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Abstract

In this paper we present a technique which enables agents to participate in peer-to-peer (P2P)
systems, such as file-sharing networks. Our technique is founded on the definition of lightweight
protocols which specify the interactions required by the agent for a specific P2P network. The
protocols that we define are executable specifications and can be directly implemented and inde-
pendently verified. We present a definition of our MAP language for expressing protocols, and
show how it can be used to enable participation in a simple P2P file-sharing system.

1 Introduction

A peer-to-peer (P2P) architecture is one which allows autonomous peers of similar capabilities to
interact in a distributed and decentralised manner. The advantage of the P2P approach, over a
centralised client/server architecture, is that the network resources are effectively utilised. This in-
turn yields a more scalable and robust model of communication. P2P architectures have recently
gained significant popularity for the distribution and sharing of files over the Internet. However,
the potential scope for P2P techniques is much greater, and they can be effectively used in a
range of different domains, including the Semantic Web, Grid Computing, Database Systems, and
Multi-Agent Systems.

In many ways, P2P architectures are similar to Web-based Multi-Agent Systems (MAS). In
particular, there are many conceptual similarities between peers and agents [5, 8]. However, P2P
systems are generally assumed to involve very large numbers of participants, and require rapid
communication between the network nodes. Therefore, multi-agent techniques which rely on un-
decidable reasoning, or lengthy theorem-proving operations are unsuitable for use in P2P systems.
Instead, P2P systems rely on decidable and practical reasoning techniques which can be straight-
forwardly utilised by distributed peers. This eliminates many agent-oriented techniques from use in
P2P systems, e.g. BDI reasoning, or run-time planning operations. However, many of the techniques
for inter-operability and coordination within MAS are applicable and can be usefully employed in
P2P architectures. It is our belief that there are significant benefits that can be realised by using
MAS techniques in-tandem with P2P networks. We list four potential advantages below:

1. A P2P network can provide a platform on which to implement a MAS. The network is used
as a facility for inter-agent communication.

2. A P2P network can act as a place from which agents can store and retrieve knowledge. The
network is used as a knowledge base for one or more agents.

3. A P2P network can supply an agent or a group of agents with information. The network
provides the environment in which the agents can execute.

4. An agent or group of agents can act as a bridge between different P2P networks.
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To realise these benefits it is necessary for an agent to be able to act as either a client for a P2P
network, or as a node which is fully part of the network.

One of the consequences of the rapid proliferation of P2P networks is that there are many
competing standards and architectures. In particular, new techniques are frequently proposed to
overcome architectural limitations, e.g. scalability issues, and structural compromises, e.g. loss of
anonymity. These rapid changes make its difficult to design agents which can inter-operate with
P2P networks reliably over a period of time. Typically, we would have to re-engineer our agents as
new standards are developed, and produce specialised versions of our agents to operate on different
networks. This situation is illustrated in Figure 1.
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Figure 1: Multiple P2P Architectures.

From our preceding discussion, we would ideally like to engineer agents that can inter-operate
with many different P2P networks, and thereby fully realise the benefits of the P2P approach that
we have highlighted. However, in order to provide this level of inter-operability, we need to abstract
away from any specific technology and define techniques that are applicable in general. Fortunately
there are two key observations that can assist us in this task:

1. Most P2P networks are fundamentally the same at an abstract level. That is, P2P networks
are generally a means to route information from one peer to another in a decentralised manner.

2. There is no conceptual difference between inter-agent communication, and communication
between an agent and a P2P network. That is, in both cases there are specific rules that need
to be followed, and underlying assumptions that must be obeyed.

These observations help us in the following ways. Firstly, we can identify common operations which
can be used to describe P2P interactions at an abstract level. Secondly, we can utilise existing agent
inter-operability techniques to interact with P2P networks.

The approach that we take in this paper is to define protocols which specify how to interact
with a specific P2P network. These protocols define the rules of the network as a sequence of
steps that the agent must follow. This approach is similar to the definition of social norms for
agent communication in Electronic Institutions [1] and Conversation Policy [2]. The difference in
our approach is that our specifications are directly executable by the agents, and our protocols are
defined in terms of common P2P operations. Thus, and agent can interact with a new P2P network
simply by obtaining a protocol specification for the network.

