
  

Characterisation of Knowledge Bases1 

 
Derek Sleeman, Yi Zhang, Wamberto Vasconcelos 

Department of Computing Science, 
University of Aberdeen, 

Aberdeen, AB24 3UE, Scotland, UK 
Email: { dsleeman, yzhang, wvasconc} @ csd.abdn.ac.uk 

 
Abstract 

The process of determining the principal topic of a Knowledge base 
(KB), and whether it conforms to a set of user-defined constraints, are 
important steps in the reuse of Knowledge Bases. We refer to these 
steps as the process of characterization of a Knowledge Base. 
Identify-Knowledge-Base (IKB) is a tool, which suggests the 
principal topic(s) addressed by the Knowledge Base. It matches 
concepts extracted from a particular knowledge base against some 
reference taxonomy, where the taxonomy can be pre-stored or 
extracted from ontologies which are either stored on the local 
machine or are assessable through the WWW. The 'most specific' 
super-concept subsuming these concepts is said to be the principal 
topic of the knowledge base. Additionally, a series of filters, which 
check if a KB has particular characteristics have been implemented. 
This paper describes both the Identify-Knowledge Base system and 
these filters. Some empirical studies of IKB and the filters with a 
range of problems are also reported. 

1. Introduction 
Reuse of Knowledge Bases is a promising area in Knowledge Technologies [1]. 
Nowadays, researchers are focusing on how to reuse existing Knowledge Bases for 
further applications [2]. Such requests for reuse are often specified as a Knowledge 
Base (KB) characterisation problem: 

Require knowledge base on topic T, conforming to set of constraints C [2]. 

To respond to such requests we need to:  

• Decide what is the principal topic (T) of a given knowledge base. 
• Decide whether a KB conforms to certain constraints C. 

                                                 
1 This work is part of the Advanced Knowledge Technology (AKT) project, which 
is funded by EPSRC, [1]. The IKB system incorporates the ExtrAKT system [3, 4, 
5] and interfaces with the Edinburgh Knowledge Broker [6, 7] which were built by 
the other members of the AKT consortium 



  

In this report, we discuss these two processes in detail. In section 2 to section 5, 
IKB is introduced. In section 6 and section 7, we discuss the filters that help users 
find KBs which match their requirements. In section 8, we discuss possible further 
work. 

 

2. Determining the principal topic of a KB 
In order to reuse a Knowledge Base, we need the ability to identify its topic (T). 
One way to identify the KB’s topic is to: 

1. Extract concepts from the knowledge base. 
2. Match these concepts against a reference taxonomy, which defines a 

particular domain of interest. The KB’s principal topic is given by the 
'most specific' super-concept, which subsumes these concepts. 

3. If a null result is obtained with a particular taxonomy, then repeat the last 
2 steps with other taxonomies thought to be of interest. 

 
The ExtrAKT system from Edinburgh [2] can analyse a Prolog knowledge base, 
and extracts all the KB’s predicates. The IKB system then takes the predicates 
extracted from the Prolog Knowledge base and compares them with a pre-defined 
reference taxonomy to identify the KB’s principal topic. Below we give a simple 
example using a food taxonomy. Suppose we already have the taxonomy depicted 
below: 

 

 

 

 

 

 

 

 

 

Figure-1 Food Taxonomy showing different kinds of food 

 
If the concepts { Apples, Pears}  are extracted (by ExtrAKT) and passed to the IKB 
system, the system would suggest that { Fruit}  might be the focus of the knowledge 
base. Similarly, if the concepts { Apples, Potatoes, and Carrots}  are extracted, 
{ Fruit-vegetables}  would be the output. If the set of concepts { Potatoes, Chicken, 
and Game}  is provided, topic { Food}  would be returned as the result. 



  

3. Design of the IKB system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-2 The main components of the IKB system2 

 
As shown above, the system includes two important components:  

• Taxonomy creator: it builds a taxonomy based on the reference ontology. 
• Concepts searcher: it searches the taxonomy to match all the extracted 

concepts and finds their common parent.  

