Model Checking Agent Dialogues

Christopher D. Walton*

Centre for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, UK.
Email: cdw@inf.ed.ac.uk Tel: +44-(0)131-650-2718

Abstract. In this paper we address the challenges associated with the
verification of correctness of communication between agents in Multi-
Agent Systems. Our approach applies model-checking techniques to pro-
tocols which express interactions between a group of agents in the form of
a dialogue. We define a lightweight protocol language which can express
a wide range of dialogue types, and we use the SPIN model checker to
verify properties of this language. Our early results show this approach
has a high success rate in the detection of failures in agent dialogues.

1 Introduction

A popular basis for agent communication in Multi-Agent Systems (MAS) is the
theory of speech acts, which is generally recognised to have come from the work of
the philosopher John Austin [1]. This theory recognises that certain natural lan-
guage utterances have the characteristics of physical actions in that they change
the state of the world (e.g. declaring war). Austin identified a number of per-
formative verbs which correspond to different types of speech acts, e.g. inform,
promise, request. The theory of speech acts has been adapted for expressing
interactions between agents by many MAS researchers, and this is most visible
in the development of Agent Communication Languages (ACLs). The two most
popular ACLs are currently the Knowledge Query and Manipulation Language
(KQML) [21] and the Foundation for Intelligent Physical Agents ACL (FIPA-
ACL) [12]. In these languages, the model of interaction between agents is based
on the exchange of messages. KQML and FIPA-ACL define sets of performa-
tives (message types) that express the intended meaning of the messages. These
languages do not define the actual content of the messages and they assume a
reliable method of message exchange.

In order to connect the theory of speech acts with the rational processes of
agents, Cohen and Levesque defined a general theory of rational action [7]. This
theory is itself based upon the theory of intentional reasoning, developed by
the philosopher Michael Bratman [6], which introduced the notion that human
behaviour can be predicted and explained through the use of attitudes (mental

* This work is sponsored by the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC Grant GR/N15764/01) Advanced Knowledge Technologies Interdisci-
plinary Research Collaboration (AKT-IRC).

states), e.g. believing, fearing, hoping. In the general theory, speech acts are
modelled as actions performed by agents to satisfy their intentions. The FIPA-
ACL specification recognises this theory by providing a formal semantics for
the performatives expressed in Belief-Desire-Intension (BDI) logic [22]. A BDI
semantics for KQML has also been developed [17]. The combination of speech
acts and intentional reasoning provides an appealing theoretical basis for the
specification and verification of MAS [26]. Similarly, the KQML and FIPA stan-
dards provide useful frameworks for the implementation of MAS based upon
these theories, e.g. JADE [2].

Nonetheless, there is a growing dissatisfaction with the mentalistic model
of agency as a basis for defining inter-operable agents between different agent
platforms [23, 16]. Inter-operability requires that agents built by different organ-
isations, and using different software systems, are able to reliably communicate
with one another in a common language with an agreed semantics. The problem
with the BDI model as a basis for inter-operable agents is that although agents
can be defined according to a commonly agreed semantics, it is not generally pos-
sible to verify that an agent is acting according to these semantics. This stems
from the fact that it is not known how to assign mental states systematically to
arbitrary programs. For example, we have no way of knowing whether an agent
actually believes a particular fact. For the semantics to be verifiable it would be
necessary to have access to an agents’ internal mental states. This problem is
known as the semantic verification problem and is detailed in [27].

To understand why semantic verification is a highly-desirable property for an
inter-operable agent system it is necessary to view the communication between
agents as part of a coherent dialogue between the agents. According to the
theory of rational action, the dialogue emerges from a sequence of speech acts
performed by an agent to satisfy their intentions. Furthermore, agents should
be able to recognise and reason about the other agents intentions based upon
these speech acts. For example, according to the FIPA-ACL standard, if an agent
receives an inform message then it is entitled to believe that the sender believes
the proposition in the message. There is an underlying sincerity assumption in
this definition which demands that agents always act in accordance with their
intentions. This assumption is considered too restrictive in an open environment
as it will always be possible for an insincere agent to simulate any required
internal state, and we cannot verify the sincerity of an agent as we have no
access to is mental states.

In order to avoid the problems associated with the mentalistic model, and
thereby express a greater range of dialogue types, a number of alternative seman-
tics for expressing rational agency have been proposed. The two approaches that
have received the most attention are a semantics based on social commitments,
and a semantics based on dialogue games [18].

