
Enabling Services for Distributed Environments: Ontology Extraction and
Knowledge Base Characterisation

Derek Sleeman1, Stephen Potter2, Dave Robertson2, and W. Marco Schorlemmer2

1 Department of Computing Science,
University of Aberdeen

sleeman@csd.abdn.ac.uk
2 Division of Informatics,
University of Edinburgh

stephenp@aiai.ed.ac.uk, {dr,marco }@dai.ed.ac.uk

Abstract. Existing knowledge base resources have
the potential to be valuable components of the
Semantic Web and similar knowledge-based envi-
ronments. However, from the perspective of these
environments, these resources are often under-
characterised, lacking the ontological and structural
characterisation that would enable them to be ex-
ploited fully.
In this paper we discuss two currently independent
services, both integrated with their environment via
a brokering mechanism. The first of these services
is an ontology extraction tool, which can be used to
identify ontological knowledge implicit in a knowl-
edge base. The second service involves characteris-
ing a given knowledge base in terms of the topic it
addresses and the structure of its knowledge. This
characterisation should permit a knowledge base to
be located and assessed as a potential candidate for
re-use in a more intelligent and flexible manner.
The discussion of some related research into broker-
ing systems illustrates the roles that these services
can play in distributed knowledge architectures as
precursors to problem-directed transformation and
reuse of knowledge resources.

1 Introduction

The principal challenge for the Semantic Web community is
to make machine-readable much of the material that is cur-
rently human-readable, and thereby enrich web operations
from their current information-based state into a knowledge-
centric form. Towards this end, for instance, the IBROW
project is addressing the complex task of developing a bro-
kering system which, given a knowledge base/knowledge
source and a specification of the processing to be performed,
would find an appropriate problem solver and perform any
necessary transformation of the knowledge sources [1]. The
focus of this paper is primarily on our research into two com-
plementary, and currently independent, techniques that en-
able brokering systems to become more effective and more
intelligent. These techniques, then, are intended to facilitate
the reuse and transformation of knowledge.

The first of these techniques involves the extraction of do-
main ontologies from existing knowledge bases. Work on on-
tologies has played a central role in recent years in Knowl-
edge Engineering, as ontologies have increasingly come to
be seen as the key to making (especially web) resources
machine-readable and -processable. Systems have been im-
plemented which help individuals and groups develop on-
tologies, detect inconsistencies in them, and merge two or

more. Ontologies are seen as theessenceof a knowledge
base, that is, they capture, in some sense, what is commonly
understood about a topic by domain experts. For a discussion
of how ontologies are often developed, see [2]. Recently, sys-
tems have been implemented which help domain experts lo-
cate domain concepts, attributes, values and relations in tex-
tual documents. These systems also often allow the domain
expert to build ontologies from these entities; it has been
found necessary, given the shortcomings of the particular text
processed, to allow the domain expert, as part of the knowl-
edge modelling phase, to add entities which are thought to
be important, even if they are not found in the particular text
[3].

Reflecting on this process has given us the insight that
knowledge bases3 themselves could act as sources of on-
tologies, as many programs essentially contain a domain on-
tology which although it may not be complete, is, in some
sense, consistent. (Since if it were inconsistent this would
lead, under the appropriate test conditions, to operational
problems of the system in which the ontology is embedded).
Thus, the challenge now becomes one of extracting ontolo-
gies from existing knowledge-based systems. The following
section describes one approach for doing this, from, in the
first instance, Prolog knowledge bases. As well as enabling
their re-use, this technique can also be seen as performing a
transformation of these knowledge bases into their implicit
ontological knowledge.

In any distributed environment, before it can be re-used
or transformed, an appropriate knowledge resource must be
located. Doing this efficiently is not a trivial task, since it
requires the ability to identify that a resource fulfils certain
domain requirements and structural criteria without entailing
the need to analyse the entire content of that resource. The
second technique discussed in this paper addresses this prob-
lem, attempting to summarise the essentials of a knowledge
base for this particular purpose.

The rest of the paper is structured as follows. Section 2 de-
scribes, with examples, the technique for acquiring ontolog-
ical knowledge from knowledge bases in a (semi-)automatic
fashion. Section 3 discusses the approach to characterising
knowledge bases, describing them in a concise and succinct

3 Throughout this paper, by “knowledge base” we mean some
knowledge-bearing computer program, not necessarily expressed
in some dedicated knowledge representation language, but for
which the decision has been made to express the knowledge at
a semantic, conceptual level. For our purposes, however, we as-
sume that an explicit ontology describing the terms of such a
knowledge base isnotavailable.

Enabling Services for Distributed Environments 85

manner to better allow their re-use. Section 4 gives a brief
overview of a brokering system, in order to illustrate the role
that the two techniques can play in facilitating knowledge
services within distributed environments. Section 5 discusses
related work, and, to conclude, Section 6 summarises the pa-
per.