                                                 
2 The rectangles in the figures represent processes while the ovals represent data or 
information. 

 
 

Identify Knowledge Base (IKB) system 

Build a 
Taxonomy from 
the Ontology 

Search for the 
extracted 
concepts in the 
Taxonomy Find the super-

concept, which 
subsumes these 
concepts  

Reference 
ontology 

Concepts 
extracted from the 
KB by ExtrAKT 

Topic of the 
Knowledge Base 



  

4. Implementation of IKB 
IKB system is implemented in the Java program. One reason for Java’s selection is 
that it will now be easy to interface IKB to either the AKTbus [8, 9] or the 
Edinburgh Broker system, and thus provide a web-based service. 

Jena, a Java [10] API for manipulating RDF [11] models, is used to read the 
ontology (RDFs file) into Java. The RDFs files can be imported from either a local 
disk or the Internet. After reading the reference ontology from the RDFs file, IKB 
transforms the ontology into the corresponding taxonomy, which is stored in a 
classification tree (JavaTree class). (Currently, when IKB converts an ontology 
into a taxonomy it is simply retained in memory, and so the taxonomy disappears 
between sessions, and when a new taxonomy is extracted from a further ontology.) 
The user can then browse the reference taxonomy, and modify the hierarchical 
structure as well by adding and deleting nodes. So the user can search for the 
principal topic of the KB with the support of potentially many taxonomies. If the 
ontologies stored locally on the machine, cannot meet the user requirements, the 
user can access further ontologies on the Internet. 

The ExtrAKT system from Edinburgh is used to extract concepts from a 
Knowledge Base (currently, it can deal with Prolog or Clips). These concepts are 
then input of our IKB system. There are two different ways for the concepts to be 
imported to IKB system. Firstly, the concepts extracted by ExtrAKT can be stored 
in a text file and then read into IKB, or users can input the concepts interactively 
from the keyboard. 

Different search strategies are available in the IKB system. One is the basic 
strategy that every concept has the same weight. The other one is the so-called flag 
strategy, which only reports concepts whose weighs are greater than or equal to the 
flag. Actually, the basic strategy can be considered as the special case of the flag 
strategy, where the flag is set to 1. 

 

5. Testing of IKB 
Next, examples of different reference taxonomies and sets of input concepts are 
used to test the IKB system. Two taxonomies are used here: a FOOD taxonomy 
(which is shown in section 2) and an AUTO taxonomy (which is about worldwide 
automobile manufacturers). Different input methods of the concepts and reference 
taxonomies (as introduced before, such as interactive input or file input, local or 
internet) are used in these examples. Also different search strategies are applied: 
the basic strategy and the flag strategy. 

Three examples illustrate  uses of the IKB system. 



  

5.1 Food ontology with basic searching strategy 
 
As shown in Figure-3, the food ontology is read from the RDFs file: 
http://www.csd.abdn.ac.uk/~yzhang/food.rdfs, 

and the extracted taxonomy is subsequently stored, for further use by IKB. In this 
example, the concepts used are read from the file:  

h:/forte/sampledir/work/predicates.txt (the extracted concepts are in fact: Pears 
Pears Potatoes Potatoes Potatoes Carrots Carrots Carrots Game) 

IKB returns [Food] as it is the common parent of these concepts. 

 

Figure-3 IKB system demonstration 1: Result is Food 

 
5.2  Food ontology with flag searching strategy  
The same reference taxonomy, Food, and the same set of concepts were used in 
this experiment, as were used in the first experiment. However, the search strategy 
was changed to flag and the value of flag was set to 2, with the result that only 
some of the concepts are matched, namely: 



  

Pears (occurs twice), Potatoes (occurs 3 times) and Carrots (occurs 3 times). Thus, 
the search result is [Fruit-vegetable] this time. 

 
5.3 Auto ontology with basic searching strategy 
 

 

Figure-4 IKB system demmonstration3: Result is Auto 

 

As shown in Figure-4, the ontology and the corresponding extracted taxonomy has 
been changed to Auto: http://www.csd.abdn.ac.uk/~yzhang/auto.rdfs 

And this time the user types the concepts himself on the keyboard: (GM, SAIC, 
BMW). The basic search strategy is used again, and the system reports the highest 
achieved node, namely [Auto]. 