The key concept of the social commitment model is the establishment of
shared commitments between agents. A social commitment between agents is
a binding agreement from one agent to another. The commitment distinguishes
between the creditor who commits to a course of action, and the debtor on whose

behalf the action is done. Establishing a commitment constrains the subsequent
actions of the agent until the commitment is discharged. Commitments are stored
as part of the social state of the MAS and are verifiable. A theory which combines
speech acts with social commitments is outlined in [11].

Dialogue games can trace their origins to the philosophical tradition of Aris-
totle. Dialogue games have been used to study fallacious reasoning, for natural
language processing and generation, and to develop a game-theoretic semantics
for various logics. These games can also be applied in MAS as the basis for inter-
action between autonomous agents. A group of agents participate in a dialogue
game in which their utterances correspond to moves in this game. Different rules
can be applied to the game, which correspond to different dialogue types, e.g.
persuasion, negotiation, enquiry [25]. For example, a persuasion dialogue begins
with an assertion and ends when the proponent withdraws the claim or the oppo-
nent concedes the claim. A framework which permits different kinds of dialogue
games, and also meta-dialogues is outlined in [19].

There is an additional problem of verification of the BDI model, which we
term the concurrency verification problem. A system constructed using the BDI
model defines a complex concurrent system of communicating agents. Concur-
rency introduces non-determinism into the system which gives rise to a large
number of potential problems, such as synchronisation, fairness, and deadlocks.
It is difficult, even for an experienced designer, to obtain a good intuition for
the behaviour of a concurrent protocol, primarily due to the large number of
possible interleavings which can occur. Traditional debugging and simulation
techniques cannot readily explore all of the possible behaviours of such systems,
and therefore significant problems can remain undiscovered. The detection of
problems in these systems is typically accomplished through the use of formal
verification techniques such as theorem proving and model checking.

In order to address the concurrency verification problem, a number of at-
tempts have been made to apply model checking to models of BDI agents [3,
28, 5]. The model checking technique is appealing as it is an automated process,
though it is limited to finite-state systems. A model checker normally performs
an exhaustive search of the state space of a system to determine if a partic-
ular property holds and, given sufficient resources, the procedure will always
terminate with a yes/no answer.

One of the main issues in the verification of software systems using model
checking techniques is the state-space explosion problem. The exhaustive nature
of model checking means that the state space can rapidly grow beyond the avail-
able resources as the size of the model increases. Thus, in order to successfully
check a system it is necessary that the model is as small as possible. However, it
is a fundamental concept of the BDI model that communicative acts are gener-
ated by agents in order to satisfy their intentions. Therefore, in order to model
check BDI agents we must represent both rational and communicative processes
in the model. This problem has affected previous attempts to model-check multi-
agent systems e.g. [28], which use the BDI model as the basis for the verification
process, limiting the applicability to very small agent models.

In this paper we do not adopt a specific semantics of rational agency, or
define a fixed model of interaction between agents. Our belief is that in a truly
heterogeneous agent system we cannot constrain the agents to any particular
model. For example, web-services [4] are rapidly becoming an attractive alterna-
tive to BDI-based MAS. Instead, we define a model of dialogue which separates
the rational process and interactions from the actual dialogue itself. This is ac-
complished through the adoption of a dialogue protocol which exists at a layer
between these processes. This approach has been adopted in the Conversation
Policy [13] and Electronic Institutions [10] formalisms, among others. The def-
inition presented in this paper differs in that dialogue protocol specifications
can be directly executed. We define a lightweight language of Multi-Agent dia-
logue Protocols (MAP) as an alternative to the state-chart [14] representation
of protocols. Our formalism allows the definition of infinite-state dialogues and
the mechanical processing of the resulting dialogue protocols. MAP protocols
contain only a representation of the communicative processes of the agents and
the resulting models are therefore significantly simpler.

Dialogue protocols specify complex concurrent and asynchronous patterns of
communication between agents. This approach does not suffer from the semantic
verification problem as the state of the dialogue is defined in the protocol itself,
and it is straightforward to verify that an agent is acting in accordance with the
protocol. Nonetheless, our experiences with defining dialogue protocols in MAP
have shown that it is a difficult task to define correct protocols, even for simple
dialogues. The problem is not related to the internal states of the agent, but
rather as a result of unexpected interactions between agents. For example, the
receipt of a stale bid may adversely affect an auction. In general, the prediction
of undesirable behaviour in our dialogue protocols is non trivial. Thus, the focus
of this paper if on the verification of dialogue protocols specified in MAP.