2 Extracting Ontologies from Prolog
Knowledge Bases

The method used to hypothesise ontological constraints from
the source code of a knowledge base is based on Clark’s com-
pletion algorithm [4]. Normally this is used to strengthen
the definition of a predicate given as a set of Horn clauses,
which have single implications, into a definition with double-
implication clauses. Consider, for example, the predicate
member(E,L) which is true ifE is an element of the list,
L:

member(X, [X|T])
member(X, [H|T]) ← member(X,T)

The Clark completion of this predicate is:

member(X,L) ↔ L = [X|T] ∨ (L = [H|T] ∧member(X,T))(1)

Use of this form of predicate completion allows us to hy-
pothesise ontological constraints. For example, if we were
to assert thatmember(c, [a, b]) is a true statement in some
problem description then we can deduce that this is inconsis-
tent with our use ofmember as constrained by its completion
in expression (1) above because the implication below, which
is an instance of the double implication in expression (1), is
not satisfiable.

member(c, [a, b]) → [a, b] = [c|T] ∨ ([a, b] = [H|T] ∧member(c, T))

(2)

Normally Clark’s completion is used for transformation
of logic programs where we are concerned to preserve the
equivalence between original and transformed code. It there-
fore is applied only when we are sure that we have a complete
definition for a predicate (as we had in the case ofmember).
However, we can still apply it in “softer” cases where defi-
nitions are incomplete. Consider, for example, the following
incomplete definition of the predicateanimal(X):

animal(X) ← mammal(X)
animal(X) ← fish(X)

Using completion as above, we could derive the constraint:

animal(X) → mammal(X) ∨ fish(X)

This constraint is over-restrictive since it asserts that an-
imals can only be mammals or fish (and not, for instance,
insects). Nevertheless, it is useful for two purposes:

– As a basis for editing a more general constraint on the
use of the predicate ‘animal’. We describe a prototype
extraction tool, which includes a basic editor, for these
sorts of constraints in Section 2.1.

– As a record of the constraints imposed by thisparticular
use of the predicate ‘animal’. We describe an automated
use of constraints under this assumption in Section 2.2.

2.1 A Constraint Extraction Tool: the EXTRACTexP
System

We have produced a basic system for extracting ontological
constraints of the sort described above from Prolog source
code. Our tool can be applied to any standard Prolog pro-
gram but is only likely to yield useful constraints for predi-
cates which contain no control-effecting subgoals (although
non-control-effecting goals such aswrite statements are ac-
commodated). While, in theory at least, the approach can be
applied to programs of any size, we will now demonstrate
the current tool using an example involving a small number
of predicates.

Figure 1 shows the tool applied to a simple example of an-
imal classification, following the introduction of the previous
section. The Prolog code is:

animal(X) :- mammal(X).
animal(X) :- fish(X).
mammal(X) :- vertebrate(X), warm_blooded(X),

milk_bearing(X).
fish(X) :- vertebrate(X), cold_blooded(X), aquatic(X),

gill_breathing(X).

which corresponds to the Horn Clauses:

animal(X) ← mammal(X)
animal(X) ← fish(X)

mammal(X) ← vertebrate(X) ∧ warm blooded(X)
∧milk bearing(X)

fish(X) ← vertebrate(X) ∧ cold blooded(X) ∧ aquatic(X)
∧gill breathing(X)

(3)

The constraints extracted for this program (seen in the
lower window of Figure 1) are:

animal(X) → mammal(X) ∨ fish(X)
fish(X) → vertebrate(X) ∧ cold blooded(X) ∧ aquatic(X)

∧gill breathing(X)
mammal(X) → vertebrate(X) ∧ warm blooded(X)

∧milk bearing(X)

(4)

If it is deemed necessary, the user of the tool can then
choose to edit manually the constraints. We show in Sec-
tion 2.2 how these constraints, which, in this case, were
extracted completely automatically from the Prolog source
code, can be used to check another Prolog program purport-
ing to adhere to the same ontology.

2.2 Ontological “Safe Envelopes”

The idea of running programs within ontological “safe en-
velopes” was introduced in [5]. Programs are run according
to the normal execution control regime of the language con-
cerned but a record is kept of the cases where the execution
uses terminology which does not satisfy a given set of onto-
logical constraints. When this happens we say the execution
has strayed outside its safe envelope (from an ontological
point of view). This sort of checking is not intended to al-
ter the execution of the program in any significant way, only
to pass back retrospective information about the use of ter-
minology during an execution. This style of checking can be
implemented elegantly for languages, such as Prolog, which
permit meta-interpretation, allowing us to define the control
structure for execution explicitly and then to augment this
with appropriate envelope checking. The Horn clauses shown

86 Derek Sleeman et al.

Fig. 1.Ontology extraction tool

in expression (5) provide a basic example (extended versions
of this appear in [5]).

