
Experience in using RDF in Agent-mediated Knowledge Architectures

Kit Hui, Stuart Chalmers, Peter Gray, Alun Preece

University of Aberdeen, Computing Science Department
Aberdeen AB24 3UE, Scotland

Phone: +44 1224 272291; FAX: +44 1224 273422
Email: {khui|schalmer|pgray|apreece}@csd.abdn.ac.uk

Abstract

We report on experience with using RDF to provide a
rich content language for use with FIPA agent toolkits,
and on RDFS as a metadata language. We emphasise
their utility for programmers working in agent applica-
tions and their value in Agent-Oriented Software En-
gineering. Agent applications covered include Intelli-
gent Information Agents, and agents forming Virtual
Organisations. We believe our experience vindicates
more direct use of RDF, including use of RDF triples,
in programming knowledge architectures for a variety
of applications.

Introduction

Resource Description Framework (RDF) and the asso-
ciated RDF Schema (RDFS)1 were introduced by W3C
as a portable framework for passing structured data and
its associated metadata over the web. To date, much
of the work on RDF and RDFS and on higher level
languages such as DAML has concentrated on its role
in supporting ontologies, rather than on how it helps
a programmer working with contemporary agent archi-
tectures using Java toolkits. In this paper we wish to
distil experience from using RDF in two very differ-
ent agent-based systems (AKT and Conoise) where we
needed to use an agent platform (such as JADE) to
exchange rich content.

We believe that the virtues of RDFS as a sparse ex-
tensible metalanguage for describing data moved across
the web have been lost sight of in the rush to explore
more elaborate languages such as DAML and OWL.
One should remember that these languages are them-
selves layered on RDF/RDFS. Also, languages such
as OWL are evolving rapidly, while RDFS has re-
mained surprisingly stable. Lastly, there is now very
good support for RDF/RDFS in Java-based class li-
braries which can easily be integrated with FIPA-
compliant Java-based agent toolkits, such as JADE.
Thus from the viewpoint of Software Architectures
there is much to commend the sparse elegance and sta-
bility of RDF/RDFS in a fast-changing world. Indeed,

Copyright c© 2003, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

1http://www.w3.org/TR/REC-rdf-syntax

we now believe that it is timely for FIPA agent lan-
guages to move from a LISP-based syntax to an alter-
native XML version, and to adopt RDF as a standard
content language.

A particular advantage of RDFS is its use from
Java as a convenient accessible metalanguage giving the
types of structured data, including possible specialisa-
tions. When data is coming across the web in many
forms it is essential to have this type information eas-
ily available in memory. Thus the programmer does
not have to invent their own form of object class for
this metadata. They also have Java methods available
to populate these classes from input in a widely used
interchange format. Contrast this with the intricate
methods provided for accessing some fairly basic meta-
data in JDBC.

We have used this metadata for describing schemas
(ontologies), quantified constraints for planning applica-
tions, and structured data for use in modelling Virtual
Organisations. We describe these in more detail below.

When working with RDF, we have found it useful to
convert it into RDF triples held in a Java table. This is
equivalent to the usual pointer-based graph structure,
but easier to search and more convenient when merging
in extra RDF triples. Searching the table is easier than
trying to work directly with an XML tree structure,
because equivalent XML abbreviations are reduced to
a single form, like a canonical form.

Besides using Java, we have developed in-memory
Prolog term structures to hold these triples, which are
more convenient for Prolog pattern matching and rea-
soning. This is crucial for semantic web applications.
Thus we are not tied solely to handling triples in Java.

Lastly, we have experience of using this system with
several different transport protocols. For web sources,
we find the HTTP protocol very useful, particularly
where there are firewalls. For remote agents running
on different platforms we find Linda (Gelernter & Car-
riero 1992) very useful in conjunction with remote pro-
cedure calls, while for Java platforms we may use Servlet
technology. Because of the well established use of
XML, support for these protocols is widely available
and tested, which is another plus for RDF/RDFS.

The RDF Data Model

RDF is not unlike the Entity-Relational data model in
its use of Entity identifier as Subject, and Property or
Relationship names as Predicate in RDF triples. How-
ever, it also includes features of object data models
(such as OQL) in its use of object identifiers and sub-
classes.

