
AKTive Workgroup Builder: Semantic Web

Instance Data Reasoning

Craig McKenzie, Alun Preece, and Peter Gray

Department of Computing Science,
University of Aberdeen

Aberdeen AB24 3UE, UK
{cmckenzie,apreece,pgray}@csd.abdn.ac.uk

Abstract. Our interest lies in exploring the interplay between onto-
logical and rule based reasoning with instance data when applied to
Constraint Satisfaction Problem (CSP) solving. The AKTive Workgroup
Builder (AWB) is a Semantic Web application developed to help us
achieve this aim. We share our experiences of developing the AWB –
how the current technologies can influence the usability and design of
such an application – and describe our approach to reasoning using both
ontological and rule based methods. We show how these rules can be rep-
resented using the Semantic Web Rule Language (SWRL). Constraints
are then expressed against the semantic data using our Constraint Inter-
change Format (CIF) combined with SWRL to form a fully quantified
constraint representation CIF/SWRL. Finally, the problem specific con-
straints and the reasoned domain knowledge are then bundled together
into a CSP which the AWB attempts to solve, returning the solution (if
there is one) to the user.

1 Introduction & Motivation

As more and more semantically marked up information becomes available, the
majority of Semantic Web (SW) applications tend to offer some form of query
or navigation service. In line with the vision that the Logic Layer of the SW
architecture means not only the use of logic to enrich data but also the appli-
cation of logic to ‘do something’ with the data [3], we required a tangible, SW
problem that incorporates all these elements. Since our interest lies in investi-
gating reasoning with SW instance data and applying it to a constraint based
problem – specifically, the interplay of ontological inference and rule based rea-
soning along with (finite domain) constraint solving – it seem fitting to apply
this to a construction/configuration problem. An interesting starting domain
was with the context of the CS AKTive Space1 [6], namely the Computing Sci-
ence (CS) community in the UK. Our demo application, the AKTive Workgroup
Builder (AWB), attempts to construct a workshop, containing one or more work-
ing groups of people from a pool of known individuals, that adheres to a set of

1 http://cs.aktivespace.org



user defined constraints. The pool of individuals is created dynamically based
upon semantically marked-up information from known, distributed data sources,
where the quality (and completeness) is not guaranteed (discussed later).

In this paper, we start by describing the architecture of the AWB and then
discuss the factors that influenced the application’s design. Initially, we did not
foresee the need for using rule based reasoning – we assumed that ontological
based reasoning alone would be adequate – however, as our work progressed it
became apparent that deriving new information through rules is an extremely
important and powerful asset. For this we describe our use of the current pro-
posal of the Semantic Web Rule Language2 (SWRL) to express these logic based
derivation rules. We then demonstrate how remapping these rules into another
form allows their application to our dataset.

To facilitate this, we argue for the importance of not only making available
semantic constraint information [2] but also the ability to express this in a fully
quantified and natural manner. Building on our previous work with our Con-
straint Interchange Format (CIF) [4] we demonstrate how this can be achieved
using CIF/SWRL3, an extension of SWRL with our RDF compatible encoding
of CIF [5]. Derivation rules and constraints belonging to the data can be con-
sidered not only as important descriptors of that data but also as indicators of
how to use or validate the data.

We conclude with a discussion of our findings and comment on the direction
of our future work.

2 Building Workgroups

The AWB attempts to solve the problem of assembling one or more workgroups
from a pool of known people. A workgroup is simply a solution set of individ-
uals whose membership satisfies all the constraints applied to it to restrict its
formation. A user constructs a workgroup by following these steps (see figure 1):

1. Information about the pool of people to be considered is gathered from
relevant datasource(s);

2. Quantified constraints are specified by the user about the composition of the
workgroup(s), e.g. minimum and maximum size, the focus, etc.;

3. Reasoning is performed against the data to determine eligibility, e.g. does a
person have the relevant research interests and can those interests be deter-
mined if not explicitly stated?

4. Finally, the constraint satisfaction problem is built and then passed on to
a solver that attempts to compose workgroup(s) that satisfy the stipulated
constraints.

Implemented as a Java Server Pages application, the AWB uses Jena4 to manage
the RDF processing and some of the reasoning, with SICStus Prolog being used
for the Finite Domain (FD) Constraint Satisfaction Problem (CSP) solving.

2 http://www.w3.org/Submission/SWRL/
3 http://www.csd.abdn.ac.uk/research/akt/cif/
4 http://jena.sourceforge.net



Fig. 1. Steps involved in workgoup building, using the AWB.