solve(true, {})
solve((A ∧ B), Ea ∪ Eb) ← solve(A,Ea) ∧ solve(B,Eb)
solve((A ∨ B), E) ← solve(A,E) ∨ solve(B,E)
solve(X,E ∪ {C|(X → C ∧ not(C))}) ← clause(X,B)

∧solve(B,E)

(5)

In the expressions above,clause(X,B) means that there
is a clause in the program satisfying goalX contingent on
conditions,B (where there are no conditions,B has the value
true). The implicationX → C is an ontological constraint
of the sort we are able to derive in the extraction tool of Sec-
tion 2.1. The operators←,∧,∨, and∪ are the normal logical
operators for (left) implication, conjunction, disjunction and
union, whilenot(C) is the closed-world negation of condi-
tionC.

The effect of the meta-interpreter above is to test each suc-
cessful goal in the proof tree for a query against the available
ontological constraints. The first clause of (5) matches the
goaltrue, which, as might be expected, violates no ontologi-
cal constraints (and so, the empty set is returned). The second
and third clauses deal with conjunctions and disjunctions of
goals respectively. In the case of the former, the union of the
sets of violated constraints is returned; in the latter case, the
set generated by the succeeding goal is returned.

In the final clause, if an assertedclause(X,B) is found
which satisfies the current goal,X, then the conditions,B, of
this goal become subgoals of the interpreter, while the goal
itself is tested against the ontological constraints. If a con-
straint exists (X → C) that is not found to be consistent with
the known facts of the current situation (not(C), under the
closed-world assumption), then it is added to the set of vi-
olated constraints. When a goal and its subgoals have been
solved, then the interpreter exits with success, returning the
set of all violated constraints; if, on the other hand, a goal
cannot be solved, then the interpreter fails.

For example, suppose we have the following information
about animals,a1 anda2 , using the animal ontology of Sec-
tion 2.1.

animal(a1).
vertebrate(a1).
warm_blooded(a1).
milk_bearing(a1).
animal(a2).
vertebrate(a2).
cold_blooded(a2).
terrestrial(a2).

We could query this database in the normal way, for ex-
ample by giving the goalanimal(X) which yields so-
lutions with X = a1 and X = a2. If we want to per-
form the same query while checking for violations of
the ontological constraints we extracted in Section 2.1,
then each of these facts is asserted in the form, e.g.,
clause(animal(a1),true) , and we pose the query
via the meta-interpreter we defined above — the appropri-
ate goal beingsolve(animal(X), C) . This will yield
two solutions, as before, but each one will be accompanied
by corresponding ontological constraint violations (as corre-
sponding instances of the variableC). The two solutions are:

X = a1 C = {}
X = a2 C = {mammal(a2) ∨ fish(a2)}

When presented with the first goal,
animal(a1) , the interpreter matches this with
clause(animal(a1),true) from the database; the
preconditiontrue generates no ontological problems, and
from expression (4), the constraintmammal(a1)∨fish(a1)
is placed onanimal(a1) . Now, the additional facts in
the database and the other ontological constraints allow the
conclusionmammal(a1) to be drawn, so it isnot the case
that not(mammal(a1) ∨ fish(a1)) is true (as tested by
the fourth clause of the interpreter), so no constraints are
violated, and the empty set is returned.

The solution of the second goal,animal(a2) proceeds
in a similar fashion, but in this instance, the constraints

Enabling Services for Distributed Environments 87

and database facts do not allow eithermammal(a2) or
fish(a2) to be proved. Hence, under the closed-world as-
sumption,not(mammal(a2)∨fish(a2)) is true, and so this
constraint has been violated (this in spite of the fact that the
database allows the goalanimal(a2) itself to be proved).

2.3 Extracting Ontologies from Other Sorts of
Knowledge Bases

The majority of knowledge sources are not in Prolog so for
our extraction tool to be widely applicable it must be able to
deal with other sorts of source code. This would be very hard
indeed if it were the case that the ontological constraints we
extract have to encompass the entire semantics of the code.
Fortunately, we are not in that position because it is suffi-
cient to extract some of the ontological constraints from the
source code — enough to give a partial match when broker-
ing or to give a starting point for constraint editing. The issue
when moving from a logic-based language, like Prolog, to a
language perhaps having more procedural elements is how
much of the ontological structure we can extract. We discuss
this using CLIPS as an example.