Although it looks simple, it has all the essential fea-
tures for mapping other data models or layering extra
details, as intended in its design. We have found it easy
to map data from our existing FDM (an early seman-
tic data model) and also quantified constraints which
are formulae of logic expressed in this model. One very
satisfying feature of our constraint interchange format
in RDF (CIF) is that the tags used make a clean sepa-
ration between information about logical formulae with
the usual connectives, and information about expres-
sions denoting objects in the data model. Effectively
CIF gives another layer with richer semantic informa-
tion, but it is able to use all the processing convenience
of RDF.

Expressions in our CIF language refer to facts about
entities, their subtypes, attributes and relationships,
which of course can be expressed in RDF. Note also
that this model abstracts over relational storage, flat
files and object-oriented storage, following the princi-
ple of data independence. Thus it does not tie one
to any particular system, such as Oracle or P/FDM.
This is a great advantage to the programmer. Thus we
stress the value of using RDFS in place of data struc-
tures that tie the programmer to a particular storage
schema. The mapping to a particular knowledge source
or data source can then take place separately through
a wrapper. This makes it very much easier to integrate
data from different sources, as is often required over the
Web.

We illustrate these programming principles below
in two rather different applications. Firstly we con-
sider the fusion of constraint information from different
sources on an intranet in the KRAFT project. This
uses intelligent information agents as mediators and fa-
cilitators. It originally used a textual version of Prolog
term structures for interchange. We are now reworking
it to use RDF and XML, and to use RDFS in place
of P/FDM specific constructs. This is being used in
the AKT (Advanced Knowledge Technologies) collab-
orative project, so that we can fuse data from other
partners.

Our second example uses agents that make bids and
that come together to form Virtual Organisations. This
also uses constraints, but more as a way to give addi-
tional desires to BDI agents, whilst allowing them au-
tonomy in how they cope with other conflicting goals
and desires.

M

W

R

UA

W

M

M

M

W

W

W

W

R

R

UA

UA

R

F

F

UA

R

User
Agent

Resource

Wrapper

Facilitator

Mediator

W

M

F

Non-KRAFT components

KRAFT facilities

Figure 1: This figure shows a conceptual view of the
KRAFT architecture. KRAFT components are round in
shape while non-KRAFT ones are marked as squares. The
grey area represents the KRAFT domain where a uniform
language and communication protocol is respected.

Agent Architectures for Information

Integration and Fusion

The KRAFT2 system (Preece et al. 2001) employs
an agent-based architecture inspired by the Knowledge
Sharing Effort which has proved to be an effective ap-
proach to developing distributed information systems.
The basic philosophy of the architecture design is to
define a KRAFT domain where certain communication
protocols and languages must be respected (figure 1).
Within this domain, agents are assumed to cooper-
ate and connections are made dynamically3. KRAFT
recognises constraints as abstract mobile knowledge
which can be extracted, transported, transformed and
processed by software components. We use the con-
straint formalism as a domain-independent framework
to represent application problems as constraint satisfac-
tion problems (CSPs). The application domain is mod-
elled by a database schema and domain knowledge is
captured as constraints. Constraints distributed in re-
sources form a library of shareable and reusable knowl-
edge blocks which can be combined to compose problem
specifications.

Having a semantic data model extended with con-
straints and mapped into an open interchange format
supports a range of applications in which information
needs to be moved across a network with rich met-
alevel information describing how the information can
be used. An example application common in business-
to-business e-commerce involves the composition of a
package product from components selected from mul-
tiple vendors’ catalogues. There are various kinds of
constraints which must be aggregated and solved over
the available component instances: constraints repre-
senting customer requirements, constraints represent-

2Knowledge Reuse And Fusion/Transformation
3Hence the absence of explicit connections in the grey

area in figure 1.

os
name(os) -> string
size(os) -> integer

hard_disk
model(hard_disk) -> string
size(hard_disk) -> integer

model(pc) -> string
cpu(pc) -> string
memory(pc) -> integer
has_os(pc) -> os
has_disk(pc) ->> hard_disk

pc

Figure 2: This schema shows three entity classes. The
single arrow means that each pc may have only one os in-
stalled. A double arrow means that a pc can have multiple
hard-disk.

ing rules for what constitutes an acceptable package,
and constraints representing restrictions on the use of
particular components.

