
Ontology Extraction for Distributed
Environments

Derek Sleeman1 Stephen Potter2 Dave Robertson2 Marco Schorlemmer2

1 Department of Computing Science,
University of Aberdeen, United Kingdom

sleeman@csd.abdn.ac.uk

2 Division of Informatics,
University of Edinburgh, United Kingdom

stephenp@aiai.ed.ac.uk, {dr,marco }@inf.ed.ac.uk

Abstract. Existing knowledge base resources have the potential to be valuable com-
ponents of the Semantic Web and similar knowledge-based environments. However,
from the perspective of these environments, these resources are often under-character-
ised, lacking the ontological characterisation that would enable them to be exploited
fully. In this chapter we discuss a technique which can be applied to identify onto-
logical knowledge implicit in a knowledge base. Based on this technique, a tool has
been implemented which allows this knowledge to be extracted, thereby promoting
the re-use of the resource. A discussion of some complementary research into broker-
ing services within distributed knowledge architectures serves to illustrate the sort of
environment in which such re-use might be enacted.

1 Introduction

The principal challenge for the Semantic Web community is to make machine-readable much
of the material that is currently human-readable, and thereby enrich web operations from
their current information-based state into a knowledge-centric form. Towards this end, for in-
stance, the IBROW project is addressing the complex task of developing a brokering system
which, given a knowledge base/knowledge source and a specification of the processing to be
performed, would find an appropriate problem solver and perform any necessary transforma-
tion of the knowledge sources [1]. In this chapter, we describe one outcome of our research
into techniques to enable brokering systems to become more effective and more intelligent:
a technique for the semi-automatic extraction of domain ontologies from existing knowledge
bases.

Work on ontologies has played a central role in recent years in Knowledge Engineer-
ing, as ontologies have increasingly come to be seen as the key to making (especially web)
resources machine-readable and -processable. Systems have been implemented which help
individuals and groups develop ontologies, detect inconsistencies in them, and merge two
or more. Ontologies are seen as theessenceof a knowledge base, that is, they capture, in
some sense, what is commonly understood about a topic by domain experts. For a discussion
of how ontologies are often developed, see [2]. Recently, systems have been implemented

2 D. Sleeman et al.

which help domain experts locate domain concepts, attributes, values and relations in textual
documents. These systems also often allow the domain expert to build ontologies from these
entities; it has been found necessary, given the shortcomings of the particular text processed,
to allow the domain expert, as part of the knowledge modelling phase, to add entities which
are thought to be important, even if they are not found in the particular text [3].

Reflecting on this process has given us the insight thatknowledge bases1 themselves could
act as sources of ontologies, as many programs essentially contain a domain ontology which
although it may not be complete, is, in some sense, consistent. (Since if it were inconsis-
tent this would lead, under the appropriate test conditions, to operational problems of the
system in which the ontology is embedded). Thus, the challenge now becomes one of ex-
tracting ontologies from existing knowledge-based systems. The following section describes
one approach for doing this, from, in the first instance, Prolog knowledge bases. As well as
enabling their re-use, this technique can also be seen as performing a transformation of these
knowledge bases into their implicit ontological knowledge.

The rest of the chapter is structured as follows. Section 2 describes, with examples, the
technique for acquiring ontological knowledge from knowledge bases in a semi-automatic
fashion. Section 3 gives a brief overview of our conception of a brokering system, in order
to illustrate the role that this technique can play in facilitating knowledge services within
distributed environments. Section 4 discusses related work, and, to conclude, Section 5 sum-
marises the chapter.

2 Extracting Ontologies from Prolog Knowledge Bases

The method used to hypothesise ontological constraints from the source code of a knowledge
base is based on Clark’s completion algorithm [4]. Normally this is used to strengthen the def-
inition of a predicate given as a set of Horn clauses, which have single implications, into a def-
inition with double-implication clauses. Consider, for example, the predicatemember(E,L)
which is true ifE is an element of the list,L:

member(X, [X|T])
member(X, [H|T]) ← member(X,T)

The Clark completion of this predicate is:

member(X,L) ↔ L = [X|T] ∨ (L = [H|T] ∧member(X,T)) (1)

