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Abstract 

(LP)2 is an algorithm for adaptive Information 
Extraction from Web-related text that induces 
symbolic rules by learning from a corpus tagged 
with SGML tags. Induction is performed by 
bottom-up generalisation of examples in a 
training corpus. Training is performed in two 
steps: initially a set of tagging rules is learned; 
then additional rules are induced to correct 
mistakes and imprecision in tagging. Shallow 
NLP is used to generalise rules beyond the flat 
word structure. Generalization allows a better 
coverage on unseen texts, as it limits data 
sparseness and overfitting in the training phase. 
In experiments on publicly available corpora the 
algorithm outperforms any other algorithm 
presented in literature and tested on the same 
corpora. Experiments also show a significant 
gain in using NLP in terms of (1) effectiveness 
(2) reduction of training time and (3) training 
corpus size. In this paper we present the 
machine learning algorithm for rule induction. 
In particular we focus on the NLP-based 
generalisation and the strategy for pruning both 
the search space and the final rule set.  

1. Introduction 
By general agreement the main barriers to wide use 
and commercialization of Information Extraction 
from text (IE) are the difficulties in adapting systems 
to new applications. Classical IE systems often rely 
on approaches based on Natural Language Processing 
(NLP) (e.g. using parsing) [Humphreys et al.  1998; 
Grishman 1997].  Most current IE systems require the 
involvement of IE experts for new applications 
development [Ciravegna 2000]. This is a serious 
limitation for the wider acceptance of IE, especially 
in the Internet realm: most small/medium enterprises 
(i.e. the backbone of the New Economy) cannot 
afford to hire specialists in IE.  For this reason there 
is an increasing interest in applying machine learning 
(ML) to IE in order to build adaptive systems. Up to 
now, the use of ML has been approached mainly in 
an NLP-oriented perspective, i.e. in order to reduce 
the amount of work to be done by the NLP experts in 
porting systems across free text based scenarios 
[Cardie 1997; Miller et al. 1998; Yangarber et al. 
2000].   
In the last few years Information Extraction from 
texts (IE) has been focusing progressively on the 
Web, i.e. away from the newspaper-based text IE 
analysed in the MUC conferences. This is due both to 

the reduction of strategic funds available for research, 
and to the increase in the potential IE applications in 
the Web realm. The Web emphasises the central role 
of texts such as emails, Usenet posts and Web pages. 
In this context, extralinguistic structures (e.g. HTML 
tags, document formatting, and stereotypical 
language) are elements used to convey information. 
Linguistically intensive approaches as used in 
classical IE systems [Grishman 1997, Humphreys et 
al. 1998] are difficult or unnecessary or ineffective in 
such cases. For this reason a new research stream on 
adaptive IE has arisen at the convergence of NLP, 
Information Integration and Machine Learning. The 
goal is to produce IE algorithms and systems 
adaptable to new Internet-related 
applications/scenarios by using only an analyst’s 
knowledge (i.e. knowledge on the domain/scenario 
itself) [Kushmerick 1997; Califf 1998; Muslea et al. 
1998; Freitag and McCallum 1999; Soderland 1999; 
Freitag and Kushmerick 2000].  As result successful 
commercial products have been created and there is 
an increasing interest in IE in the Internet market. 
Currently available technology is very effective when 
applied to highly structured HTML pages, but less 
effective with unstructured texts (e.g. free texts). In 
our opinion, this is because most successful 
algorithms tend to avoid any generalisation over the 
flat word sequence. When they are applied to 
unstructured texts, data sparseness becomes a 
problem.  Data sparseness is relevant for: (1) the size 
of the training data, the more sparse the data are, the 
more examples are needed for training; (2) quality of 
results, sparse data cause the generated rules to be 
applicable to a limited number of cases, overfitting 
the training examples, and therefore affecting 
effectiveness on unseen cases. 
This paper presents (LP)2 (Learning Pattern by 
Language Processing), an adaptive IE algorithm 
designed in this new stream of research that makes 
use of shallow NLP in order to overcome data 
sparseness when confronted with NL texts, while 
keeping effectiveness on highly structured texts. 
Experimentally the algorithm outperforms any other 
algorithm presented in the literature on a number of 
testbeds. In particular we focus on the machine 
learning algorithm for rule induction, on the NLP-
based generalisation and the strategy for pruning both 
the search space and the final rule set.  