In this last case, the ability to store constraints to-
gether with data in the P/FDM database system4 al-
lows instructions, which we called “small print con-
straints”, to be attached to the class descriptor for
data objects in a product catalogue database. When
a data object is retrieved, these attached instructions
must also be extracted to ensure that the data is prop-
erly used. Thus the attached constraint becomes mo-
bile knowledge which is transported, transformed and
processed in a distributed environment. This approach
differs from a conventional distributed database sys-
tem where only database queries and data objects are
shipped.

Modelling a Domain in RDF Schema

In the original KRAFT system, we model a domain by a
database schema, using the functional data model. The
schema effectively serves as an ontology that captures
knowledge of classes, attributes and subclass relation-
ships in the domain. The following is part of a schema
showing the pc and os classes and the memory property
in an application domain where components are put to-
gether to configure a workable PC. The complete ER
model is shown in figure 2:

declare os ->> entity
...

declare pc ->> entity
declare memory(pc) -> integer
declare has_os(pc) -> os
...

The functional data model is an extended ER model
which can be easily mapped into the RDF schema spec-
ification. A mapping program reads meta-data from
the database and generates the corresponding RDF
schema, making this knowledge web-accessible. The
following RDFS fragment refers to the schema above:

<rdfs:Class rdf:ID="pc">
<rdfs:subClassOf rdf:resource=

"http://www.w3.org/2000/01/rdf-schema#
Resource"/>

</rdfs:Class>

4http://www.csd.abdn.ac.uk/∼pfdm/

<rdfs:Class rdf:ID="os">
<rdfs:subClassOf rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#

Resource"/>
</rdfs:Class>

<rdf:Property rdf:ID="has_os">
<rdfs:domain rdf:resource="#pc"/>
<rdfs:range rdf:resource="#os"/>

</rdf:Property>

Mapping a P/FDM schema into RDFS has the advan-
tage of making the domain model available to RDFS-
ready software. On the other hand, some semantic in-
formation is lost. The cardinality of each attribute, for
example, is not expressed in the RDF schema. Infor-
mation on the key of each entity class is also omitted.
However, this information can easily be added to other
metadata held in the cif:entmet layer (Gray, Hui, &
Preece 2001)

Briefly, entmet is a class of metaobjects whose in-
stances correspond one-to-one with entity classes, and
whose property values give metadata such as class
name, superclass metaobject and RDF URI. One in-
stance is the object in figure 4 whose ID is entmet pc.
This gains us extensibilty by adding extra properties,
such as key, to the metaobjects in entmet or in propmet
(for properties). There is, of course, some redundancy,
as where we record subclass information both in entmet
and by using rdfs:subClassOf. However, it is kept
consistent, and provides a clean layering of extra se-
mantic information to be used by enabled reasoners.

Capturing Domain Knowledge in RDF

Domain knowledge in KRAFT is captured as integrity
constraints expressed against the database schema, us-
ing the constraint language CoLan (Bassiliades & Gray
1994). CoLan is based on first-order logic and has
proved to be expressive enough to represent complex
constraints (Fiddian et al. 1999). CoLan constraints
have evolved from the usual database state restrictors
into mobile problem specifications (Gray et al. 1999).
The following is an example of a design constraint say-
ing that “the size of a hard disk must be big enough
to accommodate the chosen operating system in every
PC”:

constrain each p in pc
to have size(has_os(p)) =< size(has_disk(p))

User requirements are also captured as constraints. The
following constraint specifies that the configured PC
must use a pentium 4 CPU:

constrain each p in pc
to have cpu(p)="pentium 4"

In practice, the human-readable CoLan constraints
are compiled into an intermediate format, called Con-
straint Interchange Format (CIF). CIF expressions are
syntactically Prolog terms, which are easier to process
by software components.

RDF schema
of the CIF
language

RDF schema
of the

"PC configuration"
domain

constraint
on the

"PC config"
domain as

an RDF resource

RDF schema
of

domain "X"

constraint
on domain "X"

as an
RDF resource

RDF schema

RDF

Figure 3: Constraints in RDF make references to the CIF
language definition and domain models in RDF schema.

