
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Centre for Intelligent Systems and their Applications

Automated Support for Composition of Transformational Components
in Knowledge Engineering

by

Marco Schorlemmer, Stephen Potter, Dave Robertson

Informatics Research Report EDI-INF-RR-0137

Division of Informatics June 2002
http://www.informatics.ed.ac.uk/

Automated Support for Composition of Transformational
Components in Knowledge Engineering

Marco Schorlemmer, Stephen Potter, Dave Robertson

Informatics Research Report EDI-INF-RR-0137

DIVISION of INFORMATICS
Centre for Intelligent Systems and their Applications

June 2002

Abstract :
The knowledge engineering world provides a rich source of software components for transforming formally ex-

pressed knowledge on a large scale, such as induction systems, knowledge base refiners and ontology merging tools.
Although most of these systems have been designed as stand-alone components, there is interest in making them ac-
cessible on the Web, with the ultimate goal in mind that a knowledge engineer should be able, with a small amount
of intellectual effort, to locate and assemble sequences of these components to perform complex transformations on
large repositories of knowledge. The sorts of transformations used in knowledge engineering are not always trustwor-
thy: some may not preserve the semantics of the knowledge transformed; some may not be able to perform a given
transformation reliably under all circumstances. Therefore, it is crucial to have ways of inspecting the key properties
we expect to be preserved by each transformational component and of describing how these properties change as new
transformations are applied.

We present initial experiments on a large-scale knowledge engineering problem and show how an abstract char-
acterisation of knowledge-transformation steps, accompanied by a customisable editor, can allow a high degree of
automation in this task. With such an editor we can analyse and represent sequences of general transformation steps
and check if properties such as subsumption, completeness and soundness are preserved during different stages of the
transformation, by analysing the structure of these sequences.

Keywords :

Copyright c 2002 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.

Automated Support for Composition of
Transformational Components in Knowledge Engineering

W. Marco Schorlemmer David Robertson Stephen Potter

Centre for Intelligent Systems and their Applications
Division of Informatics

The University of Edinburgh

Abstract

The knowledge engineering world provides a rich source of
software components for transforming formally expressed knowl-
edge on a large scale, such as induction systems, knowledge base
refiners and ontology merging tools. Although most of these sys-
tems have been designed as stand-alone components, there is in-
terest in making them accessible on the Web, with the ultimate goal
in mind that a knowledge engineer should be able, with a small
amount of intellectual effort, to locate and assemble sequences of
these components to perform complex transformations on large
repositories of knowledge. The sorts of transformations used in
knowledge engineering are not always trustworthy: some may not
preserve the semantics of the knowledge transformed; some may
not be able to perform a given transformation reliably under all
circumstances. Therefore, it is crucial to have ways of inspecting
the key properties we expect to be preserved by each transforma-
tional component and of describing how these properties change
as new transformations are applied.

We present initial experiments on a large-scale knowledge en-
gineering problem and show how an abstract characterisation of
knowledge-transformation steps, accompanied by a customisable
editor, can allow a high degree of automation in this task. With
such an editor we can analyse and represent sequences of gen-
eral transformation steps and check if properties such as subsump-
tion, completeness and soundness are preserved during different
stages of the transformation, by analysing the structure of these
sequences.

1. Introduction

One of the new challenges for automated software engi-
neering raised by the Web is that of managing lifecycles of
large volumes of formally expressed knowledge. It is now
straightforward to access through a Web-browser systems
which will, for example, allow us to assemble knowledge
bases and ontology descriptions from libraries of compo-
nents. Often, the knowledge we create in this way is too ex-

tensive to adapt by hand (the example we use in this paper
is a 5.3 Mb ontology) so we must deploy various automated
tools to trim it down, partition it and integrate it with other
knowledge bases and reasoning systems. This is an exercise
in combining large-scale transformation systems. It is diffi-
cult from an engineering point of view because typically we
apply many individual transformations over the lifespan of
a knowledge-based system, so it is easy to lose track of the
“big picture” as far as key properties of the knowledge we
are manipulating is concerned.

In this paper we present one way of addressing this prob-
lem. We assume that the results of transformation systems
of interest are too large, and their effects too varied and
complex to analyse ab initio from their source code but that
it is possible to specify properties which they preserve of
the knowledge they transform. For example, ID3 [16] and
AQ11 [15] both are algorithms for performing rule induc-
tion. There are various implementations of each of these al-
gorithms but all of them accept as input a database in a given
syntactic form; produce a rulebase in a different syntactic
form; and claim to preserve the property that the output
rulebase allows at least those conclusions which would have
been obtainable from the input database. These sorts of
properties often are the primary concern of knowledge engi-
neers, who may have no interest in the algorithmic or coding
details of the Web-based generalisation they applied to their
knowledge base as long as they know it actually was a gen-
eralisation (perhaps of a given kind). We supply a language
— a lifecycle calculus — in which transformations are clas-
sified in terms of these sorts of key properties. We then
build mechanisms for supporting large scale transformation
where transformation steps are specified in the lifecycle cal-
culus but applied, via automated systems, through selection
of transformational components which are consistent with
that specification. This provides a way of controlling se-
quences of transformation through lifecycle specifications
and of expressing standard practice in large-scale transfor-
mation using libraries of such specifications designed for

common tasks.