To date, IKB has also been used with a number of ontologies, namely [12, 13, 14, 
15, 16, 17]. 



  

6. Building Filters 
Given the existence of IKB, we now discuss a filter which compares the topics of 
different KBs with the user’s interest, T’ , so that we can find KBs required by the 
users. Secondly, a further filter, Filter-2, has been developed to determine whether 
the KB conforms to certain constraints, C (see section 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-5 The components of KB Characterisation System 

According to our proposed architecture, shown in Figure-5, we need two filters to 
find KBs, which match the user’s requirements. Filter-1 is the topic filter. It 
compares the principal topic of the KB reported by the IKB system with the topic 
specified by the user. Filter-2 is the structural filter. It compares the structure of 
the KB passed by filter-1 with the user-defined requirements. If a KB satisfied both 
filters, it is reported to the user. 

 
ExtrAKT 
system 

Filter 1  
Topic matcher 

IKB 
system Filter 2(DCG) 

Structure 
matcher 

KB 

Constraints / 
requirements 
on KB, { C}  

Selected 
KB or null 

Concepts 
Reference 
Ontology  

Returned KB  
(user required) 
or null 

Topic of 
user topic, T 

Topic of 
KB, T’  



  

Filter-1 merely has to compare the required topic, T’ , provided by the user with the 
topic, T, returned by IKB for the KB. As filter-1 is trivial to implement, we focus 
here on the second, more demanding, filter-2. 

We considered 2 approaches to checking whether a KB is consistent with the 
constraints specified by a user. Firstly, if the KB is associated with a header-file, 
which describes their contents, then it would only be necessary to verify that a 
header-file satisfies the user’s constraints. Secondly, the user’s constraints could be 
applied directly to the KB, which of course would generally be a more expensive 
process. We have in the end opted for the latter approach as we feel that there 
might only be a small number of KBs, which have an associated header-file; 
additionally there would be the problem of ensuring that header-files & KBs 
remain consistent throughout the KB’s lifecycle. 

We have employed Definite Clause Grammar (DCG) [18] to compare the user’s 
requirements with the structure of the KB. DCG is an extension of context free 
grammars that has proved useful for describing natural and formal languages, and 
that may be conveniently expressed and executed in Prolog. A DCG rule in Prolog 
is executable because it is just a notational variant of a Prolog term that has the 
following general form: Head - > Body.  

Suppose that we have a KB written in PROLOG which we know from the IKB is 
in the required domain, say geology/well-drilling. Further suppose that the user has 
specified his/her requirements as the DCG rules: 

f or mat i on - - > l i t hol ogy 
l i t hol ogy - - > (  r ock ,  l i t hol ogy- dept h,  l i t hol ogy- l engt h)  
r ock - - > ( r ock- t ype,  r ock- har dness)  
r ock- t ype - - > ( shal e |  c l ay |  chal k |  gr ani t e|  ot her )  
r ock- har dness - - > ( ver y- sof t | sof t | medi um| har d| ver y- har d)  
 
That is the user wants to check whether the KB contains a definition for a 
formation, and that in turn requires the definition of a lithology, which again is 
defined in terms of rock, lithology-depth and lithology-length etc. So our task then, 
is to take the above constraints, express them as DCG queries, and for these to be 
run against the Prolog KB. In general if we wish to establish P we have to pose it 
as the query: 

* P * 

where * can match any structure, so that wherever in the KB, P is found,  a match 
will be returned. (Posing the query simply as P would return a fail unless the KB 
contains only P). If the algorithm determines that the KB does not contain P, then 
it would be possible to relax the constraints and to see whether the KB could 
satisfy some of the “component”  constraints. So in the above example, although 
the KB might not contain a definition for formation, it might contain definitions 
for lithology, rock, rock-type. The user then has the option to either review further 
KBs to find one which meets his exact requirements, or to relax his/her 
requirements given information about which aspects of the user requirements are 
not satisfied by the current KB. 



  

This approach is likely to be computationally expensive for large KBs; if this 
becomes a major problem we will introduce a range of heuristics to help control 
the search space. Further, a more efficient and flexible approach, which supports 
partial specifications of the problem is being developed [19, 20]. 