To make CIF portable, we encode CIF constraints
into RDF by defining an RDF schema for the CIF
language that is layered cleanly on top of RDF, serv-
ing as a meta-schema (Gray, Hui, & Preece 2001).
A constraint encoded in RDF makes explicit refer-
ences to classes defined in the domain model as well
as the CIF language definition in RDF schema (fig-
ure 3). The RDF fragment in figure 4 shows the
cif namespace definition and references to the CIF
language RDF schema resource. In this example,
the variable with name uevar1 is restricted to be an
instance of the entity class pc which is defined by
the domain model in "http://www.csd.abdn.ac.uk/
∼schalmer/schema/pc schema#pc". References to
the domain model can be found as value of the
cif:entmet rdfname property.

This approach makes no change to the existing RDF
and RDF schema specifications. As constraints are now
represented as resources, RDF statements can also be
made about the constraints themselves. A detail discus-
sion of the CIF encoding in RDF is presented in (Gray,
Hui, & Preece 2001).

Using Knowledge Encoded in RDF

Knowledge encoded in RDF is a web-accessible resource
which can be utilised by knowledge processing compo-
nents. While the RDF model is simple and may not be
expressive enough to represent complex and sophisti-
cated knowledge, higher-level layers can be nicely built
above RDF to incorporate the richer semantics. This
is demonstrated in our RDF encoding of the CIF con-
straint language.

RDF provides a uniform framework for the represen-
tation of knowledge and meta knowledge. Although it
is simple enough to be processed by different software
platforms, we believe that the RDF-encoded format
should be used for transportation only, not for direct
reasoning purposes. Instead, inference and reasoning
are better done on the RDF triples; or on Prolog term
structures which are mapped from the triples for pro-
cessing convenience.5 RDF triples may be representing

5We use the Prolog “Pillow” library
(http://clip.dia.fi.upm.es/Software/pillow/pillow.html) for
XML parsing, with an RDF parser sitting on top of Pillow
to map XML trees into RDF triples.

<rdf:RDF
...
xmlns:cif="http://www.csd.abdn.ac.uk/~khui/

akt/cif/cif-rdfs.xml#">

<cif:impliesconstr rdf:ID="eg1">
<cif:qvar>

<cif:setmem>
<cif:setmem_var>

<cif:variable rdf:ID="uevar1">
<cif:varname>uevar1</cif:varname>

</cif:variable>
</cif:setmem_var>
<cif:setmem_set>

<cif:entset>
<cif:entset_entclass>

<cif:entmet rdf:ID="entmet_pc">
<cif:entmet_rdfname>

http://www.csd.abdn.ac.uk/
~schalmer/schema/pc_schema#pc

</cif:entmet_rdfname>
</cif:entmet>

</cif:entset_entclass>
</cif:entset>

</cif:setmem_set>
</cif:setmem>

</cif:qvar>
...

Figure 4: This fragment of a constraint encoded in RDF
shows explicit references to the CIF language definition and
the domain model in RDF schema.

knowledge in a small granularity but they can be easily
assembled into knowledge chunks of a convenient size
for processing purposes. Thus the triple is a format
which can be readily used in reasoning or as a stepping
stone to other formats. These triples can conveniently
be created in memory by Jena (figure 9).

In this section, we show how constraints, meta knowl-
edge and domain models encoded in RDF can be used
by knowledge processing components.

• Converting Constraints between CIF and RDF

An RDF schema provides knowledge on the class hi-
erarchy and class properties with type information.
For example, as we know that the CIF constraint
class has three subclasses impliesconstr,
unquantified constraint and existsconstr, we
have to try all these subclasses when we try to parse
an RDF statement as a constraint resource. Simi-
larly when we try to parse a property of a resource,
we know what class of resource is valid.

The RDF schema of the CIF language alone does not
give us enough information to map an RDF-encoded
CIF constraint into its Prolog representation (and
vice versa). There are two pieces of knowledge miss-
ing:

– What is the Prolog term structure that corre-
sponds to a certain class in the RDF schema (of

the CIF language)?

– Given the Prolog representation of a resource of a
certain class, how can we find each property of the
resource (as Prolog terms)?

This missing knowledge should not be specified in
the RDF schema as it cares only about the semantics
of a constraint resource but not the way that it is
represented in Prolog.

To solve this problem, we represent this knowledge as
mapping rules between a Prolog term structure and
its corresponding RDF class (in the CIF language
definition RDF schema). Once the missing knowledge
is provided, the mapping process between CIF and its
RDF encoding is totally driven by the RDF schema of
the CIF language. Once again, structuring the task
around RDF has made the programming job easier.

