
Dealing with Dependencies between Content Planning and Surface Realisation in
a Pipeline Generation Architecture

Kalina Bontcheva and Yorick Wilks
Department of Computer Science, University of Sheffield, 211 Portobello St., Sheffield S1 4DP, UK

fkalina,yorickg@dcs.shef.ac.uk

Abstract

The majority of existing language generation sys-
tems have a pipeline architecture which offers ef-
ficient sequential execution of modules, but does
not allow decisions about text content to be revised
in later stages. However, as exemplified in this
paper, in some cases choosing appropriate content
can depend on text length and formatting, which
in a pipeline architecture are determined after con-
tent planning is completed. Unlike pipelines, in-
terleaved and revision-based architectures can deal
with such dependencies but tend to be more expen-
sive computationally. Since our system needs to
generate acceptable hypertext explanations reliably
and quickly, the pipeline architecture was modified
instead to allow additional content to be requested
in later stages of the generation process if neces-
sary.

1 Introduction
The astonishing explosion of the World Wide Web is lead-
ing to a growing need to personalise user experience in cy-
berspace (e.g., myYahoo, Amazon’s book recommendations).
Since research in Natural Language Generation (NLG) has
already investigated ways to tailor automatically-generated
texts to user goals and characteristics (e.g., [Paris, 1993;
Zuckerman and McConachy, 1995]), these methods could be
used to generate dynamic hypertext1 which takes into account
the interaction context and user preferences and characteris-
tics.

Since users expect real-time interaction, efficient and ro-
bust applied NLG techniques are typically used for hypertext
generation. For instance, ILEX [Knott et al., 1996] uses a
combination of canned stories and templates; EXEMPLARS
[White, 1998] is rule-based; and PEBA [Milosavljevic et al.,
1996] uses text schemas [McKeown, 1986] and a phrasal lex-
icon. Also for efficiency reasons, dynamic hypertext gener-
ation systems have pipeline architectures where modules are
executed sequentially and no module later in the architecture
can request information from an earlier module. For example,

1In dynamic hypertext page content and links are created on de-
mand and are often adapted to the user and the previous interaction.

in such an architecture it is not possible to take into account
text formatting and length (which are determined towards the
end) when choosing the text content (which happens in the
beginning).

The goal of our dynamic hypertext generation system,
HYLITE+, is to produce encyclopaedia-style explanations of
domain terminology (see Figure 3 below). The corpus anal-
ysis of online encyclopaedia [Bontcheva, 2001] and previous
empirical studies (e.g., [Reinking and Schreiner, 1985]) have
shown the positive effect of additional information – e.g., def-
inition of key vocabulary, less-technical content, supply of
background information and illustrations – on the subjects’
reading comprehension and reading behaviour. On the other
hand, hypertext usability studies [Nielsen, 2000] have shown
that people read 25% slower on the screen, so hypertext needs
to be concise with formatting, that facilitates skimming. Our
empirical studies have shown [Bontcheva, 2001] that users
prefer different additional information depending on the cho-
sen formatting and desired explanation length.

This paper discusses several ways to provide additional in-
formation about unknown terms in generated encyclopedic
entity descriptions. When such information is needed, the
most appropriate clarification needs to be chosen depending
on formatting, user knowledge and constraints (e.g., concise
versus detailed pages). Each alternative requires different text
content to be selected at the start of the generation process but
the choice of alternative can only happen after the content and
formatting for the main description have already been deter-
mined. Therefore, the original pipeline architecture was ex-
tended to allow limited module feedback. In the resulting
recursive pipeline architecture additional content can be re-
quested in later stages of the generation process (e.g., during
surface realisation).

In effect, the content planner first produces the text plan for
the concise hypertext which contains only facts about the ex-
plained concept (e.g., personal computer). Then during sur-
face realisation, after formatting has been decided, the most
suitable adaptivity alternative is chosen. Often this leads to
the posting of a new communicative goal, which results in
expanding the basic text with extra information.

The paper is structured as follows. Section 2 describes
briefly HYLITE+ – the dynamic hypertext generation sys-
tem in the context of which the recursive pipeline architec-
ture (Section 3) was developed. Section 4 exemplifies the use



of the architecture for generating additional information that
clarifies terms unknown to the user. The approach is also put
in the context of previous work on interleaved, opportunistic,
and revision-based language generation (Section 5). Finally
the paper concludes with a discussion of some known limita-
tions and future work.

2 HYLITE+ in a Nutshell
HYLITE+ generates encyclopedic explanations of terms in
the chemical and computer domains. The user interacts with
the system in an ordinary Web browser (e.g., Netscape, In-
ternet Explorer) by specifying a term she wants to look up.
The system generates a hypertext explanation where further
information can be obtained by following links or specifying
another query. Similar to all Web applications (see [Nielsen,
2000]), HYLITE+ needs to (i) respond in real-time, i.e., avoid
algorithms with associated high computational cost; and (ii)
be robust, i.e., always produce a response. Consequently the
system uses some efficient and well-established applied NLG
techniques such as text schemas and a phrasal lexicon (see
[Reiter and Dale, 2000]).

Similar to other applied systems (see [Reiter, 1994]),
HYLITE+ was initially implemented as a single-pass pipeline
system, i.e., the generation modules were executed sequen-
tially. The system input specifies the concept to be explained
and the system parameters chosen by the user (e.g., concise
versus detailed descriptions). The output is the generated hy-
pertext explanation in HTML format, which is viewed by the
user in a conventional browser (see Figure 3 below).