2 Types of Induced Rules 
(LP)2 learns rules by generalising over a set of 
examples marked via SGML tags in a training 
corpus. It induces two types of symbolic rules: 
tagging rules and correction rules. This section 



presents the types of rules the algorithm induces, 
while section 4 focuses on rule generalisation. 

2.1 Tagging Rules  
A tagging rule is composed of a left hand side, 
containing a pattern of conditions on a connected 
sequence of words, and a right hand side that is an 
action inserting an SGML tag in the texts. Each rule 
inserts a single SGML tag, e.g. </speaker>. This 
makes (LP)2 different from many adaptive IE 
algorithms, whose rules recognize whole slot fillers 
(i.e. insert both <speaker> and </speaker>, [Califf 
1998,  Freitag 1998] or even multi slots, [Soderland 
1999]. As positive examples the tagging rule 
induction algorithm uses SGML tags inserted by a 
user in a training corpus. The rest of the corpus is 
considered a pool of negative examples. For each 
positive example the algorithm: (1) builds an initial 
rule, (2) generalizes the rule and (3) keeps the k best 
generalizations of the initial rule.  
In particular (LP)2’s main loop starts by selecting a tag 
in the training corpus and extracting from the text a 
window of w words to the left and w words to the 
right. Each information stored in the 2*w word 
window is transformed into a condition in the initial 
rule pattern, e.g. if the third word is “seminar”, a 
condition word3=“seminar” is created.  
Each initial rule is then generalised (see next 
sections) and the k best generalisations are kept: 
retained rules become part of the best rules pool. 
When a rule enters such pool, all the instances 
covered by the rule are removed from the positive 
examples pool, i.e. they will no longer be used for 
rule induction ((LP)2 is a sequential covering 
algorithm). Rule induction continues by selecting 
new instances and learning rules until the pool of 
positive examples is void. 

2.2 Contextual Rules 
When applied to  the test corpus, the best rules pool 
provides good results in terms of precision, but 
limited effectiveness in terms of recall. This means 
that such rules insert few tags (low recall), and that 
such tags are generally correct (high precision). This 
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2.3 Correction Rules 
Tagging rules when applied on the test corpus report 
some imprecision in slot filler boundary detection. A 
typical mistake is for example “at <time> 4

</time> pm”, where “pm” should have been part of 
the time expression. For this reason (LP)2 induces 
rules for shifting wrongly positioned tags to the 
correct position. It learns from the mistakes made in 
tagging the training corpus. Correction rules are 
identical to tagging rules, but (1) their patterns match 
also the tags inserted by the tagging rules and (2) 
their actions shift misplaced tags rather than adding 
new ones. An example of an initial correction rule for 
shifting </stime> in “at <stime> 4 </stime> pm'' is 
shown in Figure 2.  The induction algorithm used for 
the best tagging rules is also used for shift rules: 
initial instance identification, generalisation, test and 
selection. Positive (correct shifts) and negative 
(wrong shifts of correctly assigned tags) are counted. 
Shift rules are accepted only if they report an 
acceptable error rate. 

3. Rule Application for IE 
In the testing phase, information is extracted from the 
test corpus in four steps: initial tagging, contextual 
tagging, correction and validation. The best rule pool 
is initially used to tag the texts. Then contextual rules 
are applied in the context of the introduced tags. 
They are applied until new tags are inserted, i.e. some 
contextual rules can match also tags inserted by other 
contextual rules. Then correction rules correct some 
imprecision. Finally each tag inserted by the 
algorithm is validated. There is no meaning in 
producing a start tag (e.g. <speaker>) without its 
corresponding closing tag (</speaker>) and vice 
versa, therefore uncoupled tags are removed in the 
validation phase. 