• Knowledge Reuse by Constraint Fusion

Declarative constraints stored as self-contained
knowledge objects in a distributed system form a
shared library of building blocks. The key to reusing
this knowledge is the process of constraint fusion,
which dynamically combines the semantic content
to compose problem specification instances. While
a single piece of constraint may not contain enough
information to solve a CSP, we hope that by combin-
ing constraints together, their total value is enhanced,
thus making the problem solvable.

The domain independent constraint fusion engine in
KRAFT looks for any potential semantic information
exchange when constraints are logically conjoined to-
gether. Simply speaking, it works by looking for vari-
able pairs which are generated in the same way. Un-
der this condition, constraints that apply to one vari-
able may apply to the other variable. For example,
variable x and y share each other’s constraints as they
are both instances of the pc class:

constrain all x in pc
to have cpu(x)="pentium 4"

constrain all y in pc
to have memory(y)>=128

In fact, sharing of constraint also happens between
variables of a superclass and a subclass, as constraints
are inherited by the subclass from the superclass.
That means the constraint fusion engine needs knowl-
edge of the class hierarchy in the problem domain in
order to make the correct inference. In this case, the
domain model is readily available as an RDF schema
which can be accessed as RDF triples.

Given a constraint, the fusion engine can easily re-
trieve the RDF schema of the domain model by fol-
lowing the explicit links. By collecting RDF triples
on the rdfs:subClassOf predicate, the fusion en-
gine then gets a complete picture of the class hierar-
chy in the problem domain. The small granularity of
knowledge represented in the triple form allows the
knowledge processing component (in this case, the

constrain all t in travel_plan such that
travel_method(t) = train and
travel_class(t) = sleeper_train
to have arrival_time(t) < 0830

Figure 5: A call for services in CIF

constraint fusion engine) to selectively access the re-
quired knowledge in a quick and convenient manner.

Conoise6 and Virtual Organisations

Virtual organisations (VOs) in Conoise7 are composed
of a number of autonomous entities (representing differ-
ent individuals, departments and organisations) each of
which has a range of problem solving capabilities and
resources at their disposal. These entities co-exist and
sometimes compete with one another in a ubiquitous
virtual market place. Each entity attempts to attract
the attention of potential customers and ultimately tries
to sell them its services by describing the cost and qual-
ity of the service.

Sometimes, however, one or more of the entities may
realise there are potential benefits to be obtained from
pooling resources: either with a competitor (to form a
coalition) or with an entity with complementary exper-
tise (to offer a new type of service). When this potential
is recognised, the relevant entities go through a process
of trying to form a new VO to exploit the perceived
niche.

Given the independent nature of the entities involved,
this process may succeed or it may fail. If it succeeds,
the collection of independent entities have to start act-
ing as a single conceptual unit. In particular, they need
to cooperate and coordinate to deliver the services of
the newly formed organisation. In dynamic environ-
ments, the context may change at any time, such that
the VO is no longer viable. Then it will either need
to disband or re-arrange itself into a new organisation
that better fits the prevailing circumstances.

In Conoise we represent the knowledge and communi-
cation between the agents using CIF/RDF. We build on
the ability to combine the CIF/RDF knowledge (Gray,
Hui, & Preece 1999) so that we can use many dis-
parate information sources to help in the formation,
management and dissolution of these VOs. The abil-
ity to combine information from these different sources
means that our decision making process uses as much
knowledge as is available at the time to aid in the pro-
cess of choosing other agents as VO partners.

Conoise Agent Design

Conoise uses CIF/RDF constraints to represent the ser-
vices required in such VO’s, and uses a CSP (Constraint
Satisfaction Program) solver to provide the reasoning

6Constraint Oriented Negotiation in Open Information
Seeking Environments

7http://www.conoise.org

constrain all s in service_description
such that name(s) = Euston
to have travel_info(s) = cancelled

Figure 6: Environment information held as CIF

process for their identification, formation, management
and dissolution. The reason for using a CSP is that, as
in KRAFT:

• We get data independence across platforms

• It is easy to combine conjunctive First Order Logic
constraints compared to imperative code

Typically the starting point for this process will con-
sist of an agent receiving a call for bids to provide a
service. The agent must then decide what course of ac-
tion to take to provide that service. This can be either:

• To provide a bid based on its own resources.

• To provide a bid based on the resources available from
its membership of an existing Virtual Organisation.