The RDF data processed by the AWB contains, among other things, infor-
mation about each individual’s research interests, publications and projects they
have been involved in. The detail of this information will vary depending upon
what is published by a particular data source. This information will then be
reasoned against to infer additional facts about the individuals that may not
have been explicitly stated - for example projects that they have worked on or
papers that they have published can imply additional research interests.

When building a workgroup, the user of the application specifies explicit con-
straints pertaining to the nature of the workgroup (for example, the workgroup
has the focus of “Machine Learning” and cannot contain more than 10 persons).
In addition to these, there are further implicit constraints that are also applied
(for example, a workgroup must contain at least two people and a person can
only be a member of one workgroup at a time).

The data and its associated constraints are passed on to a constraint solver
(Prolog) so that a suitable workgroup (or workgroups) can be composed satisfy-
ing all these specified constraints. Once a solution has (or has not) been reached,
the user will be presented with the proposed members of the workgroup(s) or
informed that no solution can be found.

The time taken to gather information and perform reasoning falls outwith
the time deemed as acceptable to serve a Web page in real-time. To overcome
this hurdle, the application was designed to create a pre-reasoned triple-cache



stored in a MySQL5 backend database, populated prior to workgroup building.
We recognise that this is not ideal, especially because a single point for serv-
ing what was previously distributed data can cause problems. Data ageing is
an important consideration, so we store provenance information describing the
originating source and the date when the ‘snapshot’ was taken.

This forced the user interface to be split into two functional parts - an admin
aspect where the database information is constructed and maintained, and a
build aspect that allows the user to specify which database model to utilise as
well as the workgroup composition constraints before composing the CSP and
then starting the solver process.

Unfortunately, both the cache creation and the workgroup building are a
heavy burden on the system resources (monopolising the CPU and easily taking
upwards of 20 minutes depending upon how heavily constrained the workgroups
are), so the implementation of a ‘call back’ mechanism was necessary. This al-
lows the user to start a process running and has the option of continuously
monitoring progress, or ‘forgetting about it’ and checking their user messages
for progress/completion information later on.

3 Reasoning with Instances

Utilising SW data has the fundamental problem of locating a datasource and
ensuring that the provided information is usable in practical reasoning. Initially
we had planned to access the CS AKTive Space repository directly, however the
information contained within it is against the AKT Portal ontology, which is
OWL Full, and since there is a lack of OWL Full reasoning support (as well as
it having no guarantee of decidability), we were forced to transform the AKT
Portal ontology to remove the OWL Full constructs.

The major part of the AKT Portal ontology was OWL Lite, and we began
by isolating the portion of this supported by the reasoner in HP’s Jena toolkit
(which we intended to use for RDF manipulation and reasoning). The changes
to the ontology definitions were relatively minor, mostly weakening to adhere to
OWL Lite; for example, <owl:oneOf> and <owl:unionOf> are not supported.
We also made some pragmatic changes to the ontology; a flattening of the hier-
archy tree and a simplification of the publication related branch of the taxonomy
- an issue recognised by the CS AKTive Space project and commented upon in
their paper [1].

The data contained within the CS AKTive Space repository was scraped from
HTML pages with other information being hand crafted RDF. This has resulted
in the content of the repository being incomplete and containing errors, contra-
dictions and duplications. The sheer scale of the amassed data causes provenance
and trust issues which we decided to avoid tackling at this stage – meaning we
required a ‘tidy’ dataset based on the existing information. In our early experi-
ments the sheer volume of data (10M+ triples) also impeded our progress – due

5 See: http://www.mysql.com



mainly to the reasoning time. Therefore, as a starting point we used a subset
of manually, cleaned-up data that was manageable, yet still realistic, and also
ensured tractable reasoning. This set only covers the individuals involved in the
Advanced Knowledge Technologies (AKT) project.

This ‘sandbox’ enabled us to make several assumptions about the environ-
ment we are working in and focus primarily on the interplay between rules,
constraints and instance based reasoning rather than fire-fighting data and/or
ontological reconciliation issues. Ontological reasoning involves generating new
facts based upon the properties and class hierarchy within the ontology. There-
fore, we assume that the underlying ontology is consistent and well formed and
that the associated instance data is valid (i.e. does not contain contradictions)
and any equivalences are explicitly stated.

In building the cache, we effectively pre-compute all RDF(S) types based on
the facts and asserted rules we have (because OWL Lite is decidable) and the
derivation rules assert ‘safe’ factual information. We believe that this is possible
because we only have a finite domain of instance data.