Our protocol language is defined as a lightweight formalism which specifies only the essential
features of the communication process. This work is directly adapted from our previous work on
interaction protocols in Multi-Agent Systems [12, 10]. However, the application to P2P networks in
this paper is new. The focus of the paper is on the definition of the Multi-Agent Protocols (MAP)
formalism for the realisation of interaction between agents in a P2P architecture. We present a
script-based representation for the interaction between agents, which is lightweight and verifiable.
Our approach has some similarities to the work in [6] which defines a formalism based on petri-nets
for coordinating BDI agents in a P2P architecture. However, our approach is based on process
calculus [3], and is not restricted to one specific model of agency.

Our presentation in this paper is structured as follows. In section 2 we define the MAP language
for specifying an enacting protocols. To demonstrate the key features of the language, we present
the specification of an example P2P file-sharing protocol in Section 3. Lastly, we conclude in
Section 4 with a discussion of our future work.



2 MAP Language Definition

The MAP protocol language which we present here is a lightweight protocol language derived
from process calculus, specifically the π calculus [4]. MAP is also derived from our previous work
on multi-agent protocols, and thus we will use the terms peer and agent interchangeably. For
convenience, we make the assumption that the internals of the agents are defined as a set of
decision procedures, which we represent as a service. That is, we can describe our agents as a
service-oriented architecture (SOA), with a specific interface for each agent.

MAP protocols can be viewed as executable specifications, and we have defined an execution
framework for MAP, called MagentA [11]. Two key concepts in MAP are the division of protocols
into scenes, and the assignment of roles to the peers. A scene can be thought of as a bounded
space in which a group peers interact on a single task. Thus, a scene divides a large protocol
into manageable parts. Scenes also add a measure of security to a protocol, in that peers which
are not relevant to the protocol are excluded from the scene. This can prevent interference with
the protocol and limits the number of exceptions and special cases that must be considered in the
design of the protocol. We assume that a scene places a barrier on the peers, such that a scene
cannot begin until all the peers have been instantiated.

The concept of a role is also central to our definition. In MAP, each peer is identified by both
a name and a role. Peers are uniquely named, but must be assigned a role which is specified in
the protocol. The role of an peer is fixed until the end of a scene, and determines which parts of
the protocol the peer will follow. Peers can share the same role, which defines them as having the
same capabilities, i.e. the same interface. Roles are useful for grouping similar peers together, as
we do not have to specify a completely separate protocol for each individual. For example, we may
wish to interact with a large number of peers, all with the same interface. We can simply define
a single role (and associated protocol) which corresponds to the interface, rather than defining a
separate protocol for each peer. Roles also allow us to specify multi-cast communication in MAP.
For example, we can broadcast messages to all peers of a specific role.

We note that MAP is only intended to express protocols, and is not intended to be a general-
purpose programming language. Therefore, the relative lack of features for performing computation
is appropriate. Furthermore, MAP is designed to be a lightweight language and only a minimal
set of operations have been included. It is intended that MAP protocols will be automatically
generated, e.g. from a planning system. Thus, although MAP protocols appear complex, they
would not generally be constructed by hand.

P ∈ Protocol ::= n(r{M})+ (Scene)

M ∈ Method ::= method m(φ(k)) = op (Method)

op ∈ Operation ::= α (Action)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| waitfor op1 timeout op2 (Iteration)

| call m(φ(k)) (Recursion)

α ∈ Action ::= ε (No Action)

| φk = p(φl) fault φm (Procedure)

| ρ(φ(k)) => agent(φ1, φ2) (Send)

| ρ(φ(k)) <= agent(φ1, φ2) (Receive)

φ ∈ Term ::= _ | a | r | c : τ | v : τ

τ ∈ Type ::= utype | atype | rtype | tname

Figure 2: MAP Abstract Syntax.