4. The Rule Induction Algorithm 
The types of rule mentioned above are all induced by 
the same algorithm. As mentioned, the initial rule 
pattern matches conditions on word strings as found 

in a window w around each instance. Then each rule 
is generalised. Generalisation is important in in 
analysing natural language input, because of data 
sparseness due to the high flexibility of natural 
language forms. Avoiding generalisation actually 
means producing a big rule set composed of rules 
covering a limited number of cases each. Such rule 
set is very likely to produce very good results on the 
training corpus, but very limited accuracy on the test 
corpus.  This is the well known problem of 
overfitting  the training corpus: on the one hand the 
system learns a number of rules for covering 
unrelated cases: if such cases are not found as they 
are, the rule will not apply at testing time (leading to 
low recall). On the other hand the rule set is sensible 
to errors in the training data: such errors can either 
prevent some rules derived from correct examples 
from being accepted as they report errors (low recall 
again during test) or can produce spurious results at 
testing time (low precision).  
It is therefore important on the one hand to generalise 
over the plain word surface of the training example in 
order to produce rules able to overcome data 
sparseness.  On the other hand it is necessary to prune 
the resulting rule set in order to reduce overfitting, as 
explained in the remainder of the section. 

4.1 Rule Generalisation 
There are two ways in which the algorithm 
generalises the initially induced rules: on the one 
hand constraints in the initial pattern are dropped 
(e.g. patterns are reduced in length or some forms of 
wildcards are used) this allows to model cases that 
slightly differ (e.g. « at 4 pm » and « at 5 pm » can be 
modelled by the rule « word=at, word=*, 
word=pm »). On the other hand conditions on single 
elements are relaxed by using NLP-based 
information.  Shallow Natural Language Processing 
is used to associate additional knowledge to each 
word in the initial pattern via a morphological 
analyser (providing lemma + case information), a 
POS tagger (lexical category, e.g. noun) and a user-
defined dictionary (or a gazetteer, if available) 
(Figure 3). Conditions on each element in the rule 
pattern are relaxed by substituting constraints on 
words with constraints on some parts of the 
additional knowledge  (Figure 4). In the example 
mentioned above (« at 4 pm » and « at 5 pm ») the 
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Condition Action Word 
index 

Word Lemma LexCat Case SemCat Tag 
3  at     Stime
4   Digit      
5     timeid    

Figure 4: One generalisation for the rule above. 
Condition Additional Knowledge Action word 
index Word Lemma LexCat case SemCat Tag 

1 The the Art low    
2 Seminar Seminar Noun low    
3 at at Prep low  stime 
4 4 4 Digit low    
5 pm pm Other low timeid   
6 will will Verb low    

Figure 3: The rule in figure 1 with associated NL
knowledge.  



rule « word=at, lexCat=DIGIT, word=pm » is able to 
better generalise over the two cases than the rule 
using a wildcard. 
 
We have implemented different strategies for rule 
generalisation. The naïve version of the algorithm 
[Ciravegna 2001] [Ciravegna2001b] generates all the 
possible rules in parallel. Each generalisation is then 
tested separately on the training corpus and an error 
score E=wrong/matched is calculated. For each 
initial rule, the k best generalisations are kept that: (1) 
report better accuracy; (2) cover more positive 
examples; (3) cover different parts of input. The 
naïve generalisation is quite expensive in 
computational terms. Here we describe a more 
efficient version of the algorithm that uses a general 
to specific beam search for the best k rules in a way 
similar to AQ [Michalski 1986]. It starts by 
modelling a specific instance with the most general 
rule (the empty rule matching every instance) and 
specialises it by greedily adding constraints. 
Constraints are added by incrementing the length of 
the rule pattern, i.e. by adding conditions on terms. 
Figure 6 shows the search space for an example of 
this type of generalisation for the case in which 