The lifecycle calculus which we present is the most gen-
eral and abstract we could devise for this purpose. This is
an ideal vehicle for research prototyping but in practice we
do not expect it to be used in its general form. Instead, its
use is controlled by the ways in which it is visualised, the
combinations of calculus steps we allow, and the kinds of
transformational component made available. In Section 2
we show one such way of applying the calculus in a con-
trolled fashion. There is, however, a spectrum of ways of
using it, ranging from a high degree of automated support
through to no automated support (with the calculus serving
only as a way of recording on paper the knowledge transfor-
mations applied). Our concern in this paper is with highly
automated support. The overall motivation for emphasising
automation is similar to that for coarse-grain synthesis sys-
tems such as Amphion [13, 12]: we wish to provide tools
which make it tractable to cope with large scale software
engineering problems. Unlike systems such as Amphion,
we are concerned with transformations of knowledge rather
than synthesis of code.

2. Formal Lifecycles: an Example

A typical problem faced by Internet-based knowledge
engineers is the following. Suppose we have an open agent
architecture in which suppliers of programs for transform-
ing knowledge in different ways supply these as “services”.
Such services need to be brokered in some way (other-
wise they would be hard to find and use). Brokering re-
quires some specification of the competences of each ser-
vice, which could be expressed simply using some proposi-
tional, domain-specific language or could be a more com-
plex input/output specification. Imagine that in such an
open architecture we discover a very large and complex
knowledge base which has been produced by one of these
services and which appears to meet our current needs. But
does it, in fact, possess the sort of qualities that we demand
of the knowledge we use? That will be impossible to decide
by reading the knowledge base; it will probably be impos-
sible to decide by static analysis, and a decision by testing
will probably be inconclusive. If we know the competence
specification of the service which constructed it then this
might reveal more about why and how it was built. It will
not, however, tell us if some other related knowledge base
might have been better. To know that we must know the
history of transformations which link the knowledge bases
built by all our services. This is the information provided
by a lifecycle history. A lifecycle calculus allows us to con-
struct and reason about such histories.

Hpkb-Upper-Level
Kif-Numbers

Simple-Time
Physical-Quantities

Kif-Extensions

Ontoligua Server

5.3M file

220K file

Ecolingua in Prolog syntax

Clean Ecolingua

Pruned Ecolingua

Executable Ecolingua

Ecolingua

clean up extraneous clauses

translation into Horn clauses

prune class hierarchy and irrelevant clauses

reuses

translation into Prolog syntax

Figure 1. Ecolingua’s lifecycle

2.1. Ecolingua’s Lifecycle

In order to illustrate the need for a formal, abstract ac-
count of knowledge lifecycles and to show the advantage
such an account yields, we shall use a real knowledge-
engineering scenario that our colleagues encountered here
at The University of Edinburgh. It consists of the lifecy-
cle of an ontology for ecological meta-data, called Ecolin-
gua [3, 5].

With the intention of specifying an ontology for the de-
scription of ecological data, Brilhante and Robertson chose
not to build the ontology from scratch, but to do it the
“proper way”, that is, by reusing publicly available on-
tologies of related fields and incorporating their specifica-
tions into Ecolingua. For this reason they turned to the
library of sharable ontologies provided by the Ontolingua
Server [8]. Hence, Ecolingua was first constructed with
the server’s editor by reusing classes from other ontolo-
gies in the server’s library, and then automatically translated
into Prolog syntax, Brilhante and Robertson’s preferred lan-
guage, by using the server’s translation service.

To their dismay the outcome of the translation was an
overly large 5.3 Mb file. That was so because the definitions
of proper Ecolingua classes use external classes defined in
five other ontologies, and because the translation service of
the server blindly joins the specification of all ontologies
together, including those of very general ontologies like
Simple-Time and Physical-Quantities1, before perform-
ing the actual translation into Prolog syntax. There was no
way that the ontology as produced by the Ontolingua Server
was going to be useful, unless it was significantly reduced in
order to get a smaller and more manageable set of axioms.
This reduction process could not be done manually, since
the logical integrity of the ontology may have been affected.
This forced Brilhante and Robertson to implement filters

1Both ontologies are available from the Ontolingua Server.

2

ontology_reducer
cleanup

prune
kifterms2prolog

BrokerLifecycle Editor
publish

Task Panel

(Lifecycle Interpreter)

formal lifecycle

lifecycle

Shared Message Space

Problem Solvers

Figure 2. Overview of the architecture

that first deleted all extraneous clauses (over-general facts,
definitions of self-subclasses, duplicated classes), and then
pruned the class hierarchy and removed irrelevant clauses
accordingly. Finally, since the translation service did not
provide executable Prolog code (it only yielded the ontolog-
ical axioms originally specified in KIF [9] as Prolog terms)
a final translation into Horn clauses was necessary, in order
to be able to execute the ontology with a Prolog interpreter.
Figure 1 shows this fragment of Ecolingua’s lifecycle. The
whole reduction process is explained in detail in [5].