Use of this form of predicate completion allows us to hypothesise ontological constraints.
For example, if we were to assert thatmember(c, [a, b]) is a true statement in some problem
description then we can deduce that this is inconsistent with our use ofmember as con-
strained by its completion in expression (1) above because the implication below, which is an
instance of the double implication in expression (1), is not satisfiable.

member(c, [a, b]) → [a, b] = [c|T] ∨ ([a, b] = [H|T] ∧member(c, T)) (2)

Normally Clark’s completion is used for transformation of logic programs where we are
concerned to preserve the equivalence between original and transformed code. It therefore is

1Throughout this chapter, by “knowledge base” we mean some knowledge-bearing computer program, not
necessarily expressed in some dedicated knowledge representation language, but for which the decision has
been made to express the knowledge at a semantic, conceptual level. For our purposes, however, we assume that
an explicit ontology describing the terms of such a knowledge base isnotavailable.

Ontology Extraction for Distributed Environments 3

applied only when we are sure that we have a complete definition for a predicate (as we had
in the case ofmember). However, we can still apply it in “softer” cases where definitions
are incomplete. Consider, for example, the following incomplete definition of the predicate
animal(X):

animal(X) ← mammal(X)
animal(X) ← fish(X)

Using completion as above, we could derive the constraint:

animal(X) → mammal(X) ∨ fish(X)

This constraint is over-restrictive since it asserts that animals can only be mammals or
fish (and not, for instance, insects). Nevertheless, it is useful for two purposes:

• As a basis for editing a more general constraint on the use of the predicate ‘animal’.
We describe a prototype extraction tool, which includes a basic editor, for these sorts of
constraints in Section 2.1.

• As a record of the constraints imposed by thisparticular use of the predicate ‘animal’.
We describe an automated use of constraints under this assumption in Section 2.2.

2.1 A Constraint Extraction Tool

We have produced a basic system for extracting ontological constraints of the sort described
above from Prolog source code. Our tool can be applied to any standard Prolog program
but is only likely to yield useful constraints for predicates which contain no control-effecting
subgoals (although non-control-effecting goals such aswrite statements are accommodated).
While, in theory at least, the approach can be applied to programs of any size, we will now
demonstrate the current tool using an example involving a small number of predicates.

Figure 1 shows the tool applied to a simple example of animal classification, following
the introduction of the previous section. The Prolog code is:

animal(X) :- mammal(X).
animal(X) :- fish(X).
mammal(X) :- vertebrate(X), warm_blooded(X), milk_bearing(X).
fish(X) :- vertebrate(X), cold_blooded(X), aquatic(X), gill_breathing(X).

which corresponds to the Horn Clauses:

animal(X) ← mammal(X)
animal(X) ← fish(X)

mammal(X) ← vertebrate(X) ∧ warm blooded(X) ∧milk bearing(X)
fish(X) ← vertebrate(X) ∧ cold blooded(X) ∧ aquatic(X) ∧ gill breathing(X)

(3)

The constraints extracted for this program (seen in the lower window of Figure 1) are:

animal(X) → mammal(X) ∨ fish(X)
fish(X) → vertebrate(X) ∧ cold blooded(X) ∧ aquatic(X) ∧ gill breathing(X)

mammal(X) → vertebrate(X) ∧ warm blooded(X) ∧milk bearing(X)
(4)

4 D. Sleeman et al.

Figure 1: Ontology extraction tool

If it is deemed necessary, the user of the tool can then choose to edit manually the con-
straints. We show in Section 2.2 how these constraints, which, in this case, were extracted
completely automatically from the Prolog source code, can be used to check another Prolog
program purporting to adhere to the same ontology.