Suppose we have the following CLIPS facts and rules:

(deftemplate person "the person template"
(slot name)
(slot gender (allowed-symbols female male)

(default female))
(slot pet))

(deftemplate pet "the pet template"
(slot name)
(slot likes))

(deffacts dating-agency-clients
(person (name Fred) (gender male) (pet Tiddles))
(person (name Sue) (pet Claud))
(person (name Tom) (gender male) (pet Rover))
(person (name Jane) (pet Squeak))
(pet (name Tiddles) (likes Claud))
(pet (name Claud) (likes Tiddles))
(pet (name Rover) (likes Rover))
(pet (name Squeak) (likes Claud)))

(defrule compatible
(person (name ?person1) (pet ?pet1))
(person (name ?person2) (pet ?pet2))
(pet (name ?pet1) (likes ?pet2))
=>
(assert (compatible ?person1 ?person2)))

To extract ontological constraints from these using the cur-
rent version of the EXTRACTexP tool we must translate
these CLIPS rules into Horn clauses. We outline below, in
informal terms, the transformation algorithm needed for this
task:

– For each CLIPS rule, take the assertion of the rule as
the head of the Horn clause and the preconditions as the
body of the clause.

– Consider each head, body or CLIPS fact as an object
term.

– For each object term, refer to itsdeftemplate defi-
nition and translate it into a series of binary relations as
follows:
• Invent an identifier,I, for the instance of the object.
• The relationobject(T, I) gives the type of object,
T , referred to by instanceI.

• The relationA(I, V) gives the value,V , for an at-
tributeA of instanceI.

Applying this algorithm to our CLIPS example yields the
Horn clauses shown below:

compatible(Person1, Person2)←

object(person,O1) ∧ name(O1, Person1) ∧ pet(O1, Pet1)∧
object(person,O2) ∧ name(O2, Person2) ∧ pet(O2, Pet2)∧
object(pet, O3) ∧ name(O3, Pet1) ∧ likes(O3, Pet2)

object(person, p1) name(p1, fred) gender(p1,male) pet(p1, tiddles)
object(person, p2) name(p2, sue) gender(p2, female) pet(p2, claud)
object(person, p3) name(p3, tom) gender(p3,male) pet(p3, rover)
object(person, p4) name(p4, jane) gender(p4, female) pet(p4, squeak)

object(pet, x1) name(x1, tiddles) likes(x1, claud)
object(pet, x2) name(x2, claud) likes(x2, tiddles)
object(pet, x3) name(x3, rover) likes(x3, rover)
object(pet, x4) name(x4, squeak) likes(x4, claud)

This does not capture the semantics of the original CLIPS
program, since, for example, it does not express notions of
state necessary to describe the operation of CLIPS working
memory. It does, however, chart the main logical dependen-
cies, which is enough for us then to produce ontological con-
straints directly from EXTRACTexP. This translation-based
approach is the most direct route to constraint extraction us-
ing our current tool but we anticipate more sophisticated
routes which perhaps do not translate so immediately to Horn
clauses.

Extending this technique beyond knowledge representa-
tion languages to enable the extraction of ontological infor-
mation from conventional procedural languages such as C
would prove difficult. Programmers of these languages have
no incentive to express their code at a conceptual level, with
the result that the ontological constraints, insofar as they are
expressed, tend to be embedded in the control elements and
structure of the code to a greater extent. Code written in
object-oriented languages, such as Java and C++, is poten-
tially more susceptible to ontological extraction of this sort,
since the object-oriented paradigm encourages the program-
mer to codify the concepts of the domain in an explicit and
structured manner (the CLIPS templates in the above exam-
ples can be viewed as simple objects in this sense). However,
we have yet to investigate the possibilities of mining conven-
tional object-oriented code for ontological information.

3 Characterising Knowledge Sources in a
Distributed Environment

Reuse of both problem solving components and knowledge
sources is a holy grail of knowledge engineering. While there
has been considerable discussion of re-use of problem solv-
ing algorithms in Knowledge Engineering [6] and in Soft-
ware Engineering [7], there has been much less work on
reuse of knowledge bases/sources. But if a company has
spent a great deal of time and resource in developing a
knowledge base for, say, the design of an engine, it would
seem prudent, if it were possible, to use that same knowl-
edge as the basis for a diagnostic knowledge base. In general
one could imagine designers making such requests over the
internet/company intranet:

“I am looking for a knowledge base which discusses
the design specification of machines for grape har-
vesting.”

88 Derek Sleeman et al.

In general, these requests can be characterised as “Require
knowledge base on topic T” or, more likely, “Require knowl-
edge base on topic T where the knowledge conforms to cer-
tain constraints C”. The ability to respond to a request of this
form would be an important step towards creating the sort of
environment in which the re-use of knowledge components
is a commonplace.

We plan to address such knowledge base characterisation
issues as follows: Firstly, we will decide what is the princi-
pal topic, T, of a given knowledge base. Secondly we will
develop a series of other programs (orfilters if one uses a
LARKS-like nomenclature [8]) to look for different kinds of
structure/constraints in the knowledge base. Each of these is
dealt with briefly below.