conditions are set only on words. The induction 
algorithm is shown in figure 5. This algorithm is as 
effective as the naïve one, but it is more efficient, as 
it allows a very efficient rule testing. As a matter of 
fact the matches of a specialised rule can be 
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InduceRuleFromInstance(instance)
RuleSet=startRulesFromEmptyRule(instance);
Loop while notEmpty(RuleSet) {
Loop for rule1 in butLast(RuleSet){

for rule2 in butFirst(RuleSet)
ruleSet=combineRules(rule1, rule2);
add(ruleSet, finalRuleSet);
} }

return finalRuleSet;
}

startRulesFromEmptyRule (instance){
tag=instance.tag
loop for distance from 0 to 2*w {
do word=instance.pattern[distance]

/* w-position is the distance between
the current word and the tag to be
inserted */

collect generateRule(word,tag,w-position)
} }

Figure 5: the basic algorithm for non NLP-based generalisation
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re 6: pattern generalisation for "the seminar at <stime> 4 pm will" with window w=2 (conditions on words 
). The rule action is inserted in the part of the pattern where the tag is inserted. For example r6 matches “at” + 

 and inserts a tag after “at”. The “matches” fields contain indeces in the corpus where rules apply. 



computed as the intersection of the matches of two 
more general rules, making testing an order of 
magnitude more efficient (see figure 6). The actual 
algorithm is more complex than shown, as it also 
relaxes conditions on words in rule patterns by using 
conditions on some parts of the  NLP-based 
additional knowledge associated to each word. In 
order to introduce this type of generalisation the 
algorithm in figure 6 is modified so that RuleSet 
does no longer contain rules, but sets of rules derived 
by concurrent generalisation of the lexical items. The 
final algorithm is shown in figure 7. 

4.2 Rule Set Pruning 
Pruning is performed both for efficiency reasons (so 
to reduce the search space during generalisation) and 
to reduce overfitting. Pruning removes rules that 
either are unreliable, or whose coverage overlaps 
with those of other rules.  
There are two types of unreliable rules: those with a 
high error rate (i.e. performing poorly on the training 
corpus) and those reporting a very limited number of 
matches on the training corpus, so that it is not easy 
to foresee what their behaviour at test time will be.  
In order to prune the final rule set from such 
elements, rule accuracy is tested against a maximum 
error threshold set by the user before running the 
algorithm. Rules that do not pass the test are 
discarded as soon as they are generated and tested. 

They are no longer considered for IE, but they are 
considered for further specialisation, as they could 
become reliable after the addition of some more 
constraints. At the end of training the algorithm tries 
to optimise the error threshold by restricting the rule 
selection condition, therefore excluding some other 
rules. It tests the results of the reduced rule set on the 
training corpus and stops pruning the moment in 
which there is a reduction of accuracy (seen as the 
mean of precision and recall).  
Rules are also pruned at induction time when they 
cover too few cases in the training corpus and 
therefore they cannot be safely used at test time 
because the amount of training data does not allow to 
guarantee a safe behaviour at run time. Such rules are 
detected at generation time and any further 
specialisation depending from them is stopped. In 
this way the search space for the rule is reduced and 
the algorithm is more efficient. For example with a 
threshold on minimum coverage set to 3 cases, rules 
9 and 10 would have never been generated in the 
example in figure 6. Again the user can set a priori 
the minimum coverage threshold and such threshold 
will be optimised at the end of training in a way 
similar to the error threshold optimisation.  

