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Abstract: Effective re-use of knowledge bases requires the identification 
of plausible combinations of both problem solvers and knowledge bases, 
which can be an expensive task. Can we identify impossible combinations 
quickly? The capabilities of combinations can be represented using 
constraints, and we propose using constraint relaxation to help eliminate 
impossible combinations. If a relaxed constraint representation of a 
combination is inconsistent then we know that the original combination is 
inconsistent as well. We examine different relaxation strategies based on 
constraint graph properties, and we show that removing constraints of low 
tightness is an efficient strategy which is also simple to implement.  

1. Introduction 
The MUSKRAT (Multistrategy Knowledge Refinement and Acquisition Toolbox) 
framework aims to unify problem solving, knowledge acquisition and knowledge-base 
refinement in a single computational framework [1]. Given a set of Knowledge Bases 
(KBs) and Problem Solvers (PSs), the MUSKRAT-Advisor [2] investigates  whether the 
available KBs will fulfil the requirements of the selected PS for a given problem. The 
Advisor informs the user if the available KBs are sufficient. Our research addresses the 
problem of checking whether combinations of existing KBs could be reused with the 
selected PS. We propose to represent the KBs and PSs as Constraint Satisfaction Problems 
(CSPs), which can be combined to produce composite CSPs. If a combined CSP is 
solvable, then the original combination of KBs with the selected PS could be used to solve 
the given problem; if the resultant CSP is inconsistent, then the combination cannot be 
used. Identifying a suitable combination thus requires examining a series of CSPs, and 
rejecting insolvable ones until we find one with a solution. Proving CSPs insolvable can be 
a lengthy process; we would like to find a way to do this quickly. The method we propose 
here is to relax a CSP, and if we can prove that the relaxed version is insolvable then we 
know that the original CSP does not have a solution either. However, if the relaxed CSP 
has a solution, then the original CSP represents a plausible combination. To test this 
proposal, we investigate different relaxation strategies for binary CSPs and test them on 
randomly generated problems. We suggest that removing constraints with low tightness is 
an effective method for identifying insolvable combinations. Thus this paper reports a 
contribution to the challenging problem of Knowledge Reuse as it presents an aid based on 
Constraint Programming to enable a quick identification of inconsistent combinations.  
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2. Background  
This work is supported by the Advanced Knowledge Technologies (AKT) 
Interdisciplinary Research Collaboration, which focuses on six challenges to ease 
substantial bottlenecks in the engineering and management of knowledge; reuse of 
knowledge is one of those challenges [3]. Current work in reuse has resulted in 
systems where a number of components have been reused, including ontologies, 
problem-solving methods (PSMs), and knowledge bases (KBs) [3]. The use of cases 
in Case Based Reasoning is a related activity [4]. 