• To provide a bid by creating a new Virtual Organi-
sation, thereby initiating a new call for bids to find
new VO partners.

When deciding on which action to take the agent must
be aware of the current status of other agents and their
abilities as well as what resources it can itself provide.

Figure 5 shows an example call to provide a service (a
travel plan representing a complete travel ’package’
to a specified destination (Chalmers, Gray, & Preece
2002)). The RDF is not shown for reasons of space, but
is similar to the example in figure 4. This constraint
determines that if the travel plan includes travel by
train and it is a sleeper train, then it must arrive at
its destination by 8:30am. The added bonus of such
representation is that, once in the CIF format, we can
combine this call for services with other information
(also held as CIF/RDF), such as previous knowledge,
current commitments and environment information in
the CLP process, thus providing us with a more detailed
constraint problem to manage the VO.

For example, this train service information can be
combined with information that the agent receives
about the availability of trains from London Euston
(figure 6).

This means that the travel plan will not only take
into account the sleeper train and arrival time specific
constraints, but can also combine this with knowledge
on a specific station it has received.

Conoise Agent Implementation

The Conoise agent architecture is shown in figure 7.
The agents are built using the JADE Java-based agent
platform8. Each agent in Jade communicates using

8http://sharon.cselt.it/projects/jade/

Figure 7: The Conoise Agent Architecture

Do
 options := option_generator(event_queue,B,D,I)
 selected-options := deliberate(options,B,D,I)
 update-intentions(selected-options,I)
 execute(I)
 get-new-external-events();
 drop-succesful-attitudes(B,D,I)
until quit

Figure 8: BDI Algorithm

FIPA ACL 9, leaving the content language to be speci-
fied by the agent (here CIF/RDF).

The agent architecture is based on the Beliefs, De-
sires, Intentions (BDI) agent model (Rao & Georgeff
1995). This uses data structures to represent the beliefs
(what the agent knows), the desires (what the agent
wants to do) and the intentions (how the agent achieves
its desires) and the agents reasoning and decision mak-
ing process comes from the interaction of these data
structures according to a deliberation process (repre-
sented as a top level pseudo-code algorithm in figure
8). The desires of the agent are represented as con-
straints, and therefore exchangeable between agents as
CIF/RDF constructs.

To parse the RDF we are using the Jena toolkit10,
a Java API for parsing and manipulating RDF data
models. It takes the RDF constraint and stores
it as a set of Subject-Predicate-Object triples in a
Model object. This object can then be queried using
the API methods getSubject(), getPredicate() and
getObject(). The Java code fragment in figure 9 shows
the model variable being instantiated with the RDF
from the URI specified by the constraintURI variable.
The while loop shows how we can then parse this model
and extract the neccesary subject-predicate-object val-
ues.

Once a message has been received by the agent it is
passed into the message queue (figure 7), where it is
parsed into a new Jena Model (as shown). The agent

9http://www.fipa.org
10http://www.hpl.hp.com/semweb

Model model = new ModelMem();
JenaReader r= new JenaReader();
r.read(model, constraintURI);
StmtIterator iter = model.listStatements();

while (iter.hasNext()) {
com.hp.hpl.mesa.rdf.jena.model.Statement stmt

= iter.next();
Resource subject = stmt.getSubject();
Property predicate = stmt.getPredicate();
RDFNode object = stmt.getObject();
......
......

}

Figure 9: Using Jena to create RDF triples.

then creates a desire object and, from this, creates a
set of possible intentions describing ways of completing
this desire. It then chooses between these competing
intentions (using the CLP solver and its beliefs) and
executes the chosen one, which will complete the necce-
sary steps to fulfill the desire. As we have all the agents
other commitments (the other desires it is doing at the
same time) stored in desire objects as CIF/RDF parsed
Jena models, we can combine these with the current de-
sire when deliberating to provide a choice of intention.

Discussion & Related Work

In this paper, we have demonstrated how RDF has
a far broader applicability than its original role as a
metadata format for web resources. Our usage of RDF
places it at the core of an agent-mediated distributed
knowledge architecture, in which RDF provides: a car-
rier for the communication of entity-relational informa-
tion between web services, a format for mobile and self-
describing constraints, and a content language for inter-
agent communication. In this section, we summarise
our experience in using RDF, and draw comparisons
with related work.