We postulate that particular sequences of transforma-
tion steps like those illustrated in Figure 1 may be com-
mon in particular domains, and perhaps to particular forms
of knowledge component. In fact, the same problem en-
countered by Brilhante and Robertson with Ecolingua, and
the same need for automatic ontology reduction will be
faced by any knowledge engineer who attempts to specify
a particular ontology in the Ontolingua Server, by reusing
classes from sharable ontologies, and who asks for a trans-
lation into Prolog syntax. As such, the ability to generalise
and compile these sequences of transformations into for-
mally represented specifications of lifecycle patterns, and
making these available within a distributed environment as
integrated competences of an interpreter of such patterns,
would encourage more efficient behaviour when faced with
the need to make similar modifications in the future.

2.2. Editing and Executing Lifecycle Patterns

Let us now illustrate what a prototype for editing and
executing lifecycle patterns looks like. Figure 2 shows the
overview of an agent architecture we have been investigat-
ing. In such an architecture different knowledge engineers
could edit a formal representation of abstract lifecycle pat-
terns by means of a lifecycle editor, could then publish
these patterns as “competences” of a lifecycle interpreter
— an agent with the capability of executing lifecycle pat-
terns — and could finally execute these patterns through a

Figure 3. Editing Ecolingua’s lifecycle

task panel, which allows them to chose between the alter-
native problem solvers that perform the knowledge transfor-
mations captured in the abstract pattern in a domain-specific
way, if more than one exist.

Figure 3 shows the lifecycle editor that enables a knowl-
edge engineer to analyse the lifecycle of a knowledge com-
ponent, extract its abstract pattern, and devise a formal rep-
resentation of it. In particular, it shows the formal coun-
terpart of Ecolingua’s lifecycle as portrayed in Figure 1 at
the stage where the engineer is about to determine that the
last transformation step should be an ‘Ontology Weakening’
step. In our prototype we chose a representation based on
Horn clauses, where each clause represents a lifecycle pat-
tern or sub-pattern, and each literal in the body of the clause
represents the “call” to an abstract lifecycle step. In Sec-
tion 3.2 we justify our choice of these steps, such as ‘Ontol-
ogy Weakening’, and give definitions for a formal lifecycle
calculus. Notice that, although the depicted lifecycle edi-
tor uses an explicit formal notation as Horn clauses, it is
possible to hide much of the formality by using domain- or
taste-specific editing operations. For example, if we built an
editor that was especially for ontology refinement, then we
might have translations between formal languages as “prim-
itive steps”, and these would fit into the basic underlying
calculus as instantiations of abstract transformation steps .

Once the lifecycle of a knowledge component like Eco-
lingua is edited, we may publish it as a “competence” of a
lifecycle interpreter, i.e., a meta-interpreter capable of exe-
cuting the formal representation of a lifecycle. This lifecy-
cle is described at a generic level, and in order to be able to
run the lifecycle in a particular domain, specific solvers ca-
pable of performing abstract lifecycle steps are needed. As
a possible realisation for lifecycle execution we have been
investigating the use of an agent-based environment provid-

3

Figure 4. Executing Ecolingua’s lifecycle

ing a brokering service that offers a knowledge engineer the
option of choosing among any relevant solvers for each ab-
stract lifecycle transformation [17].

Figure 4 shows a task panel during the execution of a par-
ticular lifecycle, dubbed ontology reducer, which reduces
the Ecolingua ontology following the steps of the previ-
ously edited formal pattern of Ecolingua’s lifecycle. Fig-
ure 5 shows how, at a particular stage of the execution of the
lifecycle pattern, the broker gives the choice of two alterna-
tive solvers with the capability of performing the abstract
weaken lifecycle step. At this point the user interactively
chooses the solver that is to perform the domain-specific
task required by the abstract lifecycle step.

2.3. Checking Properties with Lifecycle Histories

Eventually the lifecycle execution terminates, yielding
as a response a term that captures the lifecycle history of
Ecolingua. This lifecycle history can then be used to prove
arguments about properties of knowledge components by
looking at their evolutionary paths rather than by inspect-
ing the specification of the components themselves. For in-
stance, in the case of ontology transformation, a key ques-
tion is where in the lifecycle of transformations we begin
to lose the soundness of an original general ontology as we
refine it for a specific purpose. In Section 4 we explain how
lifecycle histories allow us to answer this question automat-
ically.

Now that we have motivated our approach we shall de-

Figure 5. Choosing a particular solver for an
abstract lifecycle step

scribe next its theoretical foundations.

3. Abstract Knowledge Transformation

In order to give an abstract characterisation of knowl-
edge transformation steps we start from the assumption that
knowledge transformation presupposes flow of information,
and that we need to base any notion of knowledge lifecycle
on a sound mathematical theory of information and infor-
mation flow. There is no such theory of information yet, but
there have been several efforts in that direction [7, 1, 6, 2].

In our opinion, channel theory, as proposed by Barwise
and Seligman in [2], is currently the most promising ap-
proach, as it is inspired by category theory, and we think
that this is a major advantage. Category theory stems from
the observation that many properties of mathematical sys-
tems can be unified and simplified by describing mathe-
matical structures only through structure-preserving rela-
tionships between them [14], and this observation provided
deep insights in the fields of mathematical logic and com-
puter science. The same approach is taken in channel theory
when tackling information: it focuses on the flow of infor-
mation, i.e., the information transformation, rather than on
the highly elusive notion of information itself.