We will now define the abstract syntax of MAP, which is presented in Figure 2 (BNF notation).
We have also defined a corresponding concrete XML-based syntax for MAP which is used in our
MagentA implementation. However, we restrict our attention in this paper to the abstract syntax
for readability. A protocol P is uniquely named n and defined as a set of roles r, each of which
defines a set of methods M. A method m takes a list of terms φ(k) as arguments (the initial



method is named main). Agents (i.e. peers) have a fixed role r for the duration of the protocol,
and are individually identified by unique names a. Protocols are constructed from operations op

which control the flow of the protocol, and actions α which have side-effects and can fail. Failure
of actions causes backtracking in the protocol.

The interface between the protocol and the service which defines its behaviour, is achieved
through the invocation of procedures p. A procedure is parameterised by three sequences of terms.
The input terms φl are the input parameters to the procedure, and the output terms φk are the
output parameters, i.e. results, from the procedure. A procedure may also raise an exception in
which case the fault terms φm are bound to the exception parameters, and backtracking occurs
in the protocol. Interaction between agents is performed by the exchange of messages which are
defined by performatives ρ, i.e. message types. The parameters to procedures and performatives
are terms φ, which are either variables v, agent names a, role names r, constants c, or wild-cards _.
Literal data is represented by constants c in our language, which can be complex data-types, e.g.
currency, flat-file data, multimedia, or XML documents. Variables are bound to terms by unification
which occurs in the invocation of procedures, the receipt of messages, or through recursive method
invocations. Constants and variables are assigned explicit types τ to ensure that they are treated
consistently. We have previously presented a formal semantics of the MAP language in [10].

3 Gnutella Example

It is helpful to consider an example scenario in order to obtain an understanding of the MAP
language and its application to P2P networks. The model that we describe is based on the Gnutella
file sharing protocol. This protocol defines a completely decentralised method of file sharing, and
its implementation is very straightforward. The Gnutella system assumes a distributed network
of nodes, i.e. computers, that are willing to share files on the network. The protocol is defined
with respect to our own node on the network, which we call the client. There are just three main
operations performed by a client in the Gnutella protocol:

1. In order to participate in file sharing it is necessary to locate at least one other active node
in the Gnutella network. There are a variety of ways in which this can be accomplished. The
most common way is to contact one of more Gwebcache servers which which contain lists
of recently active nodes. The Gnutella software is usually pre-configured with the addresses
of a large number of these servers. However, it is not enough simply to know about other
nodes, as there are no guarantees that these nodes will still be active. Therefore, the client
will initiate a simple ping/pong protocol with each node in the list until a certain quota of
active nodes have been located. This protocol simply sends a message (ping) to each node
in the list, and waits for a certain period of time until a reply message (pong) is received,
indicating that the node is still active.

2. Once a list of active nodes has been obtained, it is possible to perform a search for a particular
file. Gnutella uses a query flooding protocol to locate files on the network. The client sends
the file request (query) to every node on its active list. If one of the nodes has a copy of the
requested file, then it sends back a reply message (hit) to the client. If the node does not
have the file, then the request is forwarded to all of the active nodes on its own list, and so
on. The query will eventually propagate to all of the nodes on the network, and the reply
will be returned to the client.

3. If the file is successfully located by the query protocol, then then client simply contacts the
destination node directly and initiates the download. If more than one copy is located, the
client may download fragments of the file from different locations simultaneously and thereby
improve download performance.

The Gnutella ping/pong and query/hit protocols are illustrated in Figure 3. It should be noted
that the basic query flooding protocol, as outlined here, is very inefficient in operation and a search
will typically take a long time to complete. The number of messages required is exponential in the
depth of the search. This behaviour is tolerated as the network traffic generated by the queries
is very small, compared to the bandwidth required to transfer the file itself. A variety of caching
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Figure 3: Query-flooding Protocol.

strategies have been proposed to improve the speed of the search, though we only consider the basic
protocol here.