2.1 Reusing Knowledge Based Systems 
One of the main goals of the Knowledge Based System (KBS) community is to 
build new systems out of existing Problem Solvers (say Problem Solving Methods) 
and existing Knowledge Bases. At an early stage the Knowledge Engineering sub-
area identified a range of Problem Solving Methods, which they argued covered the 
whole range of problem solving and included methods for Classification and 
Diagnosis through to Planning (so-called synthesis tasks) [5]. An early but powerful 
example of reuse of a PSM was the use of the EMYCIN shell with a variety of 
domain-specific knowledge bases [6]. More recently, systems like PROTÉGÉ have 
provided an option to write KBs in a standardised format like OKBC [7]. This then 
takes the goal of building new Knowledge-Based Systems (KBSs) one step further. 
A possible approach is to take the required KB and PSM and to produce manually, 
initially, a series of mappings, which will make the 2 components “comparable” [7], 
and thus to develop a new KBS from pre-existing components.  
We have chosen to work with the domain of scheduling, mainly because the 
constraint community has been successful in addressing real world problems in this 
area. Also, we argue that the nature of scheduling problems are very close to CSPs, 
hence it would be relatively easy to transform PSs and KBs in this domain. We will 
now consider an example of a mobile phone manufacturer to understand our notion 
of KB and PS reuse. The manufacturer has two factories, three suppliers and two 
delivery companies to transport phones to wholesalers around the world (Figure 1). 
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identify those constraints, which the system is allowed to relax (e.g. accept a screen 
with a maximum of 64 colours instead of 4096). This toy example has 5 PSs and 7 
KBs (for each of the factories, suppliers, and delivery companies) to combine as 
well as the obligatory KBs about background knowledge and constraint relaxation 
rules (See Figure 1). To solve a task one needs to have: 1 Problem Solvers (out of 
5), 1 supplier (out of 3), 1 factory (out of 2), 1 delivery company (out of 2), 
background knowledge and constraint relaxation. Since the number of possible 
combination is 60 (5*3*2*2*1*1=60), we would like to eliminate some of the 
insolvable combinations quickly, leaving a couple of plausible combinations, which 
need to be evaluated thoroughly. Let us assume that the manufacturer would like, if 
possible, to reuse knowledge to answer questions such as: Can we manufacture, 
within the guidelines of ISO 9001 and European safety standards (CE), a mobile 
phone with a 4096 colour screen, not heavier then 100g and have it delivered to the 
American market within 6 months?   

 

Background Knowledge:
Product is  ISO 9001 
 If Factory  =  ISO 9001 
  Supplier =  ISO 9001 
 

Product is CE 
 If  Factory  =  CE 

Delivery America: 
Supplier China  - Factory Canada    = 30,31,…,45 days 
Factory Canada - American market = 20,21,…,30 days 

Supplier China: 
Colour screen             =  4096,512,128,0 colours 
Supplier China            ≠ ISO 9001 

Constraint Relaxation rules 
 

Soft constraints   =   4096 colour, CE,… 
Hard constraints  =   ISO 9001, 100 gram, American market, Time,… 

Factory Canada: 
 

Human Resources       =    20,…,40 days 
Machine Resources     =    25,…,45 days 
Total Weight              ≥    100 gram 
Factory Canada          =    ISO 9001 
… 

Requirements for the   
Constraint Satisfier: 
ISO 9001            =Yes 
CE                     = Yes 
Colour screen      = 4096 colour 
Weight            ≤ 100 gram 
Delivery market   = American  
             Time   ≤ 180 days? 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. One of 60 Plausible Combinations  
 
 

Figure 2 illustrates one candidate combination, as well as the requirements for the 
selected problem solver. With the knowledge and problem solving requirements in 
Figure 2 we can demonstrate that the combination is inconsistent, as one of the 
requirements given to the PS, viz., ISO 9001 certified, our background knowledge 
states that to make a phone certified, both the manufacture and the part supplier 
need to be ISO 9001 certified. Figure 2 shows that only the factory is certified hence 
the combination is inconsistent. 
White & Sleeman [1] discussed the creation of Meta Problem Solvers, which check 
if combinations of KBs with a PS, represented as a CSP, are plausible. However, 
this approach was unable to verify if any discarded combination contained a 
solution. As noted earlier, we propose to use constraint programming as our PSM 
and to represent combination of KBs and PSs as CSPs. We will show that some of 
our strategies can not only identify insolvable combinations quickly, but also verify 
that their related CSPs do not have any solutions. 
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2.2 CSP 
Constraint Satisfaction techniques attempt to find solutions to constrained 
combinatorial decision problems [8, 9] , and there are a number of efficient toolkits 
and languages available (e.g. [10, 11]). The definition of a constraint satisfaction 
problem (CSP) is: 
 

 a set of variables X={ X 1,..., X n}, 
 for each variable Xi, a finite set Di of possible values (its domain), and 
 a set of constraints C<j> ⊆ Dj1 × Dj2 × …× Djt, restricting the values that 

subsets of the variables can take simultaneously.  
 