Within this section we outline a formal language for
the specification of knowledge lifecycles based on channel
theory. It is based on our view of the activity of knowl-
edge artifact synthesis as the connection of different knowl-
edge components —each one with its own laws and reg-
ularities described within its own system of ontological

4

commitments— in order to build a distributed information
system in which the links between these components favour
the flow and use of information, and hence of knowledge.
Thus, first we need to introduce some basic definitions of
channel theory.

3.1. Channel Theory and the Flow of Information

An in-depth discussion of channel theory is impractical
here, but a short introduction will suffice. Channel theory
has been developed based on the understanding that infor-
mation flow results from regularities in a distributed system,
and that it is by virtue of regularities among the connections
that information of some components of the system carries
information of other components; furthermore it is the in-
stances that carry information, so that information flow cru-
cially involves both types (i.e., the terminology to describe
components) and instances.

Central to channel theory is the idea of a local logic.
Components of a distributed information system will typ-
ically be described using different vocabularies, i.e., using
different systems of types, and instances will be classified
according to these types in quite different ways. In addition,
each component will have its own particular constraints that
describe its local behaviour. Ideally, all instances will ad-
here to these constraints, they will be normal, although ex-
ceptions may occur. A local logic brings all these ideas to-
gether:

Definition 1 A local logic is a quintuple L = (I, T, |=,`
, N), where

• I is a set of instances;

• T is a set of types;

• |= is a classification relation, a binary relation between
elements of I and T ;

• ` is a consequence relation, a binary relation between
subsets of T ;

• N is a subset of I , the set of normal instances.

There are two parts of a local logic that are of particu-
lar importance in the channel theory framework. The first
one is the triple (I, T, |=), and is called the classification of
the local logic, because the binary relation |= determines a
classification of instances in I with respect to types in T .
Thus, i |= t means that instance i ∈ I is classified as of
type t ∈ T .

The second important part is the tuple (T,`), which is
called the theory of the local logic. This theory is specified
by a set of sequents Γ ` ∆, where Γ, ∆ ⊆ T . The set of
types Γ is to be interpreted conjunctively, the set ∆ disjunc-
tively, so that an instance i ∈ I satisfies a sequent Γ ` ∆

provided that, if i is of every type in Γ, then i is of some
type in ∆. Sequents that belong to the theory of a logic are
called constraints. Theories of local logics must satisfy the
following properties, and hence are said to be regular2:

1. Identity: t ` t, for all t ∈ T ;

2. Weakening: If Γ ` ∆ then Γ, Γ′ ` ∆, ∆′, for all
Γ, Γ′, ∆, ∆′ ⊆ T ;

3. Global Cut: If Γ, T ′0 ` ∆, T ′1 for each partition3

〈T ′0, T
′
1〉 of T ′ ⊆ T , then Γ ` ∆, for all Γ, ∆ ⊆ T .

Finally, normal instances must satisfy all constraints of
the local logic. The idea of normal instances is needed if
we want to model reasonable but unsound transformations
of information. Hence, we say that a logic is sound when
all its instances are normal, i.e., N = I . A logic is com-
plete if every sequent satisfied by every normal instance is
a constraint of the logic.

3.2. A Lifecycle Calculus

We describe the lifecycle of knowledge components by
means of abstract transformations rules, where the seman-
tics of these rules is to be found in channel theory. On one
hand we want these transformation rules to be general, since
we attempt to capture only the essentials of any knowledge
engineering activity: we don’t want the rules to formally de-
scribe details of numerous individual techniques. For this
reason our rules originate from the abstract operations on
local logics provided by channel theory. On the other hand
we do not want these rules to be so general that they do not
have any link to the technologies we wish to analyse, and in
practice we shall always have concrete lifecycles in mind,
like the one of Ecolingua. We claim to have achieved a
sensible balance for the level of abstraction as the examples
of property checking in Section 4.2 illustrate. Neverthe-
less, we envisage particular specialisations of these general
rules that are closer to particular classes of transformation
techniques, and hence capture more properties of them. For
instance, there will be many transformational components
used by knowledge engineers that will not conform to any
of the abstract calculus rules below, but are in fact sequences
of abstract transformations themselves. Still, investigation
into these sort of ‘customised’ or ‘specialised’ transforma-
tion rules can follow from an abstract description as pre-
sented in this paper.

Each of the lifecycle rules introduced below takes one
or more abstract knowledge components as input and yields

2Regularity arises from the observation that, given a classification of
instances to types, the set of all sequents that are satisfied by all instances
do fulfill these properties.

3A partition of T ′ is a pair 〈T ′

0
, T ′

1
〉 of subsets of T ′, such that T ′

0
∪

T ′

1
= T ′ and T ′

0
∩ T ′

1
= ∅; T ′

0
and T ′

1
may themselves be empty (hence

it is actually a quasi-partition).