2.2 Ontological “Safe Envelopes”

The idea of running programs within ontological “safe envelopes” was introduced in [5].
Programs are run according to the normal execution control regime of the language con-
cerned but a record is kept of the cases where the execution uses terminology which does
not satisfy a given set of ontological constraints. When this happens we say the execution
has strayed outside its safe envelope (from an ontological point of view). This sort of check-
ing is not intended to alter the execution of the program in any significant way, only to pass
back retrospective information about the use of terminology during an execution. This style
of checking can be implemented elegantly for languages, such as Prolog, which permit meta-
interpretation, allowing us to define the control structure for execution explicitly and then to
augment this with appropriate envelope checking. The Horn clauses shown in expression (5)
provide a basic example (extended versions of this appear in [5]).

solve(true, {})
solve((A ∧B), Ea ∪ Eb) ← solve(A,Ea) ∧ solve(B,Eb)
solve((A ∨B), E) ← solve(A,E) ∨ solve(B,E)
solve(X,E ∪ {C|(X → C ∧ not(C))}) ← clause(X,B) ∧ solve(B,E)

(5)

Ontology Extraction for Distributed Environments 5

In the expressions above,clause(X,B) means that there is a clause in the program sat-
isfying goalX contingent on conditions,B (where there are no conditions,B has the value
true). The implicationX → C is an ontological constraint of the sort we are able to derive
in the extraction tool of Section 2.1. The operators←, ∧, ∨, and∪ are the normal logi-
cal operators for (left) implication, conjunction, disjunction and union, whilenot(C) is the
closed-world negation of conditionC.

The effect of the meta-interpreter above is to test each successful goal in the proof tree for
a query against the available ontological constraints. The first clause of (5) matches the goal
true, which, as might be expected, violates no ontological constraints (and so, the empty set
is returned). The second and third clauses deal with conjunctions and disjunctions of goals
respectively. In the case of the former, the union of the sets of violated constraints is returned;
in the latter case, the set generated by the succeeding goal is returned.

In the final clause, if an assertedclause(X,B) is found which satisfies the current
goal,X, then the conditions,B, of this goal become subgoals of the interpreter, while the
goal itself is tested against the ontological constraints. If a constraint exists (X → C) that is
not found to be consistent with the known facts of the current situation (not(C), under the
closed-world assumption), then it is added to the set of violated constraints. When a goal and
its subgoals have been solved, then the interpreter exits with success, returning the set of all
violated constraints; if, on the other hand, a goal cannot be solved, then the interpreter fails.

For example, suppose we have the following information about animals,a1 anda2 , using
the animal ontology of Section 2.1.

animal(a1).
vertebrate(a1).
warm_blooded(a1).
milk_bearing(a1).
animal(a2).
vertebrate(a2).
cold_blooded(a2).
terrestrial(a2).

We could query this database in the normal way by, for example, giving the standard
interpreter the goalanimal(X) which yields solutions withX = a1 andX = a2. If we
want to perform the same query while checking for violations of the ontological constraints
we extracted in Section 2.1, then each of these facts must now be asserted in the form (for
example)clause(animal(a1),true) , and we pose the query via the meta-interpreter
we defined above — the appropriate goal beingsolve(animal(X),C) . This will yield
two solutions, as before, but each one will be accompanied by corresponding ontological
constraint violations (as corresponding instances of the variableC). The two solutions are:

X = a1 C = {}
X = a2 C = {mammal(a2) ∨ fish(a2)}

When presented with the first goal,animal(a1) , the interpreter matches this with
clause(animal(a1),true) from the database; the preconditiontrue generates no
ontological problems, and from expression (4), the constraintmammal(a1) ∨ fish(a1) is
placed onanimal(a1) . Now, the additional facts in the database and the other ontolog-
ical constraints allow the conclusionmammal(a1) to be drawn, so it isnot the case that
not(mammal(a1) ∨ fish(a1)) is true (as tested by the fourth clause of the interpreter), so
no constraints are violated, and the empty set is returned.

6 D. Sleeman et al.

The solution of the second goal,animal(a2) proceeds in a similar fashion, but in this
instance, the constraints and database facts do not allow eithermammal(a2) or fish(a2)
to be proved. Hence, under the closed-world assumption,not(mammal(a2) ∨ fish(a2)) is
true, and so this constraint has been violated (this in spite of the fact that the database allows
the goalanimal(a2) itself to be proved).

2.3 Extracting Ontologies from Other Sorts of Knowledge Bases

The majority of knowledge sources are not in Prolog so for our extraction tool to be widely
applicable it must be able to deal with other sorts of source code. This would be very hard
indeed if it were the case that the ontological constraints we extract have to encompass the
entire semantics of the code. Fortunately, we are not in that position because it is sufficient
to extract some of the ontological constraints from the source code — enough to give a
partial match when brokering or to give a starting point for constraint editing. The issue
when moving from a logic-based language, like Prolog, to a language perhaps having more
procedural elements is how much of the ontological structure we can extract. We discuss this
using CLIPS as an example.