3.1 Knowledge Base Topic Identification

Our current EXTRACTexP system can analyse a Prolog
knowledge base, and can extract all the predicates (and their
arities) which it contains (see top window of the tool in Fig-
ure 1). Using knowledge of Prolog, its basic constructs like
read , write , etc. are discarded, leaving a set of domain
terms. These terms could then be propagated through a pre-
defined ontology (c.f. the spreading activation through a Se-
mantic Network which was postulated in the ’70s as a possi-
ble model to explain human focus of attention change [9]).
This ontology would contain relevant concepts within the
universe of discourse.

As a simple example, suppose we have the ontology de-
picted in Figure 2. If the conceptsApples andPears were
passed to the system, it would suggest thatFruit might
be the relevant focus of the knowledge base. Similarly, pro-
viding the set{Apples, Pears, Potatoes, Car-
rots} would suggest thatFruit-Vegetables might
be the focus, and if one provided{Apples, Pota-
toes, Chicken, Game} it would suggestFood might
be the focus. We plan subsequently to extend the system so
that it will be able to detect two or more principal topics,e.g.
Fruit andFood Processing , drawn from a number of
complementary ontologies.

Fig. 2.Example classification ontology

3.2 Knowledge Base Structure Filters

Filters which detect the structure of a knowledge source
might:

– Constrain knowledge sources such that a high percentage
of their knowledge elements contain entities from both
ontologies. So using the example from the last point, an
appropriate goal for filtering might be “> P% of ele-
ments would contain elements from the Fruit/Food on-
tology and the Food Processing ontologies”.

– Require that elements of the knowledge base be strongly
related. Earlier in the COCKATOO system we demon-
strated that we could acquire knowledge bases/data sets
which were essentially consistent with an Extended BNF
grammar [10]. Here, with the ‘essentials’ of the required
knowledge expressed through such a grammar, rather
than using this approach to acquire a knowledge base
conforming to that grammar, it can instead be used to
check whether existing knowledge resources display an
acceptable degree of coherence with respect to the gram-
mar. To enable such an approach, it is likely that the ele-
ments of the knowledge source would need to be marked
up in XML or some comparable notation. As an illustra-
tion, below we give a section of such an EBNF grammar
we used in the earlier work to describe rock formations
[10]:

formation → <lithology>+
lithology → (<rock> <lithology-depth>

[<lithology-length>])
rock → (<rock-type> <rock-hardness>)
rock-type → (shale | clay | chalk | granite

| other)
rock-hardness → (very-soft | soft | medium | hard

| very-hard)

4 Knowledge Services and Brokering

In work reported elsewhere ([11]), we have been pursu-
ing parallel research into brokering mechanisms for knowl-
edge resources; the purpose of this section is to give a brief
overview of this work and to indicate how it relates to the
knowledge services described above which are the principal
focus of this paper.

If the potential of the internet as a provider of knowledge-
based services is to be fully realised, there would seem to be
a need for automated brokering mechanisms that are able to
match a customer’s knowledge requirements to appropriate
knowledge providers. One of the fundamental difficulties en-
countered when considering how to enable this sort of trans-
action lies in the ‘semantic mismatch’ between customer and
provider: how should a provider advertise its services and
a customer pose its queries so that advertisement and query
can be matched by the broker, and the transaction success-
fully completed?

One possible solution to this problem, as a number of re-
searchers into such agent-based architectures have realised
(for example, see [12,13,8]), lies in the use of ontologi-
cal knowledge. Since a well-built ontology can be seen as
a conceptual ‘language’ expressing what is essential about
a domain, and uses terms that are common to that disci-
pline, it offers some basis for enabling communication be-
tween customer and provider. However, while there may be a
large number of existing knowledge resources, not all are ac-
companied by explicit, machine-processable ontologies; un-
less some alternative approach were available, any poten-
tial gains to be made through the re-use of these resources
would have to be offset against the effort involved in ‘reverse-
engineering’ their ontologies manually. The ontology extrac-
tion tool described above in Section 2 offers one such alter-
native approach, by which an ontology can be constructed
(semi-) automatically, thus facilitating and encouraging the
reuse of knowledge.

Enabling Services for Distributed Environments 89

As we conceive it, then, for the purposes of advertising its
capabilities to a broker, a knowledge resource describes itself
using the term:

k resource(Name,Ontology, CompetenceSet)

where:

– Nameis the unique identifier of this resource;
– Ontologyis the ontology to which the resource adheres,

and by which its services can be understood, and;
– CompetenceSetis a set of the services, orcompetences

that the resource provides and which it is making avail-
able through the broker. Each item in this set is of the
form competence(C, In,Out,Ge) where:

• C is a term of the formG ← P , whereG is a goal
which is satisfiable by the resource, given the satis-
faction of the conditionsP .

• In is a set of constraints placed on variables in
C which must hold before the competence can be
utilised (successfully).

• Out is a set of constraints placed on variables inC
which hold after the competence has been applied.
• Ge is a set of competence goals that are known to be

necessary for the successful discharge of this com-
petence and that must be supplied by some external
agent.