5

an abstract component as output; each component is char-
acterised as a pair 〈O, S〉, consisting of the specification S

of the component and the ontology O in which the speci-
fication is given. We shall model a knowledge component
by a local logic, where its ontology O specifies the clas-
sification upon which the local logic will be built, and its
specification S determines the theory of the logic. Normal
instances will depend on the soundness and completeness of
the knowledge component. It is beyond the scope of this pa-
per to provide a detailed and formally argued justification of
this view of knowledge components; this will be given else-
where [18]. In the meantime we move on, and distinguish
between the following kinds of transformations, based on
the above characterisation of knowledge components.

Transformations on the specification

Transforming the specification but not the ontology of a
knowledge component will affect the set of constraints of
the local logic that characterises it, leaving the classifica-
tion of instances to types unchanged. Some of these trans-
formations will yield “stronger” specifications, with fewer
models, while others will yield “weaker” ones, with more
models. Thus, there is a natural partial order on local logics
defined as follows:

Definition 2 LetL1 andL2 be two local logics on the same
classification; L1 v L2 if and only if

• all constraints of L1 are also constraints of L2

• all normal instances of L2 are also normal instances of
L1

Stronger logics — those larger in the partial order —
have more constraints but fewer normal instances. More
constraints may result in some instances not satisfying all
of the constraints any more, reducing the number of nor-
mal instances, while fewer constraints may have the reverse
effect. This is a ‘counter-variance’ that results from the du-
ality between types and instances, and we shall come back
to it later when we introduce infomorphisms in Definition 3.
We shall distinguish, thus, between two specification trans-
formation rules:

Specification
Strengthening

〈O, S〉

〈O, S′〉
if S v S′

Specification
Weakening

〈O, S〉

〈O, S′〉
if S w S′

In the rules above, the annotations S v S ′ and S w S′

should to be understood as that the application of the rules
is conditioned to the existence of a partial order between the
local logics that characterise specifications S and S ′. This
partial order shows the subsumption of one component by
another.

Transformational systems that perform Specification
Strengthening are, for instance, systems like ID3 [16] or
AQ11 [15], machine learning systems that perform gener-
alisation by rule induction on a set of examples. On the
other hand, systems that perform Specification Weakening
are, for instance, specialisation operators of knowledge-
base refiners [4], or the filters implemented by Brilhante
and Robertson for trimming down the Ecolingua ontology,
as explained in Section 2.

Transformations on the ontology

There are various ways to transform the ontology of a
knowledge component: we may include or remove con-
cepts, modify the concept hierarchy, rename concepts and
relations, or modify the set of ontological constraints, for
instance. In terms of our semantics based on channel the-
ory, transforming the ontology of a knowledge component
will essentially affect the system of classifications, but in a
sensible way, namely maintaining the flow of information
between ontologies. This latter is captured with the idea of
an infomorphism:

Definition 3 A infomorphism f : A � B from clas-
sification A = (IA, TA, |=A) to classification B =
(IB , TB, |=B) is a contravariant pair of functions f =
〈f?, f?〉, where f? : TA → TB and f? : IB → IA, and
such that, for b ∈ IB and α ∈ TA,

f?(b) |=A α iff b |=B f?(α) .

In Section 4.1, we shall pay special attention to infomor-
phisms whose function of instances is surjective. We say
that there is an ontology morphism between two ontologies
if there is a infomorphism between the classifications that
characterise them.

By transforming the ontology of a component we will
need to adapt its specification accordingly. That is, we will
have to move the constraints of the original logic to a new
set of instances, types and a classification relation between
them. Depending if this is done forwards or backwards
along the infomorphism, we will have two ways of mov-
ing logics: by taking images and inverse images. We start
with the latter first:

Definition 4 Let f : A � B be an infomorphism, and letL
be a local logic on classification B. The inverse image of L
under f , written f−1[L], is the local logic on classification
A whose constraints are defined as follows:

Γ `f−1[L] ∆ iff f [Γ] `L f [∆]

and whose normal instances are:

{a ∈ IA | a = f?(b) for some b ∈ NL}

6

In the definition above f [Γ] and f [∆] are the set-images
of the set of types Γ and ∆ under function f ?. Analogously,
we shall use their inverses below, in Definition 5.

Definition 5 Let f : A � B be an infomorphism, and let
L be a local logic on classification A. The image ofL under
f , written f [L], is the local logic on classification B whose
constraints are defined as follows:

Γ `f [L] ∆ iff f−1[Γ] `L f−1[∆]

closed under Identity, Weakening and Global Cut4, and
whose normal instances are:

{b ∈ IB | f?(b) ∈ NL}

These two ways of moving logics along infomorphisms
give rise to two ontology transformation rules:

Ontology
Strengthening

〈O, S〉

〈O′, f [S]〉
if O

f
−→ O′

Ontology
Weakening

〈O, S〉

〈O′, f−1[S]〉
if O

f
←− O′

In the rules above, the annotations O
f
−→ O′ and O

f
←−

O′ mean that the application of the rules is conditioned to
the existence of a ontology morphism between the ontolo-
gies, and hence of an infomorphisms between the classifica-
tion systems of the local logics that characterise the knowl-
edge components involved.

That a knowledge transformation, due to a forward-
translation (an image) of the ontology is called Ontology
Strengthening is justified later when we discuss ontologies
as knowledge components. Analogously, a transformation
based on a backward-translation (an inverse image) is On-
tology Weakening.