We use the SPIN model checker [15] to verify our MAP protocols, as we
have no desire to construct our own model checking system. The SPIN model
checker has been in development for many years and includes a large number of
techniques for improving the efficiency of the model checking, e.g. partial-order
reduction, state-compression, and on-the-fly verification. SPIN accepts design
specifications in its own language PROMELA (PROcess MEta-LAnguage), and
verifies correctness claims specified as Linear Temporal Logic (LTL) formula.
The verification of our dialogue protocols is achieved by a translation from the
MAP language to an abstract representation in PROMELA. We use this rep-
resentation in SPIN to check a number of properties of the protocols, such as
termination, liveness, and correctness. Our approach to translation is similar
to [5], though we are primarily interested in checking general properties of inter-
agent communication rather than specific BDI properties.

Our presentation in this paper is structured as follows: in Section 2 we define
the syntax of the Multi-Agent Protocol (MAP) language. In Section 3 we specify
the essential features of a translation from MAP to PROMELA which enables
us to perform model checking of our protocols, and discuss our initial model
checking results. We conclude in Section 4 with a discussion of future work.

2 The MAP Language

The MAP language is a lightweight dialogue protocol language which provides
a replacement for the state-chart representation of protocols found in Electronic
Institutions [10]. The underlying semantics of our language is derived from pro-
cess calculus. In particular MAP can be considered a heavily-sugared variant of
the Calculus of Communicating Systems (CCS) [20]. We have redefined the core
of the Electronic Institutions framework to provide an executable specification,
while retaining the concepts of scenes, and roles.

The division of agent dialogues into scenes is a key concept in our proto-
col language. A scene can be thought of as a bounded space in which a group
agents interact on a single task. The use of scenes divides a large protocol into
manageable chunks. For example, a negotiation scene may be part of a larger
marketplace institution. Scenes also add a measure of security to a protocol, in
that agents which are not relevant to the task are excluded from the scene. This
can prevent interference with the protocol and limits the number of exceptions
and special cases that must be considered in the design of the protocol. Addi-
tional security measures can also be introduced into a scene, such as placing
entry and exit conditions on the agents, though we do not deal with these here.
However, we assume that a scene places barrier conditions on the agents, such
that a scene cannot begin until all the agents are present, and the agents cannot
leave the scene until the dialogue is complete.

P i=n(r{MPT (Scene)
M ::=method(¢*)) = op (Method)
op =« (Action)
| opi1 then ops (Sequence)
| opi1 or ops (Choice)
| opi par op2 (Parallel)
| waitfor op: timeout ops (Iteration)
| call(op™) (Recursion)
o n=¢€ (No Action)
| v=pe") (Decision)
| M =>agent(¢*, ¢?) (Send)
| M <= agent(¢*, ¢?) (Receive)
M == p(¢p™) (Performative)
¢ s==_]al|lr]c|o (Terms)

Fig. 1. MAP Abstract Syntax.

The concept of an agent role is also central to our definition of a dialogue
protocol. Agents entering a scene assume a fixed role which persists until the

end of the scene. For example, a negotiation scene may involve agents with the
roles of buyer and seller. The protocol which the agent follows in a dialogue will
typically depend on the role of the agent. For example, an agent acting as a
seller will typically attempt to maximise profit and will act accordingly in the
negotiation. A role also identifies capabilities which the agent must provide. For
example, the buyer must have the capability to make buying decisions and to
purchase items. Capabilities are related to the rational processes of the agent
and are encapsulated by decision procedures in our definition.

The abstract syntax of MAP is presented in Figure 1. We have also defined a
corresponding concrete XML-based syntax for MAP which is used in our imple-
mentation. A scene protocol P is uniquely named n and defined as a (non-empty)
sequence of roles r, each of which define a set of methods M. Agents have a fixed
role for the duration of the protocol, and are individually identified by unique
names a. A method M can be considered a procedure where ¢(*) are the argu-
ments. The initial protocol for an agent is specified by setting ¢*) to be empty
(i.e. k = 0). Protocols are constructed from operations op which control the flow
of the protocol, and actions o which have side-effects, and can fail. The interface
between the protocol and the rational process of the agent is achieved through
the invocation of decision procedures p. Interaction between agents is performed
by the exchange of messages M which contain performatives p. Procedures and
performatives are parameterised by terms ¢, which are either variables v, agent
names a, role names 7, constants c, or wild-cards _. Variables are bound to
terms by unification which occurs in the invocation of procedures, the receipt of
messages, or through recursive calls.