As should be evident, the manner in which a resource ad-
vertises its services has a major impact on the effectiveness
and extent of the brokering that can be performed. We find
that, although relatively concise, the above information is
rich enough to allow the broker to configure complex and
detailed responses to the requests it receives. When success-
ful, these responses are in the form of one or more brokerage
structures, each describing a sequence of steps invoking the
available competences of knowledge resources, which, when
executed in order, should achieve the target.

Without going into too much detail about the construc-
tion of these sequences, an incoming request for service, in
the form of a goal described in terms of some ontology in
the system,4 is matched against available competence-goals;
the setsIn, Out andGe place additional constraints on any
matches. These constraints take the form of either an onto-
logical check of some item, or else of an additional goal that
must be satisfied by the system, in which case the broker is
invoked recursively. Of particular interest here is the notion
of bridgesin the system; a bridge (which will usually be con-
structed manually) allows terms (and thus, competences) de-
scribed according to one ontology to be described according
to a second ontology.5 Bridges are a powerful concept for
extending the range of the knowledge and capabilities of any
system; however, they can only be defined if the ontology of
a knowledge resource is made explicit.

4 Currently, it is assumed that the ontologies used to describe ser-
vices are available to all. Furthermore, in this discussion, we ig-
nore all issues of access privileges, service costs, resource man-
agement and so on that are pertinent to systems of this sort.

5 The use of bridges here is analogous to the use of bridges in
UPML[6].

4.1 Ontology Extraction and the Broker

It can be seen, then, that ontologies are fundamental to any
approach to brokering of this sort: they enable queries to
be posed to appropriate brokers, and semantic checks to be
made and bridges to be built. Unfortunately, it is not re-
alistic to expect every potential knowledge resource to be
equipped with its ontology; but nor is it desirable to simply
ignore those without ontologies, given the intrinsic value of
knowledge resources. In this context, EXTRACTexP offers
a means by which resources lacking ontological definitions
can be made accessible to brokers.

4.2 Knowledge Base Characterisation and the Broker

While this should lead to more flexible and intelligent envi-
ronment, the language available for expressing queries to the
broker is still relatively impoverished, and perhaps not best
suited to the sort of queries that will arise in a knowledge-
centred system. In particular, while a certain knowledge re-
source may conform to a particular ontology and satisfy
stated goals consistent with that ontology, this gives little in-
dication of the range of the knowledge base, and the structure
of the inferences it can make. To address this problem, we
can call upon the knowledge base characterisation services
outlined above in Section 3.

Consider the case where a query to the broker is now in the
form of a request for a knowledge resource that addresses
a topic T , and which conforms to a set of constraintsC.
The technique outlined in Section 3.1 allows a description
of the topic that the resource addresses to be extracted. This
description is in terms of some pre-defined ontologies that
could be supplied by the querying agent. Alternatively (and
perhaps more appropriately) these ontologies could be man-
aged by the broker itself, along with any known characteri-
sations of available knowledge sources. The topics of poten-
tial candidate resources known to the environment could be
extracted by the tool (again acting as a knowledge-service
provider in this environment) at the instigation of the broker.

Assuming that a number of knowledge resources are found
that cover the desired topic area, the next step would be to ap-
ply the constraint setC to these candidate resources, through
the invocation (in a similar fashion) of the appropriate fil-
ters. The result of this would be to locate those resources (if
any) that match the initial query. While providing no guaran-
tee that these will fulfil the querying agent’s needs, it would
seem to offer an approach that goes beyond the simple syn-
tactic matching often adopted, and a move towards richer,
semantic modes of transaction.

5 Related Work

The aim of this section is to summarise the related work in
the fields of ontology extraction and knowledge base char-
acterisation and, as a result, set the knowledge services de-
scribed in this paper in their proper context.

5.1 Ontology Extraction

In recent years there has been an increasing awareness of
the potential value of ontologies — an awareness accompa-
nied by a growing realisation of the effort required to de-
velop them manually. As a consequence, there has been a

90 Derek Sleeman et al.

certain amount of research into techniques by which onto-
logical knowledge might be extracted from existing promis-
ing sources in which it is considered to be implicit. The aim
of this section is to summarise this research, and its relation-
ship with the ontology extraction tool described in preceding
sections.

One related research area in which there has been a lot of
interest, probably due to the amount of available source ma-
terial, is that of ontology extraction from natural language
texts. Typically, this involves identifying within a text cer-
tain linguistic or grammatical cues or patterns that suggest
a certain ontological relationship between the concepts in-
stantiating that pattern (for examples see [14,15,16]). Some
researchers have attempted to increase the inferential power
of these techniques by invoking machine learning algorithms
to try to generalise the relationships that are found [17,18].
Thus far, the successes of these text-centred approaches have
been limited, with unresolved questions surrounding the ex-
tent of the background knowledge that is required for such
techniques (which often try to extend an existing ontology),
the amount of linguistic processing of the texts that is nec-
essary, and, indeed, the extent and range of the ontological
knowledge that it is possible to infer from texts.