The most common approach for transport of struc-
tured information between web services is to define the
data using XML Schemas (or DTDs) and use an XML-
RPC framework such as SOAP. The use of RDF as
a layer on top of XML means that the communicated
information has a data model (semantics), whereas
the XML Schema/DTD-defined data has only a struc-
ture (syntax). Most of the work that acknowledges
the importance of a semantics for communicated data
— essentially the founding principle of the Semantic
Web movement — proceeds to define additional layers
on top of RDF and RDFS (DAML+OIL, OWL, etc).
O-Telos-RDF (Nejdl, Dhraief, & Wolpers 2001) even
proposes an alternative to RDF, serialisable in XML,
but with much clearer axiomatic semantics. In con-
trast, we view RDF and RDFS as sufficiently useful
and extensible in itself; in defence of this position, we
have shown that the RDF data model is adequately

expressive to transport data originally stored against
the P/FDM semantic data model. Other work within
the AKT project further supports this position, where
RDF is used to represent a large repository of infor-
mation on the research activities of UK universities,
and to draw inferences from this information (Alani,
O’Hara, & Shadbolt 2002). Further evidence for the
utility of RDF in knowledge management applications
is provided by the EU COMMA project (Gandon &
Dieng-Kuntz 2002). In all of these approaches, the suf-
ficiency of RDF and RDFS to represent and commu-
nicate both ontological (schema) information and indi-
vidual instances is demonstrated.

Our original inspiration for using RDF and RDFS
as a format for mobile and self-describing constraints
was the original OIL proposal (Broekstra et al. 2001),
wherein the RDF data model was extended with logical
connectives (and, or, not, etc) which were themselves
syntactically defined using RDFS. The more recent Se-
mantic Web work on DAML+OIL has backed-away
from this original position, apparently because the log-
ical apparatus of boolean expressions has been “pushed
up” to a higher logic layer, above the DAML+OIL on-
tology layer11. While this is not unreasonable, we have
opted to define our constraint format CIF directly on
top of RDFS, as we view RDF itself as a major appli-
cation of constraints. For example, CIF can be used
to define integrity constraints on RDF classes, even
though they are not expressible in RDFS itself. Our
CIF work is related to the ongoing RuleML initiative12

(positioned at the Semantic Web logic layer) and, while
we would see our work coming into alignment with
RuleML in the future, we note that currently RuleML
is more concerned with traditional if-then rules rather
than declarative constraints.

OCL is a declarative expression language for anno-
tating UML class diagrams with invariants, especially
more complex cardinality constraints. It has been
used to create formal models of configuration prob-
lems (Felfernig, Friedrich, & Jannach 2001), which is
more concerned with formal correctness than with AI
problem-solving. However their logical formalism is
very similar to ours, and a UML class diagram is just
an ER diagram with methods, where we use functions.

Our high-level architecture is agent-based, and RDF
serves as the content language. Again, this commu-
nication framework stands in contrast to the main-
stream RPC model of web inter-application commu-
nication, where SOAP dominates. However, agent-to-
agent communication is far more flexible than RPC,
being loosely-coupled, asynchronous, and allowing in-
dividual network nodes full autonomy (Vinoski 2002).
Regrettably, the current state-of-the-art in agent com-
munication languages is not directly compatible with
RDF. Both FIPA and KQML rely primarily on a LISP-

11http://www.w3.org/2000/Talks/1206-xml2k-
tbl/slide10-0.html

12http://www.dfki.uni-kl.de/ruleml/

based syntax rather than XML and, while FIPA infor-
mally allows RDF as a content language, this is not
part of the standard. Nevertheless, we assert that the
combination of an agent architecture and RDF as a con-
tent language is powerful and open, and believe that a
fusion of web standards with agent standards is a de-
sirable goal of both communities.

Conclusion

In this paper we have argued that, for agent-mediated
knowledge systems, there is a clear need not just to rep-
resent and communicate information, but also to rea-
son with it. We have shown how we are using RDF
to do both: we can readily map entity-relational data
into RDF, communicate it within an agent communi-
cation language, and reason with it using constraints
also defined in RDF. In conclusion, we see the desirable
features of RDF for agent-mediated knowledge systems
as being:

• simplicity of its triple-based data model;

• uniformity in the representation of both knowledge
(instances) and meta-knowledge (schemas);

• portability of the XML serialisation;

• web-enabled, compatible with W3C standards;

• extensibility, exemplified by the layering of RDFS on
RDF.