REJECT(B, S) REJECT(S, B)

PROPOSE(B, S)

OFFER(S, B)

DELIBERATE DELIBERATE

PROPOSE(S, B)

ACCEPT(B, \ /CCEP’T(S, B)

ACCEPT

Fig. 2. Negotiation Protocol

We will now define a simple negotiation protocol, which will illustrate the
MAP language and act as an example for model-checking. Before we present
the definition of this protocol in MAP, we consider a state-based description of
the protocol, as shown in Figure 2. The state-based description is similar to a
specification of the protocol in the Electronic Institutions framework. It is worth
noting that MAP can also express protocols for which there is no finite-state
representation, e.g. protocols with parallel actions.

Our negotiation protocol is an attempt to simulate a standard bargaining
process between two parties (a buyer and a seller). We do not impose artificial
constraints, such as turns or rounds, on the participants in the protocol. The
negotiation begins with an offer from the seller to the buyer, which we denote
with the message OFFER(S, B). Upon receipt of the initial offer, the buyer en-
ters a deliberative state, in which a decision is required. The buyer can accept
or reject the offer in which case the protocol terminates. The buyer can also
make a proposal to the seller PROPOSE(B, S), e.g. an offer at a lower price. If
a proposal is made to the seller, then the seller enters a deliberative state. The
seller can in turn accept or reject the proposal, or make a counterproposal. If a
counterproposal is made, the buyer deliberates further. Thus, the negotiation is
effectively captured by a sequence of proposals and counter-proposals between
the buyer and the seller.

A definition of the negotiation protocol in MAP syntax is presented in Fig-
ure 3. For convenience, we distinguish between the different types of terms by
prefixing variables names with $, and role names with %. We define two roles:
%buyer and %seller. Each of these roles has three associated methods which
define the protocol states for the roles.

When exchanging messages through send and receive actions, a unification of
terms in the definition agent (¢!, ¢?) is performed, where ¢! is matched against
the agent name, and ¢ against the agent role. For example, when the buyer
receives the initial offer, in line 5 of the protocol, the terms will match any agent
whose role is a %seller, and $seller will be bound to the name of the seller.

The semantics of message passing corresponds to reliable, buffered, non-
blocking communication. Sending a message will succeed immediately if an agent
matches the definition, and the message M will be stored in a buffer on the recip-
ient. Receiving a message involves an additional unification step. The message
M supplied in the definition is treated as a template to be matched against any
message in the buffer. For example, in line 19 of the protocol, a message must
match accept ($sellvalue), and the variable $sellvalue will be bound to the
content of the message if the match is successful. Sending a message will fail
if no agent matches the supplied terms, and receiving a message will fail if no
message matches the message template.

The send and receive actions complete immediately and do not delay the
agent. For this reason, all of the receive actions are wrapped by waitfor loops
to avoid race conditions. For example, in line 18 the agent will loop until a
message is received. If this loop was not present the agent may fail to find
a response and the protocol would terminate prematurely. The advantage of

31

negotiatel[
%buyer{
method() =
waitfor
(offer($value) <= agent($seller, %seller) then
call(deliberate, $value, $seller))
timeout (e)

method(deliberate, $value, $seller) =
($newvalue = acceptOffer($value, $seller) then
accept($value) => agent($seller, ¥%seller))
or ($newvalue = counterPropose($value, $seller) then
propose ($newvalue) => agent($seller, %seller) then
call(wait, $newvalue))
or reject($value) => agent($seller, %seller)

method(wait, $value) =
waitfor
(accept($sellvalue) <= agent($seller, Y%seller)
or reject($oldvalue) <= agent($seller, %seller)
or (propose($newvalue) <= agent($seller, ’seller) then
call(deliberate, $newvalue, $seller)))
timeout (call(wait, $value))}

hseller{
method ()
$value = getValue() then
offer($value) => agent(_, %buyer) then
call(wait, $value)

method(wait, $value) =
waitfor
(accept($sellvalue) <= agent($buyer, Jbuyer)
or reject($oldvalue) <= agent($buyer, %buyer)
or (propose($newvalue) <= agent($buyer, %buyer) then
call(deliberate, $newvalue, $buyer)))
timeout (call(wait, $value))

method(deliberate, $value, $buyer) =
($newvalue = acceptOffer($value, $buyer) then
accept($value) => agent($buyer, %buyer))
or ($newvalue = counterPropose($value, $buyer) then
propose($newvalue) => agent($buyer, %buyer) then
call(wait, $newvalue))
or reject($value) => agent($buyer, ’buyer)}]