4 Derivation Rules

Although a reasoner can derive additional ontological entailments, based upon
property and class hierarchies, sometimes it is necessary to infer pertinent in-
formation that cannot be determined otherwise, hence the need for derivation
rules.

SWRL is used to state these rules, since it is based upon OWL Lite and DL
and therefore has close ties to the underlying ontology. It allows Horn clauses to
be asserted about the semantic data to create implications which we use to en-
code our derivation rules (making them available along with the data). We utilise
these to create new facts based on the instance data. For example, consider the
following rule, used to determine the hasBaseLocn property: “If a person has
an affiliation with a university and that university has a postal address of a city,
then this implies that the person has a base location of the same city where the
university is located.” In informal SWRL syntax, where ?x denotes a variable,
this can be written as:

Person(?p) ∧ University(?u) ∧ hasAffiliation(?p,?u) ∧

hasAddress(?u,?c) ∧ City(?c) ⇒ hasBaseLocn(?p,?c)

In the AWB we have the option of adopting two different approaches to gener-
ating the derived rules. The first method is the greedy approach, where as many
entailments are derived as possible (forward-chaining). One possible implementa-
tion of this ‘brute force’ method involves mapping the rules into RDQL queries,
the results of which are added back into the knowledge base. For example, using
the same hasBaseLocn derivation rule we can create the following query, where
rdf is the RDF namespace, and ont is the appropriate ontology namespace:

SELECT ?person, ?city



WHERE (?person, <rdf:type>, <ont:Person>),

(?uni, <rdf:type>, <ont:University>),

(?person, <ont:hasAffiliation>, ?uni),

(?uni, <ont:hasAddress>, ?addr),

(?addr, <rdf:type>, <ont:City>)

The result set of this query contains value pairs of Person URI and City URI
which could easily be asserted into the datastore as a new triple:

?person <ont:hasBaseLocn> ?city .

Since we could be applying multiple rules, this is an iterative process, with the
entire sequence repeated until no new entailments are generated. This (rather in-
efficient) repetition is necessary as the interdependency of multiple rules cannot
easily be determined. This has the disadvantage of having to perform unneces-
sary processing, but subsequent queries are faster as the facts now exist in the
knowledge base and do not have to be recalculated in future.

The second method could be thought of as lazy derivation where only those
entailments that are required to be generated are used (backward-chaining) and,
hence, is quite efficient. The AWB implements this by translating the rules into
Prolog and passing them, along with the data, onto the CSP solver. This ap-
proach means that no unnecessary processing is performed and dependencies
are handled easily within Prolog. This method would be far more preferable
in future when the overall reasoning time drops and optimisation is important.
The disadvantage of this is that the rules are fired for each new instance of the
CSP. To overcome this, it is necessary to extract the newly derived facts (in this
case, any newly discovered base locations) back from the CSP solver in order to
update the database cache after the solution space has been searched.

5 Semantic Web Constraints

A gap exists in the Logic layer of the SW because there is currently no standard
method for expressing fully quantified constraints against semantic data in a
natural manner [5]. In the context of the AWB this means being able to pass
user specified constraint information relating to the construction of a particular
workgroup or all workgroups. Such a representation is important because it
allows constraint information to be made available along with the data itself
– potentially allowing a partially solved problem to be passed onto a solver or
providing provenance information about how a solution is constrained.

Unfortunately, when we started work the original SWRL proposal was lim-
ited in that fully quantified constraints could not be expressed6, therefore we
elected to extend SWRL with our Constraint Interchange Format[4] (CIF) in
order to achieve this. The CIF representation is based on range restricted First

6 The SWRL-FOL W3C Member Submission introduces quantifiers but is still under
discussion and, moreover, the lack of RDF syntax makes it unsuitable for use by us at
this stage. See: http://www.w3.org/Submission/2005/SUBM-SWRL-FOL-20050411/



Order Logic (FOL), and has evolved to use RDF(S). CIF constraints are trans-
formable for use with a variety of constraint logic programming solvers, including
CHIP, ECLiPSe, and the SICStus Prolog FD library [5]. The AWB uses con-
straints defined by the user to control the construction of the workgroup. The
following example shows how a constraint can be expressed using CIF/SWRL
[5] and draws upon the previously specified hasBaseLocn property: “Any work-
group containing at least five members must contain at least two individuals from
differing sites (base locations).” This can be written as:

(∀ g ∈ Workgroup) hasSize(g,s) ∧ greaterThanOrEqual(s,5) ⇒

(∃ p1,p2 ∈ Person) hasMember(g,p1) ∧ hasMember(g,p2) ∧

hasBaseLocn(p1,b1) ∧ hasBaseLocn(p2,b2) ∧

notEqual(p1,p2) ∧ notEqual(b1,b2)

Further examples, in RDF syntax, are given in [5].