Acknowledgements

This work is supported under the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collab-
oration (IRC), which is sponsored by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC)
under grant number GR/N15764/01. The AKT IRC
comprises the Universities of Aberdeen, Edinburgh,
Sheffield, Southampton and the Open University. The
constraint fusion services were developed in the con-
text of the KRAFT project, funded by the EPSRC and
British Telecom. The CONOISE project is funded by
BTexact Technologies.

References

Alani, H.; O’Hara, K.; and Shadbolt, N. 2002. Onto-
copi: Methods and tools for identifying communities of
practice. In Musen, M.; Neumann, B.; and Studer, R.,
eds., Intelligent Information Processing. Kluwer Aca-
demic Press. 225–236.

Bassiliades, N., and Gray, P. 1994. CoLan: a Func-
tional Constraint Language and Its Implementation.
Data and Knowledge Engineering 14:203–249.

Broekstra, J.; Klein, M. C. A.; Decker, S.; Fensel, D.;
van Harmelen, F.; and Horrocks, I. 2001. Enabling
knowledge representation on the web by extending
RDF schema. In World Wide Web, 467–478.

Chalmers, S.; Gray, P.; and Preece, A. 2002. Support-
ing virtual organisations using BDI agents and con-
straints. In Klusch et al. (2002), 226–240.

Felfernig, A.; Friedrich, G.; and Jannach, D.
2001. Conceptual modeling for configuration of mass-
customizable products. Artificial Intelligence in Engi-
neering 15(2):165–176.

Fiddian, N. J.; Marti, P.; Pazzaglia, J.-C.; Hui, K.;
Preece, A.; Jones, D. M.; and Cui, Z. 1999. A knowl-
edge processing system for data service network de-
sign. BT Technical Journal 17(4):117–130.

Gandon, F., and Dieng-Kuntz, R. 2002. Distributed
artificial intelligence for distributed corporate knowl-
edge management. In Klusch et al. (2002), 202–217.

Gelernter, D., and Carriero, N. 1992. Coordination
languages and their significance. Communications of
the ACM 35(2).

Gray, P. M. D.; Embury, S. M.; Hui, K.; and Kemp,
G. J. L. 1999. The evolving role of constraints in the
functional data model. Journal of Intelligent Informa-
tion Systems 12:113–137.

Gray, P. M. D.; Hui, K.; and Preece, A. D. 1999.
Finding and moving constraints in cyberspace. In In-
telligent Agents in Cyberspace, 121–127. AAAI Press.
Papers from the 1999 AAAI Pring Symposium Tech-
nical Report SS-99-03.

Gray, P. M. D.; Hui, K.; and Preece, A. D. 2001.
An expressive constraint language for semantic web
applications. In Preece, A., and O’Leary, D., eds.,
E-Business and the Intelligent Web: Papers from the
IJCAI-01 Workshop. AAAI Press. 46–53.

Klusch, M.; Ossowski, S.; and Shehory, O., eds.
2002. Proceedings of the 6th International Workshop
on Cooperative Information Agents (CIA 2002), num-
ber 2446 in Lecture Notes in Artificial Intelligence.
Madrid, Spain: Springer Verlag.

Nejdl, W.; Dhraief, H.; and Wolpers, M. 2001.
O-Telos-RDF: A resource description format with
enhanced meta-modeling functionalities based on o-
Telos. In Workshop on Knowledge Markup and Se-
mantic Annotation at the First International Confer-
ence on Knowledge Capture (K-CAP’2001). URL:
http://www.kbs.uni-hannover.de/Arbeiten/
Publikationen/2001/kcap01-workshop.pdf.

Preece, A.; Hui, K.; Gray, A.; Marti, P.; Bench-Capon,
T.; Cui, Z.; and Jones, D. 2001. KRAFT: An agent
architecture for knowledge fusion. International Jour-
nal of Cooperative Information Systems 10(1 & 2):171–
195.

Rao, A. S., and Georgeff, M. P. 1995. BDI agents:
From theory to practice. In Proceedings of the First
International Conference on Multi-Agent Systems.

Vinoski, S. 2002. Putting the ”web” into web ser-
vices: Web services interaction models, part 2. IEEE
Internet Computing July/Aug, 90–92.

