g. HTML
pages). Note that during the rule selection phase (LP)2
is able to adopt the right level of NLP information for
the task at hand: in an experiment on texts written in
mixed Italian/English we used an English POS tagger
that was completely unreliable on the Italian part of
the input. (LP)2

G reached an effectiveness analogous
to (LP)2

NG’s, because the rules using the unreliable
NLP information were automatically discarded.
Finally it is interesting to note the way rule pattern
length affects accuracy. Some slots are insensible to
it (e.g. location), while others definitely need a longer
pattern. This is an important information to monitor
as the window size strongly influences training time.

7. Conclusion and Future Work
(LP)2 is a successful algorithm. On the one hand, it
outperforms the other state of the art algorithms in
two scientific experiments on two very popular IE
tasks. In particular (LP) 2 definitely outperforms other
algorithms making use of NLP information such as
Rapier and Whisk (more than 9% and 20% in terms
of accuracy respectively in the CMU experiment).
This is mainly due to the tagging and correction
based learning algorithm, as all the algorithms are
able to exploit NLP information. Rapier uses a
tagging approach equivalent to the best tagging step
of (LP)2. Moreover, even if it is able to induce more
expressive rules (e.g. making use of more powerful
wild cards), it uses a randomly based compression
rule mechanism for generalisation that tends to
produce rules providing spurious results, [Ciravegna
2000b].
Whisk is able to use some more sophisticated NLP
information, i.e., it is able to work also on the output
of a parser. Unfortunately it uses multi-slot rules that
increase data sparseness in the training phase, leading
to very low recall [Ciravegna 2001b].
Concerning the non NLP-based algorithms, their
tagging approach is generally equivalent to the best
rule based tagging phase in (LP)2, but they tend to use
more sophisticated machine learning approaches.
BWI for example learns single tag rules that are
largely equivalent to the best rules in (LP)2. Boosting,
[Schapire 1998], is used to emphasize examples on
which the learner is doing poorly in order to derive
additional rules. The rule formalism includes a

number of wildcards that contribute radically to the
algorithm’s experimental results (up to 85% of its
effectiveness). BWI does not use any type of NLP
preprocessing. (LP) 2 slightly outperforms BWI in the
experiments. In our opinion this is due to the
combined effect of the contextual tagging phase, of
the correction phase and of the use of NLP for
generalization, the latter – we believe - being the
most relevant of the three.
For a more complete comparison with the state of the
art algorithms, [Ciravegna 2000].
(LP)2 is also very successful because it was the basis
for building LearningPinocchio, a tool for adaptive IE
applications that is having a considerable commercial
success. A number of applications have been
developed for commercial companies and a number
of licenses have been released to industrial
companies for further application development,
[Ciravegna 2001].
Future work on (LP)2 will involve both the
improvement of rule formalism expressiveness (use
of wild cards) and the further use of shallow NLP for
generalisation. Concerning the latter, from the one
hand (LP)2 will be used in a cascade with a Named
Entity Recogniser (also implemented by using (LP)2).
This will allow further generalisation over named
entity classes (e.g., the speaker is always a person,
therefore it is possible to generalise over such class in
the rules). On the other hand (LP)2 is compatible with
forms of shallow parsing such as chunking. It would
be possible to preprocess the texts with a chunker and
to insert tags only at the chunk borders. This is likely
to improve precision in border identification,
reducing the need of correction.

Acknowledgments
I developed the naive version of (LP)2 and
LearningPinocchio at ITC-Irst, Centro per la Ricerca
Scientifica e Tecnologica, Trento, Italy.
LearningPinocchio is property of ITC-Irst, see
http://ecate.itc.it:1025/cirave/LEARNING/home.ht
ml. Some parts of this paper have been previously
published in [Ciravegna 2001b]. For the common
parts: copyright of the Association for
Computational Linguistics.

References
Califf M. E. (1998), Relational Learning Techniques

for Natural Language Information Extraction,
Ph.D. thesis, Univ. Texas, Austin, 1998
www/cs/utexas.edu/users/mecaliff

Claire Cardie (1997), `Empirical methods in
information extraction', AI Journal, 18(4), 65-79,
1997.