 

7. Examples of Filters 
Below we give examples of the use of filter-2. In effect, this filter aims to answer  

Is the definition of Formation in the KB consistent with the user requirements? 

To answer this question, we have to generate 6 sub-queries, each of which 
correspond to a component in the requirements, and the algorithm only records a 
positive result if all sub-queries are answered positively. These sub-queries, their 
translation into DCG, and the responses obtained are listed below. We shall use 
predicate mat ch( DCG,  KB,  Answer )  to check whether KB (the knowledge 
base represented as a list of Prolog clauses) contains DCG (the DCG rules stored as 
a list); and the predicate returns the result (yes or no) in the variable Answer. 

The i ni t i al  quer y concer ns t he t op- l evel  r ul e,  whi ch i s   
|  ?-  mat ch( [ ( f or mat i on - - > l i t hol ogy) ] ,  
           [ . . . ] ,  
           Answer ) .  
Answer  = yes  
That is, for a given knowledge base (shown above as “ [ . . . ] ”  to save space) the 
system returns the Answer  “ yes” , which means the definition of formation (if it 
exists) in the KB is consistent with the user’s requirements. 

 

Similarly, in the query below: 

|  ?-  mat ch( [ ( r ock - - >( r ock- t ype, r ock- har dness) ) ] ,  
           [ . . . ] ,  
           Answer ) .  
Answer  = yes  
That is, the knowledge base has the definition of rock conforming to the user 
requirements as expressed by the DCG rule. 

 

Another interesting example is 

|  ?-  mat ch( [ ( r ock- - >( r ock- t ype,  r ock- har dness) ) ,  
          ( r ock- t ype- >( shal e| c l ay| chal k| gr ani t e| ot her ) ] ,  
          [ . . . ] ,  
          Answer ) .  
Answer  = yes 
In this query, we extend the previous query to include another user constraint, 
(rock-type). 



  

 

If the KB’s structure cannot match the user’s requirements, the system will 
return  ” No” . In this example, the user required rock-type are not found in the KB. 

|  ?-  mat ch( [ ( r ock- - >( r ock- t ype, r ock- har dness) ) ,  
           ( r ock- t ype- - >( har d- c l ay| sof t - chal k| ot her ) ] ,  
           [ . . . ] ,  
           Answer ) .  
Answer  = no 

8. Further developments 
The IKB system is a useful tool to identify the likely topic of a given knowledge 
base by comparing the extracted concepts against a pre-defined reference 
taxonomy. The current filters have proven useful. Planned developments include: 
 

• Extend the search strategy 
There are two search strategies in our system at this moment: Flag strategy and 
Basic strategy (the later can be looked on as the Flag strategy with flag as 1). More 
complex strategy will be developed later, such as a Percentage Strategy, which 
matches the concepts discussed >P% of times. 
 

• Interface to Edinburgh’s Broker system [4] 
One can envisaged a future broker service where the broker is asked to use a KB 
on a particular topic, T and with some structural constraints, C. It is envisaged that 
this functionality will be provided by linking IKB to the Broker possibly through 
the AKTBUS, [8, 9]. This would then, of course, allow IKB to provide a web-
based service. 
 

• More testing with different knowledge base 
The usefulness of our system depends critically on the concepts extracted from the 
knowledge base. More knowledge bases, not only in Prolog, should be used with 
the ExtrAKT and the IKB systems. 
 

• Creating a “directory”  of the Taxonomies 
Currently, when IKB converts an ontology into a taxonomy it is simply retained in 
memory, and so the taxonomy disappears between sessions, and when a new 
taxonomy is extracted from a further ontology. A further development will allow 
the user to name and retain the taxonomies on some form of persistent storage (i.e. 
in a file); the whole set of taxonomies will then be available to users. 
 

• Use IKB with text files 
Apply IKB on the words contained in a standard text file to find out the principal 
topic of that text. Nowadays, researchers in Natural Language Engineering have 
developed some very good tools to extract important keywords from text files, [21, 
22]. We plan to apply the IKB system to these extracted keywords to see how 
effective the IKB is in detecting the principal focus of textual materials. 