We can readily express the Gnutella protocol in MAP. The agents follow the protocol to
determine the actions that must be performed by the nodes to retrieve a particular file. The
encoding is presented in Figure 5 for the file-sharing nodes, and Figure 4 for an external client.
We distinguish between the different types of terms by prefixing variables names with $, and role
names with %. We use type abbreviations a for an agent, r for role, and alist for a list of agents.

1 %client{

2 method main() =

3 $node:id = getStartNode() then

4 $fname:string = getQuery() then

5 query($fname:string) => agent($node:a, %node) then

6 waitfor (hit($fname:string, $hitid:a) <= agent($name:a, $role:r))

7 then download($fname:string) => agent($hitid:a, %node) then

8 waitfor (filereply($file:file) <= agent($hitid:a, %node))}

Figure 4: MAP encoding of a P2P client.

The protocol for a node, shown in Figure 5, proceeds as follows. Upon initialisation (line 3), a list
of neighbouring nodes is obtained, and a ping message is sent to all of these nodes in turn (lines 5-8).
The node then enters a responsive state where is listens for incoming messages, and acts according
to the message type. An incoming ping message results in an outgoing pong message (line 11). An
incoming pong message is recorded in the list of active nodes (line 12). An incoming query results
in an outgoing hit message if the node has a copy of the file (lines 13-15), or the query is forwarded
to all of the neighbouring nodes (lines 16-18). An incoming hit message (from a neighbour) is
forwarded to the initial requester of the query (lines 19-21). Finally, a download request message
results in an outgoing message containing a copy of the file (lines 22-24). The protocol repeats after
each message (line 25). For brevity, the sendquery and sendhits methods have been omitted as
they have a similar definition to the sendping method. The procedures startSharing, addActive,
getActiveNodes, recordQuery, getQueryList, and getFile are internal to the peer. We assume
that these are standard P2P operations that the peer can provide. The client protocol shown in
Figure 4 interacts directly with the node protocol that we have defined. A client obtains a node on
the network (line 3), and constructs a query (line 4). The query is forwarded to the node (line 5),
and the client waits for a hit message to be returned (line 6). A download is then initiated from
the node which has a copy of the file (lines 7-8).

Our MAP protocols are clearly a straightforward implementation of the required functionality.
However, there are some subtle issues that require further explanation. The operations in the
protocol are sequenced by the then operator which evaluates op1 followed by op2, unless op1 involved
an action which failed. The failure of actions is handled by the or operator. This operator is



1 %node{

2 method main() =

3 $id:a = getId() then startSharing($id:a) then $nodes:alist = getNodes() then

4 (call sendping($nodes:alist) or call mainloop($id:a))

5 method sendping($nodes:alist) =

6 $head:a = Head($nodes:alist) fault nohead then

7 $tail:alist = Tail($nodes:alist) fault notail then

8 ping() => agent($head:a, %node) then call sendping($tail:alist)

9 method mainloop($id:a) =

10 waitfor

11 ((ping() <= agent($n:a, %node) then pong() => agent($n:a, %node))

12 or ((pong() <= agent($n:a, $role:r) then addActive($n:a, $role:r))

13 or ((query($f:string) <= agent($n:a, $r:r) then

14 ($fl:file = getFile($f:string) fault nofile then

15 hit($f:string, $id:a) => agent($n:a, $r:r))

16 or (setQuery($f:string, $n:a, $r:r) then

17 $nodes:alist = getActiveNodes() then

18 call sendquery($f:string, $nodes:alist)))

19 or ((hit($f:string, $hid:a) <= agent($n:a, %node) then

20 $nodes:alist = getQueryList($f:string) then

21 call sendhits($f:string, $hid:a, $nodes:alist))

22 or (download($f:string) <= agent($client:a, %client) then

23 $fl:file = getFile($f:string) fault nofile then

24 file($fl:file) => agent($client:a, %client))))))

25 then call mainloop($id:a)}

Figure 5: MAP encoding of a P2P node.

defined such that if op1 fails, then op2 is evaluated, otherwise op2 is ignored. The language includes
backtracking, such that the execution will backtrack to the nearest or operator when a failure
occurs. Similarly, the body of a waitfor loop will be repeatedly executed upon failure, and the
loop will terminate when the body succeeds.