Ciravegna F., Lavelli, A. and Satta, G. (2000),
`Bringing information extraction out of the labs:
the Pinocchio Environment', in ECAI2000,
Proceeding of the 14th European Conference on
Artificial Intelligence, W. Horn, ed., IOS Press.

Ciravegna, F., (2000b)‘Learning to tag for
Information Extraction from Text’, in F. Ciravegna,
R. Basili, R. Gaizauskas (eds.) ECAI2000
Workshop on Machine Learning for IE, Berlin,
(www.dcs.shef.ac.uk/~fabio/ecai-workshop.html)

Ciravegna, F., (2001) ‘Adaptive Information
Extraction from Text by Rule Induction and
Generalisation’ Proceedings of 17th International
Joint Conference on Artificial Intelligence (IJCAI
2001), Seattle, August 2001.

Ciravegna, F., (2001b) ‘Using Shallow NLP in
Adaptive Information Extraction from Web-related
Texts’ Proceedings of 2001 Conference on
Empirical Methods in Natural Language
Processing (EMNLP 2001), Pittsburgh, June 2001.

Freitag D. (1998), `Information Extraction from
HTML: Application of a general learning
approach', Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI-98),
1998.

Freitag D. and McCallum, A. (1999): `Information
Extraction with HMMs and Shrinkage’, AAAI-99
Workshop on Machine Learning for IE, Orlando,
www.isi.edu/~muslea/RISE/ML4IE/

Freitag D., Kushmerick, N. (2000) `Boosted wrapper
induction’, in F. Ciravegna, R. Basili, R.
Gaizauskas (eds.) ECAI2000 Workshop on
Machine Learning for IE, Berlin, 2000,
(www.dcs.shef.ac.uk/~fabio/ecai-workshop.html)

Grishman R. (1997), `Information Extraction:
Techniques and Challenges. In Information
Extraction: A Multidisciplinary Approach to an
Emerging Information Technology, in M.T.
Pazienza, (ed.), Springer Verlag.

Humphreys, K., Gaizauskas, R., Azzam, S., Huyck,
C., Mitchell, B., Cunningham, H. and Wilks, Y.
(1998): `Description of the University of Sheffield
LaSIE-II System as used for MUC-7’. In Proc. of
the 7th Message Understanding Conference.

Kushmerick N., Weld, D. and Doorenbos, R.,(1997)
`Wrapper induction for information extraction',
Proc. of 15th International Conference on Artificial
Intelligence, IJCAI-97.

Mickalski, R. S., Mozetic, I., Hong, J., Lavrack, H.
(1986): The multi purpose incremental learning
system AQ15 and its testing application to three
medical domains’, in Proceedings of the 5th
National Conference on Artificial Intelligence,
Philadelphia: Morgan Kaufmann publisher.

S. Miller, M. Crystal, H. Fox, L. Ramshaw, R.
Schwartz, R. Stone and R. Weischedel, (1998) `BBN:
Description of the SIFT system as used for MUC-7',
In Proc. of the 7th Message Understanding
Conference, 1998 (www.muc.saic.com).

Muslea, I., Minton, S, and Knoblock, C, (1998)
`Wrapper induction for semi-structured, web-based
information sources', in Proc. of the Conference on
Autonomous Learning and Discovery.

Schapire R. and Singer Y., (1998), `Improved
boosting algorithms using confidence-rated
predictions', in Proc. Eleventh Annual Conference
on Computational Learning Theory.

Soderland, S., `Learning information extraction rules
for semi-structured and free text', Machine
Learning, (1), 1-44, 1999.

Yangarber, R., Grishman, R., Tapanainen, P. and
Huttunen, Silja: `Automatic Acquisition of Domain
Knowledge for Information Extraction'' In Proc. of
COLING 2000: The 18th International Conference
on Computational Linguistics, Saarbrücken, 2000.

	Abstract
	1. Introduction
	2	Types of Induced Rules
	2.1	Tagging Rules
	2.2 Contextual Rules
	2.3 Correction Rules

	3. Rule Application for IE
	4. The Rule Induction Algorithm
	4.1 Rule Generalisation
	4.2 Rule Set Pruning

	5. Experimental Results
	Discussion
	7. Conclusion and Future Work
	References