Fig. 3. MAP Negotiation Protocol.

non-blocking communication is that we can check for the receipt of a number
of different messages. For example, in lines 19, 20, and 21 the protocol, the
agent waits for either an accept, reject, or propose message respectively. The
waitfor loop includes a timeout condition which is triggered after a certain
interval has elapsed. The timeout is defined to restart the loop (in lines 23 and
37), though we could define an alternative behaviour, such as withdrawing from
the negotiation. Timeouts give us a measure of fault tolerance in the presence
of delays or failures.

At various points in the protocol, an agent is required to perform various
tasks, e.g. making a decision, or retrieving some information. This is achieved
through the use of decision procedures. As stated earlier, a decision procedure
provide an interface between the dialogue protocol and the rational processes of
the agent. In our language, a decision procedure p takes a number of terms as
arguments and returns a single result in a variable v. The actual implementation
of the decision procedure is external to the dialogue protocol. For example, the
acceptOffer decision procedure in line 31 of the dialogue refers to an external
decision procedure, which can be arbitrarily complex, e.g. based on reputation,
or according to some negotiation strategy.

The operations in the protocol are sequenced by the then operator which
evaluates op; followed by opo, unless op; involved an action which failed. The
failure of actions is handled by the or operator. This operator is defined such
that if op; fails, then ops is evaluated, otherwise ops is ignored. Our language
also includes a par operator which evaluates op; and ops in parallel. This is
useful when an agent is involved in more than one action simultaneously, though
we do not use this in our example.

External data is represented by constants c¢ in our language. We do not at-
tempt to assign types to this data, rather we leave the interpretation of this data
to the decision procedures. For example, in line 27 the starting value is returned
by the getValue procedure, and interpreted by the acceptOffer procedure in
line 10. Constants can therefore refer to complex data-types, e.g. currency, flat-
file data, XML documents.

It should be clear that MAP is a powerful language for expressing multi-
agent dialogues. It is important to note that MAP is only intended to express
protocols, and is not intended to be a general-purpose language for computation.
Therefore, the relative paucity of features, e.g. no user-defined data-types, is en-
tirely appropriate. Furthermore, MAP is designed to be a lightweight protocol
language and only a minimal set of operations has been provided. It is intended
that MAP protocols will be automatically generated, e.g. from a planning sys-
tem, or from visual tools such as ISLANDER [9].

A formal semantics for the MAP language has previously been presented
in [24], together with an encoding of an auction protocol. We have used our
language to specify a wide range of other protocols, including a range of popular
negotiation and auction protocols. We have also restated the semantics of the
FIPA-ACL performatives in MAP. Figure 4 gives a flavour of this transformation,
with a (simplified) encoding of the FIPA inform performative.

FIPA Semantics: < i, inform(j, @) >
_|B y

FP: Bi® A i(Bif;® V Uif;®)
RE: B;®
MAP Encoding: method (inform, $p, $i, $j) =

believe($i, $p) then

not (believe($i, bif($j, $p)) then
not(believe($i, uif ($j, $p)) then
inform(p) => agent($j, _) then
assert(believe, $j, $p)

Fig. 4. Encoding of FIPA inform Performative.

3 Model Checking MAP

The first step in the application of SPIN model checking to MAP protocols is
the construction of an appropriate system model. The underlying framework for
modelling in SPIN is the Kripke structure, though this is well hidden underneath
its own process meta-language PROMELA. SPIN translates the PROMELA lan-
guage into Kripke structures, through a (loose) mapping of processes to states
and channels to transitions. To generate the appropriate model for our MAP
protocols, we perform a a translation from the MAP language to an abstract
representation in PROMELA. Of particular importance in this translation is the
level of abstraction of the model on which the verification is performed. If the
level of abstraction is too low-level, the state space will be too large and ver-
ification will be impossible. For example, it would be possible to construct a
meta-interpreter for MAP protocols in PROMELA, but this would be unlikely to
yield a sufficiently compact representation. Conversely, if the level of abstraction
is too high then important issues will be obscured by the representation. Our
chosen method of representation is a syntax-directed translation of the MAP
protocols into PROMELA.