The semantics of message passing in MAP corresponds to non-blocking, reliable, and buffered
communication. Sending a message will succeed immediately if an agent matches the definition, and
the message will be stored in a buffer on the recipient. When exchanging messages through send
and receive actions, a unification of terms against the definition agent(φ1, φ2) is performed, where
φ1 is matched against the agent name, and φ2 is matched against the agent role. For example,
the receipt of the ping message in line 11 of the node protocol will match any agent whose role
is %node, and the name of this node will be bound to the variable $n. In this definition, a client
is not permitted to send a ping message to a node. Although not illustrated in this example, we
can use a wild-card _ to send a message to all agents regardless of their role. The advantage of
non-blocking communication is that we can check for a number of different messages at the same
time. Race conditions are avoided by wrapping all receive actions by waitfor loops. A waitfor

loop can also include a timeout condition which is triggered after a certain interval has elapsed.
To illustrate the execution of the MAP P2P protocol, we define an example file sharing network

in Figure 6. The network is composed from six individual nodes, labelled a1 though a6, where a1
is the client. Each node is only aware of those directly connected in the graph, for example, a1
is aware only of a2 and a3, and a5 is only aware of a6. There is one file f1 which is contained
on nodes a4 and a5. However, node a4 is currently off-line, i.e. unavailable. In this example, the
intention of node a1 is to retrieve file f1. The sequence of interactions between nodes a1, a3, and
a5 are shown in MAP syntax. For brevity, we have omitted the initial ping/pong process. Also,
we only show the message exchanges between the nodes. The sequence of steps illustrates how the
query is propagated from node a1 to node a5, and how the file download is performed.
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Agent a1:
query(f1) => agent(a2, %node) then

query(f1) => agent(a3, %node) then

hit(f1, a5) <= agent(a3, %node) then

download(f1) => agent(a5, %node) then

filereply(f1) <= agent(a5, %node)

Agent a3:
query(f1) <= agent(a1, %client) then

query(f1) => agent(a4, %node) then

query(f1) => agent(a5, %node) then

hit(f1, a5) <= agent(a5, %node) then

hit(f1, a5) => agent(a1, %client)

Agent a5:
query(f1) <= agent(a3, %node) then

hit(f1, a5) => agent(a3, %node) then

download(f1) <= agent(a1, %client) then

filereply(f1) => agent(a1, %client)

Figure 6: Example P2P Network.

4 Conclusion

The purpose of this paper is to demonstrate that we can use protocols to allow agents to participate
in P2P networks. In doing so, we enable our agents to realise the scalability and robustness benefits
of these networks. Our approach is independent of any specific P2P technology, and thus we can
construct agent which can interact with a range of different P2P networks without a difficult re-
engineering process. Our technique is founded on MAP, which is a formally-defined and executable
protocol language. MAP permits us to define the essential interactions with a P2P network in terms
of common operations and communication patterns. Thus, all that an agent needs to interact with a
new P2P network is an appropriate protocol specification. The agent can retrieve this specification
and immediately participate in the network. The separation of the protocol from the agent also
permits protocols to be externally verified, e.g. to ensure fairness and to eliminate deadlocks. We
have previously shown how this can be accomplished by using model checking [9].

At the present time, the protocols must be constructed by hand. We acknowledge that this can
be a difficult and time-consuming process, and therefore we are currently considering a number
of approaches which will permit protocols to be constructed in a more efficient and/or automated
manner. The most straightforward approach is the provision of a graphical tool for constructing
protocols. Beyond this, we would like to support the automatic generation of protocols. We have
made some initial progress into the construction of protocols as an outcome of a plan synthesis
process. This process may also be used to synthesis new P2P protocols. We are also considering
extending the MAP language with features that would make it more suited to P2P architectures,
such as those based on Distributed Hash Tables (DHT) [7]. These enhancements include explicit
support for different message communication patterns, improved fault-tolerance mechanisms, and
additional data-types.



References
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