Similarities can also be found to the discipline of data
mining, the application of machine learning and statistical
learners to large databases. As for texts, the vast numbers of
data often held by organisations — and the desire to exploit
these — make this an appealing approach. Applications of
data mining are focused not only upon extracting ontological
information, but also upon finding more ‘actionable’ knowl-
edge implicit in the data. However, the limiting factor is often
the data themselves: there is no guarantee that these contain
any useful knowledge of any sort, but rather they are merely
a collection of arbitrary or inconclusive facts. Indeed, it is of-
ten the case that the sole outcome of a data mining exercise
is a confirmation of the limitations of the data in question.

The work reported here has certain parallels with the work
of the software reverse-engineering community, whose mem-
bers are concerned with the extraction of information from
legacy software systems. There is a relationship with the
concept assignment problem[19], the (often very difficult)
task of relating program terms and constructs to the real-
world entities with which they correspond. Some techniques
which attempt to extract ontological knowledge from code,
and which give, perhaps unsurprisingly, often mixed results,
have emerged from this discipline [20,21].

However, while the EXTRACTexP tool undoubtedly has
similar intentions and shares certain concerns with the work
outlined above, it is distinguished from them by the choice
of an existing knowledge base as the source of ontologi-
cal knowledge. In some respects, it is surprising that hith-
erto there has been little research into the possibilities for
extracting ontologies from such sources. In constructing a
knowledge base, its developers make conscious decisions
to express knowledge at a conceptual level. Consequently,
it would seem to be a more immediate and more fertile
ground for ontological extraction than text, data or conven-
tional code.

5.2 Knowledge Base Characterisation

The characterisation of knowledge bases (and, more gen-
erally, knowledge-based systems) has been a concern of
AI research for many years, principally for the purposes
of construction and analysis. As one example, the KADS
[22] methodology involves characterising the knowledge sur-
rounding a particular task — and hence, the knowledge base
to address that task — attask, inferenceand domain lev-
els according to its nature and content, and the role that it
plays in problem-solving. This sort of characterisation can
promote the re-use of knowledge components (of, for exam-
ple, problem-solving methods at the inference level). More
recently, projects such as that to develop UPML [6] have ex-
tended some of these ideas with the express purpose of mod-
elling distributed environments of knowledge-based compo-
nents.

Here, we are interested specifically in characterising a
knowledge base from the perspective of the potential re-user,
and the nature of the requests for knowledge that are made.
However, a feature essential to the work reported here is that,
if it is to be of use, this characterisation should be (at least)
semi-automatic; there has been little work published regard-
ing this aspect, and, as such, we believe that there is a contri-
bution to be made in this area.

6 Conclusions

The success of initiatives such as the semantic web effort will
be increased if existing resources can be brought within its
compass without the need for extensive re-engineering. In-
deed, this might even be thought a necessary feature if these
initiatives are to gain the widespread support that they require
to succeed. This paper has introduced two techniques that, in
a relatively simple, low-cost manner, extract latent informa-
tion from knowledge bases, namely implicit ontological con-
straints and characterisation information. This information is
of the sort that enables and facilitates the future reuse and
transformation of these knowledge bases within distributed
environments and, as a consequence, serves to increase the
scope and potential of those environments.

Acknowledgements

This work is supported under the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collabora-
tion (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities of
Aberdeen, Edinburgh, Sheffield, Southampton and the Open
University.

References

1. M. Crubezy, W. Lu, E. Motta, and M. A. Musen. The inter-
net reasoning service: delivering configurable problem-solving
components to web users. InProc. Workshop on Interactive
Tools for Knowledge Capture at the First International Confer-
ence on Knowledge Capture (K-CAP 2001), Victoria, Canada,
pp. 15–22, 2001.

Enabling Services for Distributed Environments 91

2. M.F. Lopez, A. Gomez-Perez, and M.D. Rojas-Amaya. Ontol-
ogy’s crossed life cycle.Proc. EKAW-2000 Conference, Juan-
les-Pins, France, Springer, pp. 65–79, 2000.

3. G. Lei, D. Sleeman, and A. Preece. N MARKUP: a system
which supports text extraction and the development of associ-
ated ontologies. Technical Report, Computing Science Depart-
ment, University of Aberdeen, UK (in preparation).

4. K.L. Clark. Negation as failure. In H. Gallaire, and J. Minker
(eds.),Logic and Databases, pp.293–322. Plenum Press, 1978.

5. Y. Kalfoglou and D. Robertson. Use of formal ontologies to
support error checking in specifications. InProc. 11th Euro-
pean Workshop on Knowledge Acquisition, Modelling and Man-
agement (EKAW-99), Germany, pages 207–221. Springer Verlag
(Lecture Notes in Computer Science 1621), 1999.