Suppose we have the following CLIPS facts and rules:

(deftemplate person "the person template"
(slot name)
(slot gender (allowed-symbols female male) (default female))
(slot pet))

(deftemplate pet "the pet template"
(slot name)
(slot likes))

(deffacts dating-agency-clients
(person (name Fred) (gender male) (pet Tiddles))
(person (name Sue) (pet Claud))
(person (name Tom) (gender male) (pet Rover))
(person (name Jane) (pet Squeak))
(pet (name Tiddles) (likes Claud))
(pet (name Claud) (likes Tiddles))
(pet (name Rover) (likes Rover))
(pet (name Squeak) (likes Claud)))

(defrule compatible
(person (name ?person1) (pet ?pet1))
(person (name ?person2) (pet ?pet2))
(pet (name ?pet1) (likes ?pet2))
=>
(assert (compatible ?person1 ?person2)))

To extract ontological constraints from these using the current version of the extraction
tool we must translate these CLIPS rules into Horn clauses. We outline below, in informal
terms, the transformation algorithm needed for this task:

• For each CLIPS rule, take the assertion of the rule as the head of the Horn clause and the
preconditions as the body of the clause.

• Consider each head, body or CLIPS fact as an object term.

Ontology Extraction for Distributed Environments 7

• For each object term, refer to itsdeftemplate definition and translate it into a series
of binary relations as follows:

– Invent an identifier,I, for the instance of the object.

– The relationobject(T, I) gives the type of object,T , referred to by instanceI.

– The relationA(I, V) gives the value,V , for an attributeA of instanceI.

Applying this algorithm to our CLIPS example yields the Horn clauses shown below:

compatible(Person1, P erson2)← object(person,O1) ∧ name(O1, P erson1) ∧ pet(O1, P et1)∧
object(person,O2) ∧ name(O2, P erson2) ∧ pet(O2, P et2)∧
object(pet,O3) ∧ name(O3, P et1) ∧ likes(O3, P et2)

object(person, p1) name(p1, fred) gender(p1,male) pet(p1, tiddles)
object(person, p2) name(p2, sue) gender(p2, female) pet(p2, claud)
object(person, p3) name(p3, tom) gender(p3,male) pet(p3, rover)
object(person, p4) name(p4, jane) gender(p4, female) pet(p4, squeak)
object(pet, x1) name(x1, tiddles) likes(x1, claud)
object(pet, x2) name(x2, claud) likes(x2, tiddles)
object(pet, x3) name(x3, rover) likes(x3, rover)
object(pet, x4) name(x4, squeak) likes(x4, claud)

This does not capture the semantics of the original CLIPS program, since, for example,
it does not express notions of state necessary to describe the operation of CLIPS working
memory. It does, however, chart the main logical dependencies, which is enough for us then
to produce ontological constraints directly from the extraction tool. This translation-based ap-
proach is the most direct route to constraint extraction using our current tool but we anticipate
more sophisticated routes which perhaps do not translate so immediately to Horn clauses.

Extending this technique beyond knowledge representation languages to enable the ex-
traction of ontological information from conventional procedural languages such as C would
prove difficult. Programmers of these languages have no incentive to express their code at a
conceptual level, with the result that the ontological constraints, insofar as they are expressed,
tend to be embedded in the control elements and structure of the code to a greater extent.
Code written in object-oriented languages, such as Java and C++, is potentially more sus-
ceptible to ontological extraction of this sort, since the object-oriented paradigm encourages
the programmer to codify the concepts of the domain in an explicit and structured manner
(the CLIPS templates in the above examples can be viewed as simple objects in this sense).
However, we have yet to investigate the possibilities of mining conventional object-oriented
code for ontological information.

3 Knowledge Services and Brokering

Alongside research into knowledge services such as ontology extraction, we have been pursu-
ing parallel research into brokering mechanisms for knowledge resources (for further details
see [6]). The purpose of this section is to give a brief overview of this work and to indicate
how it relates to the ontology extraction tool described above (which is the principal focus of
this chapter).