  

 

• Workbench for characterising KBs 
Create a workbench to characterize the KBs, which includes the IKB system and 
Filters. The workbench will be able to extract taxonomies from pre-defined 
ontologies. At the same time, it will get concepts (or keywords) from KBs from 
ExtrAKT-like systems. Finally, the user requirements on the KBs will also be 
provided as input to the system. Based on this information, our workbench will be 
able to characterize the KB, both by topic and by structural constraints. 

 

Acknowledgements 

This work is supported under the EPSRC’s grant number GR/N15764 to the 
Advanced Knowledge Technologies Interdisciplinary Research Collaboration, 
http://www.aktors.org/akt/, which comprises the Universities of Aberdeen, 
Edinburgh, Sheffield, Southampton and the Open University. 

 

References 

1. Advanced Knowledge Technology (AKT project) 
http://www.aktors.org/akt/ 

2. Sleeman D, Potter S, Robertson D, and Schorlemmer W.M. Enabling 
Services for Distributed Environments: Ontology Extraction and 
Knowledge Base Characterisation, ECAI-2002 workshop, 2002 

3. Schorlemmer M, Potter S, and Robertson D. Automated Support for 
Composition of Transformational Components in Knowledge 
Engineering. Informatics Research Report EDI-INF-RR-0137, June, 2002 

4. Sleeman D, Potter S, Robertson D, and Schorlemmer W.M. Ontology 
Extraction for Distributed Environments, In: B.Omelayenko & M.Klein 
(Eds), Knowledge Transformation for the Semantic Web. publ 
Amsterdam: IOS press, p80-91, 2003 

5. ExtrAKT system: a tool for extracting ontologies from Prolog knowledge 
bases. 
http://www.aktors.org/technologies/extrakt/ 

6. Potter S. Broker Description, Technical Document University of 
Edinburgh, 03/04/2003 

7. Knowledge Broker: The knowledge broker addresses the problem of 
knowledge service location in distributed environments. 
http://www.aktors.org/technologies/kbroker/ 

8. Hui K.Y. and Preece A. An Infrastructure for Knowledge Communication 
in AKT Version 1.0. Technical Report, Department of Computing 
Science, University of Aberdeen. 2001 

9. AKT-Bus: An open, lightweight, Web standards-based communication 
infrastructure to support interoperability among knowledge services 
http://www.aktors.org/technologies/aktbus/ 



  

10. Jena - A Java API for RDF 
http://www-uk.hpl.hp.com/people/bwm/rdf/jena/ 

11. Resource Description Framework (RDF) 
http://www.w3.org/RDF/ 

12. Newspaper ontology 
http://www.dfki.unikl.de/frodo/RDFSViz/newspaper.rdfs 

13. People ontology 
http://www.i-u.de/schools/eberhart/ontojava/examples/basic/demo.rdfs 

14. wordnet ontology 
http://www.semanticweb.org/library/wordnet/wordnet-20000620.rdfs 

15. Food ontology 
http://www.csd.abdn.ac.uk/~yzhang/food.rdfs 

16. Auto ontology 
http://www.csd.abdn.ac.uk/~yzhang/auto.rdfs 

17. Academic ontology 
http://www.csd.abdn.ac.uk/~qhuo/program/academic.rdfs 

18. Bratko I. Prolog Programming for Artificial Intelligence, 3rd Ed, 
Longman. 2000 

19. Vasconcelos W.W, and Meneses E.X. A Practical Approach for Logic 
Program Analysis and Transformation. Lecture Notes in Computer 
Science  (Advances in Artificial Intelligence), Vol. 1793, Springer-
Verlag, Berlin, 2000 

20. Vasconcelos W. W, Aragao M. A. T, and Fuchs N. E. Automatic Bottom-
up Analysis and Transformation of Logic Programs. Lecture Notes in 
Computer Science (Advances in Artificial Intelligence), Vol. 1159. 
Springer-Verlag. Berlin. 1996 

21. Jones G.J.F. An Introduction to Probabilistic Information Retrieval 
Models, Department of Computer Science, University of Exeter 

22. Voothees E.M. and Harman D. Overview of the Seventh Text Retrieval 
Conference (TREC-7), NIST Special Publication 500-242, November 
1998 