At an intuitive level there are a number of apparent similarities between MAP
and PROMELA. For example, both are based on the notion of asynchronous
sequential processes (or agents), and both assume that communication is per-
formed via message passing. These high-level similarities significantly simplify
the translation as we can translate MAP agents directly into PROMELA pro-
cesses and agent communication into message passing over buffered channels.
Nonetheless, the translation of the low-level details of MAP is not so straight-
forward as there are significant semantic differences in the execution behaviour
of the languages.

There are essentially three points of semantic mismatch between MAP and
PROMELA which we must address. The first of these concerns the order of ex-
ecution of the statements. In MAP, we assume a depth-first execution order,
while PROMELA is based on guarded commands [8]. The MAP language makes
use of unification for the invocation of decision procedures, for recursion, and in

message passing, while PROMELA has a call-by-value semantics. Furthermore,
MAP assumes that messages can be retrieved in an arbitrary order (by unifi-
cation), while PROMELA enforces a strict queue of messages. Finally, we must
consider how to represent MAP decision procedures in our specification. We will
now sketch how these semantic differences are handled in our translation system.

We cannot readily represent the MAP execution tree in PROMELA as the
language does not permit the definition of complex data structures. Our adopted
solution involves flattening the execution tree through the translations shown in
Figure 5. The templates shown are applied recursively, where T'(op) denotes
a further translation of the operation op. We use a reserved variable fail to
indicate whether a failure has occurred. This variable is tested on the execution
of then and or operations. If a failure occurs, we skip all of the intermediate
operations until an or node is encountered at which point the execution resumes.
In this way we simulate the essential behaviour of the depth-first algorithm.

MAP: op1 then ops 0p1 OT Op2
PROMELA: fail = false ; fail = false ;

T(op1) ; T(op1) ;

if if
(fail == false) -> 10 (fail == true) —>
T (op2) fail = false ; T'(op2)

:: else -> skip :: else -> skip
fi fi

Fig. 5. Control Flow Translation.

Pattern matching is an essential part of the MAP language as it is used
in method invocation, and in the exchange of messages. Pattern matching is
achieved through the unification of terms, which may bind variables to values.
As PROMELA does not support pattern matching, we must perform a match
compilation step in order to unfold the unification into a sequence of conditional
tests. We do not describe the match compilation further here as there are many
existing algorithms for performing this task.

We have previously stated that messages are stored in buffered channels in
PROMELA, and we define a separate message buffer for each agent. However, a
message buffer acts as a FIFO queue, and the messages must be retrieved in a
strict order from the front of the queue. By contrast, messages in MAP are re-
trieved by unification and any message in the queue may be returned as a result.
To simulate the required behaviour, we must remove all of the messages in the
queue in turn and compare them with the required message by unification. The
first message that is successfully matched is stored and the remaining messages
are returned to the queue. We note that it is not enough simply to examine all
the messages in the queue in-place, as we must also remove a matching message.

A remaining issue in the translation process is the treatment of decision
procedures, which are references to external rational processes. For example, in
our negotiation the buyer may make a counterproposal, expressed in line 12:
$newvalue = counterPropose($value, %seller). The separation of rational
processes from the communicative processes is a key feature in MAP. Nonethe-
less, the decision procedures are ultimately responsible for controlling the proto-
col and must be represented in some manner by our translation to PROMELA.
To address this issue we make the observation that the purpose of a decision
procedure is to make a yes/no decision. Similarly, the purpose of the model
checking process is to detect errors in the protocol and not in the decision pro-
cedures. Thus, based on these observations we can in principle replace a decision
procedure with any code that returns a yes/no decision. Furthermore, if this
code returns a non-deterministic decision, the exhaustive nature of the model
checking process will mean that all possible behaviours of the protocol will be
explored. In other words, the model checker will explore all consequences for the
protocol where the decision was yes, and where the decision was no.

Our translation of decision procedures into PROMELA is achieved by exploit-
ing the non-determinism of guarded commands in the language. The semantics
of guarded commands is such that if more than one guard is executable in a
given situation, a non-deterministic choice is made between the guards. There-
fore, the code fragment presented in Figure 6 can act as a suitable substitute
for the counterPropose decision procedure. The decision is marked as atomic
as this improves the efficiency of the model checking operation.

/* Decision: counterPropose */
atomic {
if
i1 true -> fail = true
:: true -> newvalue = PROC_COUNTERPROPOSE
fi }

o O WN =

Fig. 6. Translation of counterPropose Decision Procedure.