A solution to a CSP is an assignment of a value from its domain to every variable, in 
such a way that all constraints are satisfied. The main CSP solution technique 
interleaves consistency enforcement [12], in which infeasible values are removed 
from the problem, with various enhancements of backtracking search. The same 
approach also serves to identify insolvable problems.  
The approach of relaxing CSPs has received considerable attention [13-15], but has 
focused on changing the CSP to introduce solutions. Relaxing problems is also a 
common technique in mathematical programming, e.g. to obtain better bounds in 
optimisation [16]. There has been extensive research on randomly generated CSPs 
[13, 17], which show a phase transition between solvable and insolvable problems, 
with the hardest problems being at the transition point. Problem classes in these 
CSPs can be described by a tuple <n,m,c,t>, where n is the number of variables and 
m is the number of values in each domain, c is the number of constraints, and t is the 
number of forbidden tuples in each constraint (a measure of problem tightness). 
Much of this research concentrates on binary CSPs, in which each constraint is 
defined over a pair of variables. Any CSP with finite domains can be modelled by a 
CSP with only binary constraints [8, 18]. 

3. Empirical Studies 
The aim of relaxing CSPs is to produce new CSPs, which are easier to prove 
inconsistent. It is not obvious that relaxing an insoluble CSP will produce an easier 
problem. In fact, phase transition research (e.g. [19]) seems to indicate the opposite 
when the original CSP is inconsistent – as constraints become more loose, or the 
connectivity of the problems become more sparse, the time to prove inconsistency 
for random problems increases. If our approach is to work, we need to identify 
suitable relaxation strategies, which avoid the increase in solution time. In this 
section, we describe a series of experiments designed to test whether our approach is 
practical and to identify suitable relaxation strategies. For this paper, we limit the 
experiments to randomly generated binary CSPs, with a view to extending the 
results to real world problems. First we will describe the software, and then present 
the experiments. For the experiments, we generate a set of random problems, prove 
them inconsistent by search, and then apply various relaxation strategies and 
measure the reduction in search effort. The experiments are divided into three 
groups according to the distribution of the random problems. 
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3.1 CSP-Suite  
The CSP-Suite [20] used in these experiments is written in SICStus Prolog [11] and 
consists of Generating,  Relaxing, and Solving modules (Figure 3). 
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Figure 3. The CSP-Suite  

The Generating module creates random binary CSPs. Our random CSPs are slightly 
different from most reported in the literature. We want to find local properties of a 
problem which indicate how to relax it, so rather than have every constraint in a 
problem with the same tightness, we instead allow the tightness to vary. This also 
produces random CSPs which are closer to real world problems. The tightness of 
individual constraints in our problems will be uniformly, normally, or exponentially 
distributed. Thus, for different tightness distributions we use different ways to 
describe the tightness tuple. The uniform problem classes have 5-tuples 
<n,m,c,[tµ,r]>, where tµ is the average number of forbidden tuples, with the number 
for each constraint selected uniformly at random from the range [tµ-r, tµ+r]. The 
normal problem classes introduce standard deviation (sd) in our tightness tuple; 
<n,m,c,[tµ,sd,r]>. The standard deviation parameter controls the width of the bell 
curve. The exponential distribution requires a somewhat different notation: 
<n,m,c,[tm,stp,r]>, where tm (tightness middle) shows the middle of the distribution 
range, which is not the same as average distribution. The parameter stp has an effect 
on the steepness of the exponential probability curve. Even though only a positive 
exponential distribution has been tested in this paper (many low tightness 
constraints that decay exponentially to few high tightness constraints), it is also 
possible to generate a negative exponential tightness distribution. First we create a 
skeleton graph by successively adding nodes, then we randomly add constraints 
until we reach “c”, then take each constraint in turn, decide how many tuples it 
should forbid, and then randomly remove that number of tuples. 
The Relaxing module generates relaxed CSPs from original CSPs by removing a 
specified number of constraints according to nine different strategies. Random 
Removal simply chooses the constraints randomly. Greedy Search considers each 
constraint in turn, removing it, solving the relaxed CSP, and replacing the constraint. It 
then selects the constraint whose removal gave the best performance improvement, 
removes it, and repeats the whole process on the resulting CSP.  Greedy Ordering uses 
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the first iteration of Greedy Search to generate an ordering list for all constraints 
then removes constraints in the order suggested. Node Degree selects constraints 
in ascending or descending order of the degree of their associated variables in the 
constraint graph. Isolate Node selects high or low degree nodes and removes a 
series of constraints incident on those nodes (i.e. it tries to remove variables from 
the problem). Tightness removes constraints in ascending or descending order of 
their tightness. Note that the two Greedy strategies would not be applicable in our 
eventual framework, since they must solve many CSPs each time. They are useful 
here as reference points showing what might be achievable. We also used the 
results of the Greedy search to analyse the properties of the most profitable 
removed constraints, and from that developed some of the other strategies. 
The Solving module simply solves the CSPs using the finite domain library [21], 
and records search effort each time. Since the library does not report constraint 
checks, we use the resumption statistic instead. We have confirmed that 
resumptions correlate well with CPU time [22]. 