6. D. Fensel, V.R. Benjamins, E. Motta and B. Wielinga. UPML:
a framework for knowledge system reuse. InProc. International
Joint Conference on AI (IJCAI-99), Stockholm, Sweden, July 31–
August 5, 1999, Morgan Kaufmann, pp. 16–23, 1999.

7. D.J. Reifer.Practical Software Reuse. John Wiley, New York,
1997.

8. K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service
matchmaking among agents in open information environments.
In ACM SIGMOD Record (Special Issue on Semantic Interop-
erability in Global Information Systems), A. Ouksel, A. Sheth
(Eds.),28(1), March 1999, pp. 47–53, 1999.

9. A.M. Collins, and E.F. Loftus. A spreading-activation theory of
semantic processing.Psychological Review, 82, pp. 407–428,
1975.

10. S. White, and D. Sleeman. A grammar-driven knowledge ac-
quisition tool that incorporates constraint propagation. InProc.
First Int Conf on Knowledge Capture (KCAP-01), October 21–
23, Victoria, Canada, ACM Press, pp. 187–193, 2001.

11. W. M. Schorlemmer, S. Potter, D. Robertson, and D. Sleeman.
Formal knowledge management in distributed environments. In
Workshop on Knowledge Transformation for the Semantic Web,
15th European Conference on Artificial IntelligenceECAI-2002,
Lyon, France, 2002.

12. K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross and V.S. Sub-
rahmanian. IMPACT: interactive Maryland platform for agents
collaborating together,IEEE Intelligent Systems magazine,
14(2), pp. 64–72, 2000.

13. M. Nodine, and A. Unruh. Facilitating open communication in
agent systems. InIntelligent Agents IV: Agent Theories, Archi-
tectures, and Languages, M. Singh, A. Rao and M. Wooldridge
(Eds.), pp. 281–296. Springer-Verlag (Lecture Notes in AI V.
1365), 1998.

14. P.R. Bowden, P. Halstead, and T.G. Rose. Extracting concep-
tual knowledge from text using explicit relation markers. In
N. Shadbolt, K. O’Hara, and G. Schreiber (eds.),Proc. Ninth Eu-
ropean Knowledge Acquisition Workshop (EKAW-96), Notting-
ham, UK, May 14-17 1996, Springer-Verlag, Berlin, pp. 147–
162, 1996.

15. D. Faure, and C. Ńedellec. Knowledge acquisition of predicate
argument structures from technical texts using machine learning:
the system ASIUM. In D. Fensel, R. Studer (eds.),Knowledge
Acquisition, Modeling and Management, Proc. Eleventh Euro-
pean Workshop, EKAW ’99, Dagstuhl Castle, Germany, May
26-29, 1999Lecture Notes in Computer Science, Vol. 1621,
Springer, Berlin. pp. 329–334, 1999.

16. U. Hahn, M. Klenner, and K. Schnattinger. Automated knowl-
edge acquisition meets metareasoning: incremental quality as-
sessment of concept hypotheses during text understanding. In
N. Shadbolt, K. O’Hara, and G. Schreiber, (eds.),Proc. Ninth
European Knowledge Acquisition Workshop (EKAW-96), Not-
tingham, UK, May 14-17 1996, Springer-Verlag, Berlin, pp.
131–146, 1996.

17. A. Mädche, and S. Staab. Discovering conceptual relations
from text. In W. Horn (ed.),Proc. Fourteenth European Confer-
ence on Artificial Intelligence (ECAI 2000), August 20-25 2000,
Berlin, Germany, IOS Press, Amsterdam, pp. 321–325, 2000.

18. U. Reimer. Automatic acquisition of terminological knowledge
from texts. In L. C. Aiello (ed.),Proc. Ninth European Confer-
ence on Artificial Intelligence (ECAI-90), Stockholm, August 6-
10, 1990, Pitman, London, pp. 547–549, 1990.

19. T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster, Program
understanding and the concept assignment problem,”Comm.
ACM, 37(5), pp. 72–83, 1994.

20. Y. Li, H. Yang, and W. Chu. Clarity guided belief revision for
domain knowledge recovery in legacy systems. InProc. 12th
International Conference on Software Engineering and Knowl-
edge Engineering (SEKE), Chicago, USA, Springer, 2000.

21. H. Yang, Z. Cui, and P. O’Brien. Extracting ontologies from
legacy systems for understanding and re-engineering. InProc.
IEEE 23rd International Conference on Computer Software and
Applications (COMPSAC ‘99), October 1999, IEEE Press, 1999.

22. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog,
N.R. Shadbolt, W. Van de Velde, and B. Wielinga.Knowledge
Engineering and Management, MIT Press, 2000.