A transformational system that performs both Ontology
Strengthening and Ontology Weakening is for example On-
tolingua [10], which uses KIF [9] as an expressive inter-
lingua into which knowledge components that are to share
knowledge are translated back and forth. Another example
of a transformational system that does Ontology Weakening
is the translator into Horn clauses implemented by Brilhante
and Robertson for Ecolingua (see Section 2).

Connection of components

Finally, knowledge components are frequently joined to-
gether. If they happen to be specified in the same ontol-
ogy, only the specifications need to be merged in a sensible
way. But in general knowledge components will be speci-
fied using different ontologies, and some sort of bridge be-
tween ontologies will be needed. An abstract way to look

4This is necessary as there is no guarantee that the consequence relation
as defined by the inverse images of sequents is regular.

at a bridge is as a common ontology O0 that each of the
ontologies of two components conforms to and possibly ex-
tends [11]. This is characterised by the existence of ontol-
ogy morphisms f1 : O0 → O1 and f2 : O0 → O2. The
global ontology that captures the original ontologies is then
characterised by a pushout construction [14]:

O

O1

ι1

=={{{{{{{{

O2

ι2

aaCCCCCCCC

O0

f1

aaCCCCCCCC f2

=={{{{{{{{

This construction determines the necessary infomorphisms
to move the original logics, by taking their respective im-
ages into the global ontology O, and then merging them by
taking the join of logics defined next:

Definition 6 Let L1 andL2 be two local logics on the same
classification; their join L1 t L2 is the least upper bound in
the partial orderv of local logics.

This gives rise to the following abstract transformation
rule:

Component
Connection

〈O1, S1〉 〈O2, S2〉

〈O, ι1[S1] t ι2[S2]〉
if O1

f1←− O0

f2−→ O2

In the rule above, the annotation O1
f1

←− O0
f2

−→ O2

means that the application of the rules is conditioned to the
existence of a bridge O0 for ontologies O1 and O2, and ι1
and ι2 are the injections of the resulting pushout construc-
tion with vertex O.5 The resulting knowledge component is
then characterised by the least upper bound of the images of
the original logics into the global ontology.

Examples of transformational systems that perform
Component Connection are those of standard knowledge
engineering practices that link a knowledge base with a
problem solver or with ontological axioms.

Ontologies as abstract knowledge components

If we are interested in the lifecycle of transformations per-
formed on a knowledge component 〈O, S〉 that is actually
an ontology, as with Ecolingua’s lifecycle discussed in Sec-
tion 2, then S has to be understood as the content, i.e., the
specification, of the ontology, while O is actually its meta-
ontology in which the ontology itself is specified.

Now, by looking at the channel-theoretic characterisa-
tion of ontologies as classifications, we will discover the

5Actually this will be a pushout construction on a pair of infomor-
phisms; this pushout always exists in the category of classifications and
infomorphisms [2].

7

following: If an ontology O = 〈Ometa, S〉, viewed as a
component over meta-ontology Ometa, is strengthened to
an ontology O′ = 〈Ometa, S′〉, i.e., S v S′, then there

is an ontology morphism O
f
−→ O′. Analogously, if an

ontology O = 〈Ometa, S〉 is weakened to an ontology
O′ = 〈Ometa, S′〉, i.e., S w S′, then there is an ontology

morphism O
f
←− O′:

S v S′

〈Ometa, S〉
f
−→ 〈Ometa , S′〉

S w S′

〈Ometa, S〉
f
←− 〈Ometa, S′〉

Hence, when the ontology Ecolingua is transformed by
Ontology Weakening, it is not that Ecolingua, as it is speci-
fied by its axioms, is weakened, but its meta-ontology. This
happens, for instance, by translating its axioms from KIF,
which is essential first-order predicate calculus, into less
expressive Horn clauses (that is the last transformation step
of the lifecycle depicted in Figure 1). The transformations
that clean up and prune Ecolingua are transformations that
remove ontological axioms and hence weaken its specifica-
tion. Consequently they are Specification Weakening steps.

4. Proving Arguments about Properties

With an abstract characterisation of knowledge transfor-
mation embodied in the rules of the above lifecycle calcu-
lus we are already capable of checking key properties such
as soundness and completeness of local logics, and partial
order between two local logics. For this we use our under-
standing of channel-theoretic operations like, for instance,
those of moving logics, and that form the semantics of the
rules of our lifecycle calculus, under the assumption that
the specification supplied for each individual transforma-
tion step is correct.

4.1. About Moving Logics

Recall from Section 3.2 that by strengthening or weak-
ening the ontology of a knowledge component we are actu-
ally moving the local logic that characterises the component
along an infomorphism. Images and inverse images of log-
ics have an effect on the preservation and loss of properties
such as the soundness of the completeness of a local logic:

Proposition 1 ([2]) Let f : A � B be an infomorphism.

1. Let L be a local logic on a classification A.

• If L is sound, then f [L] is sound.

• If f is surjective on instances and L is complete,
then f [L] is complete.

2. Let L be a local logic on a classification B.

• If L is complete, then f−1[L] is complete.

• If f is surjective on instances and L is sound,
then f−1[L] is sound.