3.2 CSPs with Uniformly Distributed Tightness 
First, we consider problems with a uniform distribution of tightness. In Figure 4, for 
the problem class <20,10,133, [65, 15]>, we show the resumption profit achieved 
(i.e. how much easier it is to solve the relaxed CSP compared to the original) by 
each strategy, removing up to 60 constraints each time. The problem class is in the 
over-constrained region, and in all cases we considered, remained over-constrained 
even after removing the constraints. The graph shows that removing low-tightness 
constraints is the most profitable of the applicable strategies, for this problem class. 
We assume that although such constraints are easy to satisfy, they are likely to be 
redundant when showing there is no solution, since they rule out so few 
combinations, and thus they introduce many extra branches into the search tree for 
no benefit. 

 
 
 
 
 
 
 
 
 

Figure 4. Relaxation Strategies when removing up to 60 constraints 
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We then concentrate on the Low Tightness strategy, and Figure 5 illustrates its 
effect on 4 different problem classes. Whilst the graph shows a negative result 
for the <20,10,133,[45,15]> curve, the others are positive. In the best case we 
can create relaxed CSPs that are up to 45% easier to solve than the original 
CSPs, still without introducing a solution. The graphs suggest that the Low 
Tightness Removal strategy works better on CSPs with high tightness and wide 
distribution. 
  
 
 
 
 
 
 
 
 
 
 

Figure 5. Low Tightness Removal Strategy when removing 60 constraints  
 

As discussed at the start of section 3, strategy (1), randomly removing 
constraints from a randomly generated inconsistent CSP, is likely to make it 
harder to prove inconsistency. Does the same effect happen for Low Tightness 
Removal? I.e., is there a point at which removing constraints is no longer 
profitable? In Figure 6 we plot the search effort against the number of 
constraints in problems obtained by relaxing an original problem using Low 
Tightness Removal, and we include Random Removal for comparison. We start 
with a particular problem class on the right-hand side of the curve, remove 
constraints according to each strategy, and solve the new problem after each 
removal. In three cases, we avoid any significant hardness peak with the Low 
Tightness strategy, and for the fourth a peak appears only after removing 
approximately 40 constraints. That peak is further to the left than for Random 
Removal, and the peak normally coincides with the solubility transition. Figure 7 
shows the transition curves, and we can see that in four cases, the transition 
point for Low Tightness Removal appears later (further left) than for Random 
Removal. This gives us some confidence that we can use our relaxation strategy 
reliably without introducing new solutions. 
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Figure 6. Search effort for Random Removal vs. Low Tightness Removal 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Transition phase for Random Removal vs. Low Tightness Removal 

 