We have now sketched the essence of the translation from MAP to PROMELA.
There are a number of residual implementation issues, such as the implementa-
tion of parallel composition, but these can be readily represented in PROMELA.
The result of the translation is an specification of a protocol in PROMELA which
replicates the semantics of the protocol as defined in MAP.

Our initial model checking experiments with the SPIN model checker have
focused on the termination of MAP protocols. This is an important considera-
tion in the design of protocols, as we do not (normally) want to define scenes
that cannot conclude. Non-termination can occur as a result of many different
issues such as deadlocks, live-locks, infinite recursion, and message synchronisa-
tion errors. We also want to ensure that protocols do not simply terminate due

to failure within the protocol. The termination condition is the most straightfor-
ward to validate. Given that progress is a requirement in almost every concurrent
system, the SPIN model checker automatically verifies this property by default.
Every PROMELA process has one or more associated end states, which denote
the valid termination points. The final state of a process is implicitly an end
state. The termination condition states that every process eventually reaches a
valid end state. This can be expressed as the following LTL formula, where end1
is the end state for the first process, and end2 is the end state for the second
process, etc: O(O(endl A end2 A end3 A ---)). We append the PROMELA
code in Figure 7 to the end of each translated process. The test in line 2 will
block if a failure has occurred, and the process will be prevented from reaching
the end-state in line 3, i.e. the process will not terminate.

1 /% Check For Failure */
fail == false ;
3 end: skip

N

Fig. 7. Test for Protocol Failure.

One of the main pragmatic issues associated with model checking is producing
a state space that is sufficiently small to be checking with the available resources
(1GB memory in our case). Hence, it is frequently necessary to make a number
of simplifying assumptions in order to work within these limits. The negotiation
protocol which we have defined does not place any restriction on the length of the
deliberation process and is therefore in effect an infinite protocol. Model checking
is restricted to finite models, and therefore we must set a limit on the length of
the negotiation. We therefore set a limit of 50 cycles before the negotiation if
forced to terminate.

An issue that was uncovered in the verification of the negotiation protocol is
the treatment of certain decision procedures. Our protocol was designed under
the assumption that the getValue() procedure would always return a value to
be used as the starting value of the negotiation. However, our translation makes
no such assumption as it substitutes a non-deterministic choice for each decision
procedure. Therefore, the result is that if the getValue () procedure fails, then
the seller agent will terminate with a failure, and the buyer will timeout. The
issue with decision procedures was resolved by introducing a new type of pro-
cedure into the MAP language, corresponding to a simple procedure that does
not fail. We have found that it is often useful in the design of MAP protocols to
have simple procedures which perform basic tasks, such as recording or returning
values, and performing calculations. Amending the negotiation protocol with a
simple getValue () procedure resulted in a model which successfully passed the
model checking process.

4 Results and Conclusions

In this paper we have presented a novel language for representing Multi-Agent
Dialogue Protocols (MAP), and we have outlined a syntax-directed translation
from MAP into PROMELA for use in conjunction with the SPIN model checker.
Our translator has been applied to a number of protocols, including the nego-
tiation example in this paper. We were pleased to find that the model checking
process uncovered issues in these protocols which had remained hidden during
simulation. We believe that this is a significant achievement in the design of
reliable agent dialogue protocols. In contrast with existing approaches to model
checking MAS, our protocols remain acceptable in terms of memory and time
consumption. Furthermore, we verify the actual protocol that will be executed,
rather than an abstract version of the system.

Our MAP protocol language was designed to be independent of any partic-
ular model of rational agency. This makes the verification applicable to hetero-
geneous agent systems. Nonetheless, we recognise that the BDI model is still
of significant importance to the agent community. To address this issue, we are
currently defining a system which translates FIPA-ACL specifications into MAP
protocols. We believe this will allow us to overcome the problems of the BDI
model highlighted in the introduction, and will yield models that do not suffer
from state-space explosion.

The translation system which we have outlined in this paper is designed to
perform automatic checking of MAP protocols. This makes the system suitable
for use by non-experts who do not need to understand the model checking pro-
cess. However, this approach places restrictions on the kinds of properties of the
protocols that we can check. In our negotiation example, we can check that the
protocol terminates, but we cannot check for a particular outcome. This is a
result of our abstraction of decision procedures to non-deterministic entities.