Consequently, strengthening an ontology preserves the
soundness of a knowledge component, but not its complete-
ness, and weakening an ontology preserves the complete-
ness of the component, but not its soundness. Strengthening
would preserve completeness, and weakening soundness,
were the infomorphism surjective on instances.

It is also interesting to know how moving logics influ-
ences the partial-order relation between logics and the join
of logics:

Proposition 2 ([2]) Let f : A � B be an infomorphism.

1. For logics L1 and L2 on A,

(a) if L1 v L2 then f [L1] v f [L2];

(b) f [L1 t L2] = f [L1] t f [L2].

2. For logics L1 and L2 on B,

(a) if L1 v L2 then f−1[L1] v f−1[L2];

(b) f−1[L1 t L2] = f−1[L1] t f−1[L2].

Consequently, strengthening or weakening the ontology
of two knowledge components preserves the partial-order
relation between two components as well as the the joins,
i.e., when components are connected together.

Finally, it is also interesting to know what happens to a
knowledge component when it is translated to and from a
weaker or stronger ontology. The resulting component will
itself be weaker or stronger due to the following proposi-
tion:

Proposition 3 ([2]) Let f : A � B be an infomorphism.

1. For any logic L on A, L v f−1[f [L]].

2. For any logic L on B, f [f−1[L]] v L.

4.2. Inspecting Lifecycle Histories

Although we are dealing with a small set of transforma-
tion rules in our lifecycle calculus, and in addition these are
quite abstract, we are already able to prove some key prop-
erties that are useful to the task of a knowledge engineer.
For example, suppose we want to combine two knowledge
components C1 and C2 which are both specified over the
same ontology O, and we lack a transformational system
capable of combining knowledge components specified in
O, but instead we have at our disposal:

• a ‘translator’ that can translate specifications between
an ontology O and a more expressive ontology O′, in
either direction (e.g., the system Ontolingua and the
interlingua KIF); and

8

• a ‘merger’ that combines components expressed in the
more expressive ontology O′.

We may decide to use the translator to translate compo-
nents C1 and C2 into ontology O′, then use the merger to
combine them, and finally translate the resulting component
back into O using the translator again. Can we know if our
resulting component subsumes both C1 and C2?

Of course, we could decide to supply a theorem prover
with the specifications of C1, C2 and C and try proving
if the axioms of the former follow from the axioms of the
latter. But this is a very resource-expensive task and will
be quite often impracticable when dealing with large-scale
knowledge components. Instead, we can inspect the se-
quence of abstract transformations we have been applying
to C1 and C2 in terms of the lifecycle calculus proposed
in Section 3.2, and use the propositions of channel theory
given above to perform the same check, hence staying at
the abstract ‘transformation level’ only, and not getting in-
volved with component specifications at all. This ‘transfor-
mation level’ is characterised by the histories of knowledge
components as they are transformed during their lifecycles.
We describe them by means of terms and the lifecycle cal-
culus.

Definition 7 A lifecycle history is a term, constructed as
follows:

1. A component identifier C is itself a lifecycle history
(the empty history).

2. If h, k are lifecycle histories, f, g are ontology mor-
phisms, and O0 is a bridge, then ss(h), sw(h),
os(f, h), ow(f, h), and cc(O0, f, g, h, k) are lifecycle
histories.

In the definition above ss, sw, os, ow, and cc stand for
applications of the five calculus rules given in Section 3.2
(taking the obvious correspondences). Where a calculus
rule involves ontology morphisms or a bridge of ontologies,
the morphisms and the bridge are explicitly stated in the
term. So, cc(O0, f1, f2, C1, C2) would represent a compo-
nent connection involving components C1 and C2 after they
have been expressed in a global ontology determined by the
bridge O0 and ontology morphisms f1 and f2. We shall use
id to represent the identity ontology morphism, when no
translation is needed.

The lifecycle history for our component C of the exam-
ple above is, thus,

C = ow(f, cc(O′, id, id, os(f, C1), os(f, C2)))

In terms of its semantics in channel theory, if L1 and
L2 are the local logics characterising knowledge compo-
nents C1 and C2, respectively, and if f is the infomor-
phism characterising the information flow from O to O′,

Figure 6. Proving arguments on Ecolingua’s
lifecycle

then the local logic for the resulting component C will be
f−1[f [L1]t f [L2]]. The subsumption of component C1 by
component C, for instance, is proved as follows: By Propo-
sition 3,

L1 v f−1[f [L1]]

and, by Definitions 2 and 6,

f−1[f [L1]] v f−1[f [L1]] t f−1[f [L2]] .

Finally, by Proposition 2,

f−1[f [L1]] t f−1[f [L2]] = f−1[f [L1] t f [L2]] .

By Proposition 1, completeness and soundness of the re-
sulting combined component cannot be guaranteed, unless
we know that the ontology morphisms involved — the info-
morphisms – are surjective on the instances (that populate
our ontologies).