InduceRuleFromInstance(instance)
RuleSet=startRulesFromEmptyRule(instance);
Loop while notEmpty(RuleSet) {
NewRuleSetS={}
Loop for ruleSet1 in butLast(RuleSet){

for ruleSet2 in butFirst(RuleSet)
ruleSet=combineRuleSet(ruleSet1, ruleSet2);
pruneRuleSet(ruleSet);
add(ruleSet, newRuleSetS);
add(ruleSet, finalRuleSets);
}
RuleSet=NewRuleSetS;
}
PruneRuleSets(finalRuleSets)
}

startRulesFromEmptyRule (instance)
tag=instance.tag
Loop for distance from 0 to 2*w {
word=instance.pattern[distance]

/* w-position is the distance between
the current word and the tag to be
inserted */

generateRuleSet (word, tag, w-position)
}

 

generateRuleSet(word, tag, position){
Loop for condit in NLPGeneralisations(word)
Collect generateRule(condit, tag, position)

}

PruneRuleSet (ruleSet){
For rule in ruleSet
if (not(subsumedRule(rule, RuleSet)))
collect rule

}

subsumedRule (rule, ruleSet){
loop for ru in ruleSet
if (ru!=rule)
if((ru.score<=rule.score) and

(includes(ru.coverage,rule.coverage)))
return true;

return false;
}
 

Figure 7: the final algorithm for rule generalisation by starting from an initial rule. 



There is a further level of pruning based on 
overlapping rule coverage: all the rules whose 
coverage is subsumed by that of others more general 
ones are removed from the selected rule set. Again 
the goal is to determine the minimum subset of rules 
that maximises the accuracy of IE on the training 
corpus. Rules whose coverage is subsumed by those 
of other rules can be safely removed, as their 
contribution to the final results is irrelevant. Such 
type of pruning requires comparing not only 
coverage, but also the reliability of the involved rules 
(otherwise the algorithm would only produce one 
rule, i.e. the empty initial rule!). In general rules 
subsumed by other rules with the same (or minor) 
error rate can be safely removed during rule 
induction. Rules subsumed by ones with worse error 
rate are pruned when the final error and covering 
threshold have been determined, as it is necessary to 
see if the subsuming rule will survive such rule 
pruning process. 
A problem arises in pruning at every level when two 
rules cover the same set of examples with the same 
error rate. In this case the following heuristic is used.  
If the number of covered cases is limited, then the 
one with most specific conditions is chosen (e.g. one 
using condition on words). This is because the 
training corpus does not provide enough evidence 
that the rule is reliable and a rule requiring a 
sequence of words is less likely to produce spurious 
results at test time than one requiring sequences of 
conditions on the additional knowledge (e.g. on 
lexical categories). Otherwise, the rule with the most 
generic conditions is selected (e.g. testing lexical 
categories), as it is more likely to provide coverage 
on the test corpus. 
 

5. Experimental Results 
(LP)2 was tested in a number of tasks in two 
languages: English and Italian. Here we report results 
on two standard tasks for adaptive IE: the CMU 
seminar announcements and the Austin job 
announcements2. The first task consists of uniquely 
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identifying speaker name, starting time, ending time 
and location in 485 seminar announcements, [Freitag 
1998]. Figure 5 shows the overall accuracy obtained 
by (LP)2, and compares it with that obtained by other 
state of the art algorithms. (LP)2 definitely 
outperforms other NLP-based approaches (+8.7% wrt 
Rapier [Califf 1998], +21% wrt to Whisk [Soderland 
1999]), but it also outperforms non-NLP approaches 
(+2.1% wrt BWI, [Freitag and Kushmerick 2000], 
and +4% wrt HMM, [Freitag and McCallum 1999]). 
Moreover (LP)2 is the only algorithm whose results 
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Slot  (LP)2 Rapier BWI  Slot (LP)2 Rapier 
id 100 97.5 100  Platform 80.5 72.5 

title 43.9 40.5 50.1  Application 78.4 69.3 
company 71.9 69.5 78.2  Area 66.9 42.4 

salary 62.8 67.4   Req-years-e 68.8 67.1 
recruiter 80.6 68.4   Des-years-e 60.4 87.5 

state 84.7 90.2   Req-degree 84.7 81.5 
city 93.0 90.4   des-degree 65.1 72.2 

country 81.0 93.2   post date 99.5 99.5 
language 91.0 80.6   All Slots 84.1 75.1 

