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Abstract. How do we identify inconsistent CSPs quickly? This paper presents 
relaxation as one possible method; showing how we can generate relaxed CSPs 
which are easier to prove inconsistent. We examine different relaxation 
strategies based on constraint graph properties, and we show that removing 
constraints of low tightness is an efficient strategy which is also simple to 
implement. 

Introduction 

The MUSKRAT (Multistrategy Knowledge Refinement and Acquisition Toolbox) 
framework aims to unify problem solving, knowledge acquisition and machine 
learning in a single computational framework [1]. Given a set of Knowledge Bases 
(KBs) and Problem Solvers (PSs), the system tries to identify which KBs could be 
combined with which PS(s) to solve a given task. We propose to represent the KBs 
and PSs as CSPs, which we can combine to get larger CSPs. If a combined CSP has a 
solution, then the original combination could be used to solve the task; if the CSP 
does not have a solution, then the combination cannot be used. Identifying a suitable 
combination thus requires examining a series of CSPs, and rejecting inconsistent ones 
until we find one with a solution. Proving CSPs inconsistent can be a lengthy process. 
We would like to find a way to identify inconsistent CSPs quickly. One method might 
be to relax a CSP to obtain one that is easier to prove inconsistent. If we can prove the 
relaxed CSP is inconsistent, then we know that the original was also inconsistent. If 
the relaxed CSP has a solution, then the original CSP represents a plausible 
combination for the original task. This paper investigates different relaxation 
strategies for random binary CSPs, and suggests that removing constraints with low 
tightness is an effective method for identifying inconsistent problems. 

Background 

White & Sleeman [1] proposed a Meta Problem Solver, which checks if combinations 
of KBs with a PS, represented as a CSP, are plausible. However, this approach was 
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unable to verify that no discarded combinations contained a solution; i.e. it was 
unable to guarantee the properties of the Meta Problem Solvers.  

Constraint Satisfaction Problems and associated methods are an effective way of 
modelling and solving combinatorial problems [2, 3], and there exist a number of 
efficient toolkits and languages (e.g. [4, 5]). A CSP may be proven to be inconsistent 
by search, or by attempting to enforce various forms of consistency [6]. The idea of 
relaxing CSPs has received considerable attention [7-9], but focused on changing the 
problem to introduce solutions. Relaxing problems is also a common technique in 
mathematical programming, e.g. to obtain better bounds in optimisation [10]. There 
has been extensive research on randomly generated CSPs [7, 11], which show a phase 
transition between soluble and insoluble problems, with the hardest problems being at 
the transition point. Problem classes in binary CSPs can be described by a tuple 
<n,m,c,t>, where n is the number of variables and m is the number of values in each 
domain,  c is the number of constraints, and t is the number of forbidden tuples in 
each constraint (a measure of problem tightness). 

Experiments 

Our aim is to relax a given CSP to generate a new CSP which is easier to solve, with 
the intention of quickly discarding inconsistent CSPs. In this paper, we examine 
different relaxation strategies, trying to identify the best way to relax individual 
problems. We generate random CSPs, then relax them in different ways and measure 
the computation times and solution results. First we will describe the software, then 
we present the experiments.  

The CSP-SUITE [12] used in these experiments is written in SICStus Prolog [5] 
and consists of three modules. The Generating module creates random binary CSPs. 
We want to identify individual constraints to relax, so to introduce variety we allow 
the tightness of individual constraints in a problem to vary rather than be constant. 
Thus we use the 5-tuple <n,m,c,[tµ,r]>, where tµ is the average number of forbidden 
tuples, with the number for each constraint selected uniformly at random from the 
range [tµ-r, tµ+r]. The Relaxing module generates relaxed CSPs from an original by 
removing a specified number of constraints according to nine different strategies. (1) 
Random simply chooses the constraints randomly. (2) Greedy Search considers each 
constraint in turn, removing it, solving the relaxed CSP, and replacing the constraint. 
It then selects the constraint whose removal gave the best performance improvement, 
removes it, and repeats the whole process on the resulting CSP. (3) Greedy Ordering 
uses the first iteration of Greedy Search to generate an ordering list for all constraints 
then removes constraints in the order suggested. (4, 5) Node Degree selects 
constraints in ascending or descending order of the degree of their associated 
variables in the constraint graph. (6, 7) Isolate Node selects high or low degree nodes 
and removes a series of constraints incident on those nodes (i.e. it tries to remove 
variables from the problem). (8, 9) Tightness removes constraints in ascending or 
descending order of their tightness. Note that strategies (2) and (3) would not be 
applicable in our eventual framework, since they must solve many CSPs each time. 
They are useful here as reference points, showing what might be achievable. The 
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Solving module simply solves the CSPs using the finite domain library [13], recording 
search effort. Since the library does not report constraint checks, we use the 
resumption statistic instead. We have confirmed that resumptions correlate well with 
cpu time [14]. 

First, we compare all strategies. In Figure 1, for the problem class <20,10,133, [65, 
15]>, we show the resumption profit achieved (i.e. how much easier it is to solve the 
relaxed CSP compared to the original) by each strategy, removing up to 60 constraints 
each time. The problem class is in the over-constrained region, and in all cases we 
considered, remained over-constrained even after removing the constraints. The graph 
shows that removing low tightness constraints is the most profitable of the applicable 
strategies, for this problem class. We assume that although such constraints are easy 
to satisfy, they are likely to be redundant in the proof of inconsistency, since they rule 
out so few combinations, and thus they introduce many extra branches for no benefit.  
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point. This is in fact the case for the Random Removal, which essentially follows the 
path of the standard curve. Does the same effect happen for Low Tightness Removal - 
i.e. is there a point at which removing constraints is no longer profitable? In Figure 3 
we plot the search effort against the number of constraints in problems obtained by 
relaxing an original problem using Low Tightness Removal, and we include Random 
for comparison. We start with a particular problem class on the right hand side of the 
curve, remove constraints according to each strategy, and solve the new problem after 
each removal. In three cases, we avoid any significant hardness peak with the low 
tightness strategy, and for the fourth a peak comes only after removing approximately 
40 constraints. That peak is further to the left than for Random, and the peak normally 
coincides with the solubility transition. Figure 4 shows the transition curves, and we 
can see that in four cases, the transition point for Low Tightness Removal is later 
(further left) than for Random. This gives us some confidence that we can use our 
relaxation strategy reliably without introducing new solutions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Search effort for Random Removal vs. Low Tightness Removal 

 Fig. 4. Transition phase for Random Removal vs. Low Tightness Removal 
 

Summary and Future Work 

We have shown that relaxing CSPs can be useful for detecting inconsistency. In 
particular, we have shown that the simple strategy of removing constraints of low 
tightness is effective, reducing the time to prove inconsistency.  
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Future work will include: investigating the performance of Low Tightness on 
problems nearer the hardness peak; investigating non-binary and global constraints; 
other recognisable characteristics of CSPs (e.g. [15]); investigation of more 
theoretical concepts (e.g. higher consistency, problem hardness); real-world problems 
such as scheduling; heuristic methods, thus sacrificing our guarantee of correctness; 
and a case-library for selecting the appropriate relaxation strategy. 
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