4.3. Back to Ecolingua

Figure 6 shows our lifecycle editor of Section 2 again
(compare with Figure 3), but at the moment where the
knowledge engineer is about to ask for the validity of an ar-
gument concerning the soundness of Ecolingua. In particu-
lar, the engineer attempts to prove if, assuming that the ver-
sion of the ontology before the sequence of transformations
— identified here with the constant eco — is sound, we can
conclude that the ontology after the transformation steps —
identified by the lifecycle history displayed in the bottom
part of the window — is also sound. The lifecycle history
displayed in this window corresponds to the execution of
the formal lifecycle pattern as it was represented with Horn
clauses, and captures the structure of Ecolingua’s lifecycle

9

as illustrated in Figure 1. In this particular case, the argu-
ment we attempt to prove will be shown to be invalid.

Thus, if soundness is a property to be preserved, any fur-
ther transformations that are to be applied to Ecolingua
need to take the output of the pruning transformation step
(the last Specification Weakening step) since after Ontol-
ogy Weakening, which translates axioms into Horn clauses,
soundness cannot be guaranteed. Here is something that
would be impossible to know if we had not a lifecycle his-
tory that recorded the sort of transformations applied to
Ecolingua. It is only practical to learn it through use of
lifecycle histories and these must be supported through au-
tomated synthesis in order to deal with the scaling problem
of recording and reasoning about such information in large,
open systems.

5. Conclusion

Although in this paper we have been mainly concerned
with the task of large-scale knowledge engineering, rather
than with the automated generation of code, we have tackled
a problem that is of great importance to software engineers,
namely the task of combining transformational systems and
providing automated support for performing this task in
large-scale and open environments such as the World-Wide
Web. We have introduced a semantically precise language
to describe knowledge transformations in abstract terms,
and showed how we can automatically check for the va-
lidity of arguments concerning key properties of knowledge
components along different stages of the components’ life-
cycles. We have also given a glimpse into an agent-based
architecture in which we can use a customised lifecycle ed-
itor to analyse and execute sequences of abstract transfor-
mations in domain-specific ways. We plan to further study
specialised environments based on the ideas presented in
this paper, so that we can provide additional automated sup-
port to the task of large-scale knowledge and software engi-
neering.

Acknowledgements

This work is supported under the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collabora-
tion (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities
of Aberdeen, Edinburgh, Sheffield, Southampton and the
Open University.

References

[1] J. Barwise and J. Perry, editors. Situations and Attitudes.
MIT Press, 1983.

[2] J. Barwise and J. Seligman. Information Flow: The Logic of
Distributed Systems. Cambridge University Press, 1997.

[3] V. Brilhante and D. Robertson. Metadata-supported au-
tomated ecological modelling. In C. Rautenstrauch and
S. Patig, editors, Environmental Information Systems in In-
dustry and Public Administration. Idea Group Publishing,
2001.

[4] L. Carbonara and D. H. Sleeman. Effective and efficient
knowledge base refinement. Machine Learning, 37:143–
181, 1999.

[5] F. S. Corrêa da Sliva, W. W. Vasconcelos, D. S. Robertson,
V. Brilhante, A. C. de Melo, M. Finger, and J. Agustı́. On
the insufficiency of ontologies: problems in knowledge shar-
ing and alternative solutions. Knowledge-Based Systems,
15(3):147–167, 2002.

[6] K. Devlin. Logic and Information. Cambridge University
Press, 1991.

[7] F. Dretske. Logic and the Flow of Information. MIT Press,
1981.

[8] A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server:
a tool for collaborative ontology construction. International
Journal of Human-Computer Studies, 46(6):707–727, 1997.

[9] M. R. Genesereth and R. E. Fikes. Knowledge inter-
change format (KIF). Draft proposed American National
Standard, NCITS.T2/98-004, 1998. Available at http://
logic.stanford.edu/kif/dpan.html.

[10] T. Gruber. A translation approach for portable ontology
specifications. Knowledge Engineering, 5(2), 1993.

[11] R. E. Kent. The information flow foundation for concep-
tual knowledge organization. In Sixth International Confer-
ence of the International Society for Knowledge Organiza-
tion, 2000.

[12] M. Lowry and J. V. Baalen. Meta-Amphion: Synthesis of
efficient domain-specific program synthesis systems. Auto-
mated Software Engineering, 4, 1997.

[13] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood. A
formal approach to domain-oriented software design envi-
ronments. In Proceedings of the 9th Knowledge-Based Soft-
ware Engineering Conference, pages 48–57, 1994.

[14] S. Mac Lane. Categories for the Working Mathematician.
Springer, second edition, 1998.

[15] R. S. Michalski and J. Larson. Incremental generation of
VL1 hypotheses: the underlying methodology and the de-
scription of program AQ11. Technical Report ISG 83-5,
Department of Computer Science, University of Illinos at
Urbana-Champaign, 1983.

[16] J. R. Quinlan. Induction of decision trees. Machine Learn-
ing, 1:81–106, 1986.

[17] W. M. Schorlemmer, S. Potter, D. Robertson, and D. Slee-
man. Formal knowledge engineering in distributed environ-
ments. In ECAI 2002 Workshop on Knowledge Transforma-
tion for the Semantic Web, 2002.

[18] W. M. Schorlemmer, D. Robertson, and S. Potter. Formal
knowledge lifecycles. Technical report, Division of Infor-
matics, The University of Edinburgh, 2002.

10