Figure 8: F-measure (β=1) for misc.jobs.offered using 
1/2 corpus for training. Whisk obtained lower accuracy 
than Rapier, [Califf 1998]. We cannot compare (LP)2 with 
BWI as the latter was tested on a limited subset of slots 
                                                          
 Corpora at www.isi.edu/muslea/RISE/index.html.  
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Figure 9: the effect of generalisation in reducing da
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 (LP)2 BWI HMM SRV Rapier Whisk 
speaker 77.6 67.7 76.6 56.3 53.0 18.3 
location 75.0 76.7 78.6 72.3 72.7 66.4 

stime 99.0 99.6 98.5 98.5 93.4 92.6 
etime 95.5 93.9 62.1 77.9 96.2 86.0 

All Slots 86.0 83.9 82.0 77.1 77.3 64.9 

Figure 10: results (F-measure β=1) obtained on CMU 
seminars in a 10 experiments using 1/2 corpus for 
training. See [Ciravegna 2001b] for details on the 
experiments. 



never go down 75% on any of the slots. 
A second task concerned IE from 300 Job 
Announcements taken from misc.jobs.offered, [Califf 
1998]. (LP)2 outperforms both Rapier and Whisk (Figure 
8). 

6. Discussion 
(LP)2's main features that are most likely to contribute 
to the excellence in the experiments are: (1) the use 
of single tag rules, (2) the use of a correction phase, 
and (3) rule generalisation via shallow NLP 
processing. Points 1 and 2 have been discussed in 
[Ciravegna 2001b]. Here we focus on the effect of 
NLP-based generalisation. (LP)2 induces rules by 
instance generalisation through shallow NLP 
processing. Generalisation of examples in the training 
corpus allows reducing data sparseness by capturing 
some general aspects beyond the simple flat word 
structure. Morphology allows overcoming of data 
sparseness due to number/gender word realisations 
(an aspect very relevant in morphologically rich 
languages such as Italian), while POS tagging 
information allows generalisation over lexical 
categories. In principle such types of generalisation 
produce rules of better quality than those matching 
the flat word sequence; rules that tend to be more 
effective on unseen cases. This is because both 
morphology and POS tagging are generic NLP 
processes performing equally well on unseen cases; 
therefore rules relying on their results apply 
successful on unseen cases. This intuition was 
confirmed experimentally: (LP)2 with generalisation 
((LP)2

G) definitely outperforms a version without NLP 
generalisation (but with pattern length generalisation) 
((LP)2

NG) on the test corpus (Figure 11), while having 
comparable results on the training corpus. Moreover 

(LP)2
G produces more general rules, i.e. rules covering 

more cases (Figures 10 and 11). NLP reduces the risk 
of overfitting the training examples. Figure 13 shows 
experimentally how (LP)2

G avoids overfitting on the 
speaker field (constant rise in f-measure when the 
training corpus is  increased in size), while (LP)2

NG  
present a clear problem of overfitting (reductionof 
effectiveness when more examples are provided). 
Producing more general rules also implies that the 
covering algorithm converges more rapidly because 
its rules tend to cover more cases. This means that 
(LP)2

G needs less examples in order to be trained, i.e., 
rule generalisation also allows reducing the training 
corpus size. Figure 13 shows how on etime (LP)2

G is 
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<etime> and shows a positive trend for <speaker>. 
The non NLP based version shows overfitting on 
<speaker> and slowly converges on <etime> 
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Figure 12: the effect of different window sizes in 
learning tagging rules : some fields are not affected 
(e.g. location), while others (speaker) are sensible to 
window size. 
Slot (LP)2
G (LP)2

NG 
speaker 72.1 14.5 
ocation 74.1 58.2 
stime 100 97.4 
etime 96.4 87.1 
ll slots 89.7 78.2 

  
(LP)2

G (LP)2
NG 

le coverage  10.2 6.2 
les 887 1136 
ring 1 case 133 (14%) 560 (50%) 
ring >50 cases 37 15 
ring >100 cases 19 3 

 comparison between the NLP-based 
n version (LP)2

G with the version without 
n (LP)2

NG  



able to converge at optimal values with 100 examples 
only, while accuracy in (LP)2