Our current research is aimed at extending the range of properties of dialogue
protocols that can be checked with model checking. In order to check a greater
range of properties we must augment the PROMELA translation with additional
information about the protocol. This information, and the resulting properties
that we can check, are specific to the protocol under verification. We have been
able to verify protocol-specific properties with a hand-encoding of the decision
procedures as PROMELA macros, but this relies on a detailed knowledge of the
translation system. The provision of a general solution to the specification of
protocol-specific properties remains as further work.

References

1. J. L. Austin. How to Do Things With Words. Oxford University Press, Oxford,
UK, 1962.

2. F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA-compliant agent frame-
work. In Proceedings of the 1999 Conference on Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM’99), pages 97-108, London, UK, April
1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20

M. Benerecetti, F. Giunchiglia, and L. Serafini. Model Checking Multiagent Sys-
tems. Journal of Logic and Computation, 8(3):401-423, June 1998.

D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web Services Architecture. World-Wide-Web Consortium (W3C), August
2003. Available at: www.w3.org/TR/ws-arch/.

R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model Checking
AgentSpeak. In Proceedings of the Second International Joint Conference on Au-
tonomous Agents € Multiagent Systems (AAMAS), pages 409-416, Melbourne,
Australia, July 2003. ACM.

M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA, 1987.

P. R. Cohen and H. J. Levesque. Rational interaction as the basis for communica-
tion. Intentions in Communication, pages 221-256, 1990.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453-457, August 1975.

M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions
editor. In Proceedings of the First International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS), pages 1045-1052, Bologna, Italy, July
2002. ACM press.

M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos. On the Formal
Specification of Electronic Institutions. In Agent-mediated Electronic Commerce
(The European AgentLink Perspective), number 1991 in Lecture Notes in Artificial
Intelligence, pages 126-147, 2001.

R. A. Flores and R. C. Kremer. Bringing Coherence to Agent Conversations. In
Proceedings of Agent-Oriented Software Engineering (AOSE 2001), volume 2222
of Lecture Notes in Computer Science, pages 50-67, Montreal, Canada, January
2002. Springer-Verlag.

Foundation for Intelligent Physical Agents. Fipa specification part 2 - agent com-
munication language. Available at: www.fipa.org, April 1999.

M. Greaves, H. Holmback, and J. Bradshaw. What is a Conversation Policy? In
Proceedings of the Workshop on Specifying and Implementing Conversation Poli-
cies, Autonomous Agents ’99, Seattle, Washington, May 1999.

D. Harel. Statecharts: A Visual Formalism for Computer System. Science of
Computer Programming, 8(3):231-274, 1987.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison
Wesley, September 2003.

Y. Labrou and T. Finin. Comments on the specification for FIPA ’97 Agent Com-
munication Language. Available at: www.cs.umbc.edu/kqml/papers/, February
1997.

Y. Labrou and T. Finin. Semantics and conversations for an agent communica-
tion language. In Proceedings of the Flfteenth International Joint Conference of
Artificial Intelligence (IJCAI-97), pages 584-591, Nagoya, Japan, August 1997.
N. Maudet and B. Chaib-draa. Commitment-based and Dialogue-game based
Protocols—News Trends in Agent Communication Language. The Knowledge En-
gineering Review, 17(2):157-179, 2002.

P. McBurney and S. Parsons. Games that agents play: A formal framework for di-
alogues between autonomous agents. Journal of Logic, Language and Information,
11(3):315-334, 2002.

R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

21

22.

23.

24.

25.

26.
27.

28.

R. Patil, R. F. Fikes, P. F. Patel-Schneider, D. McKay, T. Finin, T. Gruber, and
R. Neches. The DARPA Knowledge Sharing Effort: Progress Report. In Bern-
hard Nebel, Charles Rich, and William Swartout, editors, KR’92. Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference, pages 777-788. Morgan Kaufmann, San Mateo, California, 1992.

A. S. Rao and M. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293-344, 1998.

M. P. Singh. Agent Communication Languages: Rethinking the Principles. IEEE
Computer, pages 40-47, December 1998.

C. Walton. Multi-Agent Dialogue Protocols. In Proceedings of the Eighth Inter-
national Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida, January 2004.

D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. SUNY Press, 1995.

M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

M. Wooldridge. Semantic issues in the verification of agent communication lan-
guages. Autonomous Agents and Multi-Agent Systems, 3(1):9-31, 2000.

M. Wooldridge, M. Fisher, M. P. Huget, and S. Parsons. Model Checking Multi-
agent systems with MABLE. In Proceedings of the First International Conference
on Autonomous Agents and Multiagent Systems (AAMAS-02), Bologna, Italy, July
2002.