8 D. Sleeman et al.

If the potential of the internet as a provider of knowledge-based services is to be fully
realised, there would seem to be a need for automated brokering mechanisms that are able
to match a customer’s knowledge requirements to appropriate knowledge providers. One of
the fundamental difficulties encountered when considering how to enable this sort of transac-
tion lies in the ‘semantic mismatch’ between customer and provider: how should a provider
advertise its services and a customer pose its queries so that advertisement and query can be
matched by the broker, and the transaction successfully completed?

One possible solution to this problem, as a number of researchers into such agent-based
architectures have realised (for example, see [7, 8, 9]), lies in the use of ontological knowl-
edge. Since a well-built ontology can be seen as a conceptual ‘language’ expressing what
is essential about a domain, and uses terms that are common to that discipline, it offers
some basis for enabling communication between customer and provider. However, while
there may be a large number of existing knowledge resources, not all are accompanied by
explicit, machine-processable ontologies; unless some alternative approach were available,
any potential gains to be made through the re-use of these resources would have to be offset
against the effort involved in ‘reverse-engineering’ their ontologies manually. The ontology
extraction tool described above in Section 2 offers one such alternative approach, by which
an ontology can be constructed (semi-) automatically, thus facilitating and encouraging the
reuse of knowledge.

As we conceive it, then, for the purposes of advertising its capabilities to a broker, a
knowledge resource describes itself using the term:

k resource(Name,Ontology, CompetenceSet)

where:

• Nameis the unique identifier of this resource;

• Ontologyis the ontology to which the resource adheres, and by which its services can be
understood, and;

• CompetenceSetis a set of the services, orcompetencesthat the resource provides and
which it is making available through the broker. Each item in this set is of the form
competence(C, In,Out,Ge) where:

– C is a term of the formG ← P , whereG is a goal which is satisfiable by the
resource, given the satisfaction of the conditionsP .

– In is a set of constraints placed on variables inC which must hold before the com-
petence can be utilised (successfully).

– Out is a set of constraints placed on variables inC which hold after the competence
has been applied.

– Ge is a set of competence goals that are known to be necessary for the successful
discharge of this competence and that must be supplied by some external agent.

As should be evident, the manner in which a resource advertises its services has a ma-
jor impact on the effectiveness and extent of the brokering that can be performed. We find
that, although relatively concise, the above information is rich enough to allow the broker to
configure complex and detailed responses to the requests it receives. When successful, these

Ontology Extraction for Distributed Environments 9

responses are in the form of one or more brokerage structures, each describing a sequence of
steps invoking the available competences of knowledge resources, which, when executed in
order, should achieve the target.

Without going into too much detail about the construction of these sequences, an incom-
ing request for service, in the form of a goal described in terms of some ontology in the
system,2 is matched against available competence-goals; the setsIn, Out andGe place ad-
ditional constraints on any matches. These constraints take the form of either an ontological
check of some item, or else of an additional goal that must be satisfied by the system, in which
case the broker is invoked recursively. Of particular interest here is the notion ofbridgesin
the system; a bridge (which will usually be constructed manually) allows terms (and thus,
competences) described according to one ontology to be described according to a second
ontology.3 Bridges are a powerful concept for extending the range of the knowledge and ca-
pabilities of any system; however, they can only be defined if the ontology of a knowledge
resource is made explicit.

3.1 Ontology Extraction and the Broker

It can be seen, then, that ontologies are fundamental to any approach to brokering of this sort:
they enable queries to be posed to appropriate brokers, and semantic checks to be made and
bridges to be built. Unfortunately, it is not realistic to expect every potential knowledge re-
source to be equipped with its ontology; but nor is it desirable to simply ignore those without
ontologies, given the intrinsic value of knowledge resources. In this context, the extraction
tool described above offers a means by which resources lacking ontological definitions can
be made accessible to brokers.

This tool might be applied locally by the ‘owner’ of the resource in order to augment
it with its ontology before introducing it into the brokering environment. Alternatively (and
more interestingly), the extraction tool could itself be an agent in this environment, offering
its services via the broker.