NG slowly increases with 
more training material, even if it is not able to reach 
the same accuracy as (LP)2

G , even when using half of 
the corpus for training.  
Not surprisingly the role of shallow NLP in the 
reduction of data sparseness is more relevant for 
semi-structured or free texts (e.g. the CMU seminars) 
than on highly structured documents (e.g. HTML 
pages). Note that during the rule selection phase (LP)2 
is able to adopt the right level of NLP information for 
the task at hand: in an experiment on texts written in 
mixed Italian/English we used an English POS tagger 
that was completely unreliable on the Italian part of 
the input. (LP)2

G reached an effectiveness analogous 
to  (LP)2

NG’s, because the rules using the unreliable 
NLP information were automatically discarded.  
Finally it is interesting to note the way rule pattern 
length affects accuracy. Some slots are insensible to 
it (e.g. location), while others definitely need a longer 
pattern. This is an important information to monitor 
as the window size strongly influences training time. 

7. Conclusion and Future Work 
(LP)2 is a successful algorithm. On the one hand, it 
outperforms the other state of the art algorithms in 
two scientific experiments on two very popular IE 
tasks. In particular (LP) 2 definitely outperforms other 
algorithms making use of NLP information such as 
Rapier and Whisk (more than 9% and 20% in terms 
of accuracy respectively in the CMU experiment). 
This is mainly due to the tagging and correction 
based learning algorithm, as all the algorithms are 
able to exploit NLP information. Rapier uses a 
tagging approach equivalent to the best tagging step 
of (LP)2. Moreover, even if it is able to induce more 
expressive rules (e.g. making use of more powerful 
wild cards), it uses a randomly based compression 
rule mechanism for generalisation that tends to 
produce rules providing spurious results, [Ciravegna 
2000b].  
Whisk is able to use some more sophisticated NLP 
information, i.e., it is able to work also on the output 
of a parser. Unfortunately it uses multi-slot rules that 
increase data sparseness in the training phase, leading 
to very low recall [Ciravegna 2001b]. 
Concerning the non NLP-based algorithms, their 
tagging approach is generally equivalent to the best 
rule based tagging phase in (LP)2, but they tend to use 
more sophisticated machine learning approaches. 
BWI for example learns single tag rules that are 
largely equivalent to the best rules in (LP)2. Boosting, 
[Schapire 1998], is used to emphasize examples on 
which the learner is doing poorly in order to derive 
additional rules. The rule formalism includes a 

number of wildcards that contribute radically to the 
algorithm’s experimental results (up to 85% of its 
effectiveness). BWI does not use any type of NLP 
preprocessing. (LP) 2 slightly outperforms BWI in the 
experiments. In our opinion this is due to the 
combined effect of the contextual tagging phase, of 
the correction phase and of the use of NLP for 
generalization, the latter – we believe - being the 
most relevant of the three. 
For a more complete comparison with the state of the 
art algorithms, [Ciravegna 2000]. 
(LP)2 is also very successful because it was the basis 
for building LearningPinocchio, a tool for adaptive IE 
applications that is having a considerable commercial 
success. A number of applications have been 
developed for commercial companies and a number 
of licenses have been released to industrial 
companies for further application development, 
[Ciravegna 2001]. 
Future work on (LP)2 will involve both the 
improvement of rule formalism expressiveness (use 
of wild cards) and the further use of shallow NLP for 
generalisation. Concerning the latter, from the one 
hand (LP)2 will be used in a cascade with a Named 
Entity Recogniser (also implemented by using (LP)2). 
This will allow further generalisation over named 
entity classes (e.g., the speaker is always a person, 
therefore it is possible to generalise over such class in 
the rules). On the other hand (LP)2 is compatible with 
forms of shallow parsing such as chunking. It would 
be possible to preprocess the texts with a chunker and 
to insert tags only at the chunk borders. This is likely 
to improve precision in border identification, 
reducing the need of correction.  
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