3.3 CSPs with Normally and Exponentially Distributed Tightness 
We now repeat the experiments on problems with normally distributed tightness 
(Figures 8 to 11) and with exponentially distributed tightness (Figures 12 to 15). 
Although the graphs suggest that the results of the low tightness strategy are 
slightly better for CSPs with a uniformly distributed tightness that have a high 
average and a wide distribution range, it is evident from figures 8 &12 that low 
tightness is still the best strategy for all distributions. 
There are only two differences in the results for these distributions when 
compared to Uniform. Firstly, as seen in figure 10, there are only two cases 
instead of three where we can avoid any significant hardness peak when relaxing 
using the Low Tightness strategy. Secondly, when we compare the Random 
curves (Figure 10 & 14) we notice that the hardness peak is not only a bit wider 
but also slightly higher than the uniform distribution graphs in section 3.2. Still, 
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for all cases, the transition point for low tightness is later than for random (see 
Figures 11 & 15), which leaves us with some confidence that we can use our 
relaxation strategy reliably without introducing new solutions even when the 
tightness is exponentially distributed. 
Note that the reason that we use a different standard deviation (sd) for problem 
classes with a different range is to obtain an equal bell-shaped distribution form 
for all our problem classes (Figure 9-11). Additionally, in order to achieve a 
similar exponential decay for the problem classes with different range values we 
use a different steepness (stp) (Figure 13-15). 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 8. Relaxation Strategies when removing up to 60 constraints  
 
 
 
 
 
 
 
 
 
 
 
 Figure 9. Low Tightness Removal Strategy when removing 60 constraints  
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Figure 10. Search effort for Random Removal vs. Low Tightness Removal 
Figure 11. Transition phase for Random Removal vs. Low Tightness Removal 
Figure 13. Low Tightness Removal Strategy when removing 60 constraints 

Figure 12. Relaxation Strategies when removing up to 60 constraints 
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Figure 15. Transition phase for Random Removal vs. Low Tightness Removal 

Figure 14. Search effort for Random Removal vs. Low Tightness Removal 

4. Future Work 
In this paper, we have tested the effectiveness of constraint relaxation for quickly 
identifying inconsistent random CSPs with uniform, normal and exponential 
tightness distributions. Our original aim was to apply this technique to the problem 
of knowledge base reuse. Therefore, the main focus of future work will be on 
extending this approach to more realistic CSPs. We will focus on scheduling 
problems. These are likely to involve non-binary and global constraints, and 
constraint graphs with particular properties (e.g. [23]). We will also carry out 
investigations into theoretical CSP concepts, including higher consistency levels and 
problem hardness. One of our primary objectives was to detect combination of 
problem solvers (PSs) and knowledge bases (KBs), which are inconsistent. So we 
plan to take combination of PS and KBs and systematically explore the effect of 
relaxing one or more constraints. Thus when a new task, is encountered we will 
search the case-base for the nearest case(s) and perform the actions which these 
cases(s) suggest. We hope this approach will quickly and efficient lead us to 
detecting consistent and inconsistent PS-KBs combinations. As a related activity, 
we plan to also investigate scheduling ontologies [24, 25], to help characterise 
problems in terms of specific domain entities and relationships. We hope these 
studies will help us to further understand the problem of KB reuse, this being one of 
our original aims. 
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5. Summary 
This paper has briefly discussed reuse of KBs and PSs, and described our method 
to alleviate part of this challenging issue. We propose to represent each KB and 
each PS as a Constraint Satisfaction Problem (CSP), which can be combined to 
obtain larger CSPs. In parallel to this theoretical discussion, we have conducted 
experiments on creating and relaxing binary CSPs with 9 different relaxation 
strategies. We have shown that our idea of relaxing CSPs can be useful for 
detecting inconsistency. In particular, we have shown that the simple strategy of 
removing constraints of low tightness is effective, and reduces the time to detect 
inconsistency. We will apply these results to determine whether combinations of 
KBs and a PS are plausible when reusing knowledge-based components for real 
world problems. 
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