4 Related Work

In recent years there has been an increasing awareness of the potential value of ontologies
— an awareness accompanied by a growing realisation of the effort required to develop them
manually. As a consequence, there has been a certain amount of research into techniques by
which ontological knowledge might be extracted from existing sources in which it is consid-
ered to be implicit. The aim of this section is to summarise this research, and its relationship
with the ontology extraction tool described in preceding sections.

One related research area in which there has been a lot of interest, probably due to the
amount of available source material, is that of ontology extraction from natural language
texts. Typically, this involves identifying within a text certain linguistic or grammatical cues
or patterns that suggest a certain ontological relationship between the concepts instantiating
that pattern (for examples see [11, 12, 13]). Some researchers have attempted to increase

2Currently, it is assumed that the ontologies used to describe services are available to all. Furthermore, in
this discussion, we ignore all issues of access privileges, service costs, resource management and so on that are
pertinent to systems of this sort.

3The use of bridges here is analogous to the use of bridges in UPML[10].

10 D. Sleeman et al.

the inferential power of these techniques by invoking machine learning algorithms to try to
generalise the relationships that are found [14, 15]. Thus far, the successes of these text-
centred approaches have been limited, with unresolved questions surrounding the extent of
the background knowledge that is required for such techniques (which often try to extend
an existing ontology), the amount of linguistic processing of the texts that is necessary, and,
indeed, the extent and range of the ontological knowledge that it is possible to infer from
texts.

Similarities can also be found to the discipline of data mining, the application of machine
learning and statistical learners to large databases. As for texts, the vast numbers of data often
held by organisations — and the desire to exploit these — make this an appealing approach.
Applications of data mining are focused not only upon extracting ontological information,
but also upon finding more ‘actionable’ knowledge implicit in the data. However, the limiting
factor is often the data themselves: there is no guarantee that these contain any useful knowl-
edge of any sort, but rather they are merely a collection of arbitrary or inconclusive facts.
Indeed, it is often the case that the sole outcome of a data mining exercise is a confirmation
of the limitations of the data in question.

The work reported here has certain parallels with the work of the software reverse-eng-
ineering community, whose members are concerned with the extraction of information from
legacy software systems. There is a relationship with theconcept assignment problem[16],
the (often very difficult) task of relating program terms and constructs to the real-world en-
tities with which they correspond. Some techniques which attempt to extract ontological
knowledge from code, and which give, perhaps unsurprisingly, often mixed results, have
emerged from this discipline [17, 18].

However, while our extraction tool undoubtedly has similar intentions and shares certain
concerns with the work outlined above, it is distinguished from it by the choice of an existing
knowledge baseas the source of ontological knowledge. In some respects, it is surprising
that hitherto there has been little research into the possibilities for extracting ontologies from
such sources. In constructing a knowledge base, its developers make conscious decisions to
express knowledge at a conceptual level. Consequently, it would seem to be a more immediate
and more fertile ground for ontological extraction than text, data or conventional code.

5 Conclusions

The success of initiatives such as the semantic web effort will be increased if existing re-
sources can be brought within its compass without the need for extensive re-engineering.
Indeed, this might even be thought a necessary feature if these initiatives are to gain the
widespread support that they require to succeed. This chapter has described a technique by
which latent information — namely implicit ontological constraints — in knowledge bases
can be extracted, and done so in a relatively simple, low-cost manner. This information is of
the sort that enables and facilitates the future reuse and transformation of these knowledge
bases within distributed environments and, as a consequence, serves to increase the scope and
potential of those environments.

Ontology Extraction for Distributed Environments 11

Acknowledgements

This work is supported under the Advanced Knowledge Technologies (AKT) Interdisci-
plinary Research Collaboration (IRC), which is sponsored by the UK Engineering and Physi-
cal Sciences Research Council under grant number GR/N15764/01. The AKT IRC comprises
the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and the Open University.