The AWB uses the SICStus Prolog FD Constraint Library7 in the CSP solv-
ing and therefore makes a closed world assumption (with negation-as-failure). In
the CSP construction we are effectively adopting a ‘best information at hand’
approach, for example, if we had the constraint “a workgroup must not contain
anyone who is a lecturer” then the set of valid (non-lecturer) candidates would
be compiled based on the difference with the set of known lecturers. While this
might seem contradictory to the open world assumption of the SW in general,
we have found that this still delivers valid results in practice.

6 Discussion & Conclusion

In its present form, the AWB provides a demonstration of a practical SW
problem-solving system that uses a mix of reasoning methods on instance data:
ontological entailment, derivation rules, and finite domain constraint solving.
We believe that in this respect the AWB represents a novel contribution. This
section highlights lessons learned from the AWB work to date.

Pragmatic issues of data gathering, computational cost of reasoning, and data
quality lead us to pre-cache the instance data on which the AWB would operate.
While this caching model is far from ideal, we are able to take advantage of the
fact that reasoning is time consuming by using derivation rules to pre-generate
entailments (via forward chaining) without any real impact on the user. Since
this is performed prior to the AWB user accessing the cache and specifying the
constraints relating to the workgroup they wish to build, many of these generated
entailments can merely be thought of as ‘attempting to cover all bases’ since
they may never be used at all. Fortunately, the AWB also has the luxury of
using derivation rules at runtime (rewriting SWRL rules into Prolog predicates
and including these into the CSP). This uses backward chaining and means that
the rules are only fired if they are needed. However, inclusion of these predicates

7 http://www.sics.se/isl/sicstus/



must be done sparingly as the time taken to solve the CSP can then exceed the
acceptable threshold for rendering a single web page. Should this happen, we
must then resort to a “call back” message informing the user once the solution
has been found. While this implementation allows us to side-step a potential
usability problem, the underlying issue still stands. The AWB has been designed
to allow the exploration of the trade-offs, in practical terms, of the effectiveness
of the different reasoning approaches (e.g. greedy vs. lazy, forward vs. backward
chaining) and this work is ongoing.

Future work will be to extend the functionality to cater for the scenario when
no solution can be found, requiring that certain constraints must be relaxed (and
informing the user appropriately). There is also the interesting possibility of
opening a ‘negotiation dialogue’ to achieve a solution when several workgroups
are being built at the same time and resources are restricted.

Acknowledgements This work is supported under the Advanced Knowledge Tech-

nologies (AKT) IRC (EPSRC grant no. GR/N15764/01) comprising Universities of

Aberdeen, Edinburgh, Sheffield, Southampton and the Open University.

For further information see: http://www.aktors.org.

References

1. H. Glaser, H. Alani, L. Carr, S. Chapman, F. Ciravegna, A. Dingli, N. Gibbins,
S. Harris, m. schraefel, and N. Shadbolt. CS AKTiveSpace: Building a Semantic
Web Application. In C. Bussler, J. Davies, D. Fensel, and R. Studer, editors, The
Semantic Web: Research and Applications (First European Web Symposium, ESWS
2004), pages 417–432. Springer-Verlag, 2004.

2. P. Gray, K. Hui, and A. Preece. Mobile Constriants for Semantic Web Applica-
tions. In M. Musen, B. Neumann, and R. Studer, editors, Intelligent Information
Processing, pages 117–128. Klewer, 2002.

3. J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, pages 30–37,
March/April 2001.

4. K. Hui, P. Gray, G. Kemp, and A. Preece. Constraints as Mobile Specifications in
e-Commerce Applications. In Proceedings of the 9th IFIP 1.6 Working Conference
on Database Semantics (DS-9): Semantic Issues in e-Commerce Systems, pages
357–379, 2001.

5. C. McKenzie, A. Preece, and P. Gray. Extending SWRL to Express Fully-Quantified
Constraints. In G. Antoniou and H. Boley, editors, Rules and Languages for the
Semantic Web (RuleML 2004), pages 139–154, Hiroshima, Japan, 2004. Springer.

6. N. Shadbolt, N. Gibbins, H. Glaser, S. Harris, and m. schraefel. CS AKTive Space,
or How We Learned to Stop Worrying and Love the Semantic Web. IEEE Intelligent
Systems, 19(3):41–47, 2004.