References

[1] Crubezy, M., Lu, W., Motta, E., Musen, M.: The internet reasoning service: delivering configurable
problem-solving components to web users. In: Proceedings of the Workshop on Interactive Tools for
Knowledge Capture at the First International Conference on Knowledge Capture (K-CAP 2001), Victoria,
Canada. (2001) 15–22

[2] Lopez, M., Gomez-Perez, A., Rojas-Amaya, M.: Ontology’s crossed life cycle. In: Proceedings of the
12th International Conference on Knowledge Engineering and Knowledge Management (EKAW-2000),
Springer (2000) 65–79

[3] Lei, G., Sleeman, D., Preece, A.: N MARKUP: a system which supports text extraction and the develop-
ment of associated ontologies. Technical report, Computing Science Department, University of Aberdeen,
UK (in preparation)

[4] Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Databases. Plenum Press (1978)
293–322

[5] Kalfoglou, Y., Robertson, D.: Use of formal ontologies to support error checking in specifications. In:
Proceedings of the 11th European Workshop on Knowledge Acquisition, Modelling and Management
(EKAW-99), Springer (1999) 207–221

[6] Schorlemmer, M., Potter, S., Robertson, D., Sleeman, D.: Knowledge Life-Cycle Management over a
Distributed Architecture. Expert Update5 (2002)

[7] Arisha, K., Eiter, T., Kraus, S., Ozcan, F., R., R., Subrahmanian, V.: IMPACT: interactive Maryland
platform for agents collaborating together. IEEE Intelligent Systems Magazine14 (2000) 64–72

[8] Nodine, M., Unruh, A.: Facilitating open communication in agent systems. In Singh, M., Rao, A.,
Wooldridge, M., eds.: Intelligent Agents IV: Agent Theories, Architectures, and Languages. Springer
(1998) 281–296

[9] Sycara, K., Klusch, M., Widoff, S., Lu, J.: Dynamic service matchmaking among agents in open in-
formation environments. ACM SIGMOD Record (Special Issue on Semantic Interoperability in Global
Information Systems)28 (1999) 47–53

[10] Fensel, D., Benjamins, V., Motta, E., Wielinga, B.: UPML: a framework for knowledge system reuse. In:
Proceedings of the International Joint Conference on AI (IJCAI-99), Stockholm, Sweden, July 31–August
5, 1999, Morgan Kaufmann (1999) 16–23

[11] Bowden, P., Halstead, P., Rose, T.: Extracting conceptual knowledge from text using explicit relation
markers. In: Proceedings of the 9th European Knowledge Acquisition Workshop (EKAW-96), Notting-
ham, UK, May 14-17 1996, Springer (1996) 147–162

[12] Faure, D., Ńedellec, C.: Knowledge acquisition of predicate argument structures from technical texts using
machine learning: the system ASIUM. In: Proceedings of the 11th European Workshop on Knowledge
Acquisition Modeling and Management (EKAW ’99), Springer (1999) 329–334

[13] Hahn, U., Klenner, M., Schnattinger, K.: Automated knowledge acquisition meets metareasoning: incre-
mental quality assessment of concept hypotheses during text understanding. In: Proceedings of the 9th
European Knowledge Acquisition Workshop (EKAW-96), Nottingham, UK, May 14-17 1996, Springer
(1996) 131–146

12 D. Sleeman et al.

[14] Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of the 14th European
Conference on Artificial Intelligence (ECAI 2000), August 20-25 2000, Berlin, Germany, Amsterdam,
IOS Press (2000) 321–325

[15] Reimer, U.: Automatic acquisition of terminological knowledge from texts. In: Proceedings of the 9th Eu-
ropean Conference on Artificial Intelligence (ECAI-90), Stockholm, August 6-10, 1990, London, Pitman
(1990) 547–549

[16] Biggerstaff, T., Mitbander, B., Webster, D.: Program understanding and the concept assignment problem.
Communications of the ACM37 (1994) 72–83

[17] Li, Y., Yang, H., Chu, W.: Clarity guided belief revision for domain knowledge recovery in legacy sys-
tems. In: Proceedings of the 12th International Conference on Software Engineering and Knowledge
Engineering (SEKE), Chicago, USA, Springer (2000)

[18] Yang, H., Cui, Z., O’Brien, P.: Extracting ontologies from legacy systems for understanding and re-
engineering. In: Proceedings of the 23rd IEEE International Conference on Computer Software and Ap-
plications (COMPSAC ‘99), IEEE Press (1999)