The system consists of several modules organised in two
main stages: (i) content organisation, which includes con-
tent selection, text organisation and semantic aggregation;
and (ii) surface realisation modules [Bontcheva, 2001]. As
shown in Figure 1, the high-level modules use a discourse
history and an agent model, ViewGen, [Ballim and Wilks,
1991] which contains both the system domain knowledge and
user beliefs, stored in nested environments. The surface real-
isation modules use language-specific resources such as lexi-
cons, morphology, and grammars.

The text planner uses high-level discourse patterns simi-
lar to text schemas [McKeown, 1986] which have been de-
rived from analysing entries in encyclopedia and terminologi-
cal dictionaries [Bontcheva, 2001]. For instance, entities (i.e.,
concepts inheriting from ENTITY in the hierarchy) are de-
fined by their supertype(s) or type definition, characteristics,
functions, constituents and examples. If the entity has several
synonymous terms, the query one is used throughout the ex-
planation and the rest are given in brackets when the entity is
first introduced.

3 Adding Recursion to the Pipeline
Architecture

One way of improving the user understanding of the gen-
erated hypertext is to clarify important unknown terms that
occur in definitions, descriptions of parts and subtypes (for
further detail see [Bontcheva, 2001]). However, different
types of such information – definitions, familiar supercon-
cepts, separate paragraphs, or just links – are preferred at dif-

ferent times, mainly depending on page length, formatting,
and user preference for concise versus detailed explanations.
In a sequentially organised pipeline architecture some of this
information can be generated only if the necessary additional
facts have already been extracted during content selection and
incorporated in the text plan.

For instance, the decision whether it is appropriate to use a
parenthetical definition or a paragraph-length description de-
pends on their length, the chosen hypertext formatting, and
the target length for the generated page2. However, format-
ting and length information are determined during surface re-
alisation, not content planning, so HYLITE+ either needs to
approximate the text length from the number of facts to be
realised, or it has to extract clarifying information for each
unknown concept in advance, or the architecture needs to be
modified to allow such information to be requested at a later
stage.

As shown by [Reiter, 2000], approximating the text length
during content planning is possible but suffers from two prob-
lems. The first one is that the result is not exact, so when
formatting is added later the text might not fit into the page
any more. For example, if the surface realiser decides to use a
bullet list when enumerating five items, instead of a sentence
with conjunctions, the resulting text length on the screen will
increase in comparison to the estimated one. Consequently,
if there are constraints to generate text that fits on certain
number of pages, the approximation method is problematic.
The second, less-significant problem with this method is that
it could be to maintain and update because each change to
the realiser needs to be reflected in the approximation algo-
rithm. Finally, the approximation method in systems that use
a phrasal lexicon might not work very well, unless length in-
formation is encoded explicitly for each lexical entry.

Selecting all potentially useful clarifying information in
advance is going to be more computationally expensive than
adding it on demand, particularly as the text size grows. Still,
because the recursion in clarifications is limited, the text size
will grow linearly, not exponentially, so this approach is fea-
sible, even if not optimal. The problem here is that unless
length approximation is also implemented, the content plan-
ner still cannot commit to a particular strategy (e.g., a paren-
thetical definition or a longer paragraph after main explana-
tion) because it needs to know, among other things, the over-
all text length and the length of the definition text itself. 3

Another alternative is to implement a text revision mech-
anism to analyse the content and structure of the generated
hypertext and choose between alternative ways of including
relevant information. However, despite the gains in fluency
and coherence, revision-based approaches tend to suffer from
computational problems due to the large number of alterna-
tives that need to be explored (e.g., [Robin and McKeown,
1996]).

2[Bontcheva, 2001] discusses the results of an empirical study of
user acceptance of hypertext adaptivity techniques and the influence
of length, formatting, and user characteristics on this choice.

3The user study showed that definitions longer than 10-15 words
should not be provided in parenthesis because they disturb the text
flow.



if goal posted by realiser

history (DH)

Web browser
user follows link

new goal + previous
focused entities

morphology

grammar

lexicon

+
concept to be explained

discourse goal

text plan

content selection
text organisation

HTML page

surface realisation

discourse

ViewGen

Figure 1: The HYLITE+ recursive pipeline architecture

Also, since HYLITE+ was built on the basis of an exist-
ing pipeline-based generation system, our goal was to find
a solution that would both provide the needed module feed-
back functionality and work in combination with the existing
sequentially-designed modules. In other words, we needed
a modification of the pipeline, that will allow the surface re-
aliser to invoke the generator with new goals, so additional
information is extracted and included only when appropriate.

Consequently, the existing pipeline architecture was mod-
ified to allow later stages to request additional information
to be included (see Figure 1). A special monitoring mod-
ule was added to detect opportunities for adapting the gen-
erated hypertext. The monitor uses the complete text plan,
received from the content planning stage, together with the
propositions realised to this point to estimate the length of
the main explanation. Based on this information, user pref-
erences, and the chosen document formatting, the monitor
decides whether to post additional high-priority goals on the
generator’s agenda (e.g., define(microprocessor): a
goal to define a concept, example(microprocessor):
give an example). The generator keeps the goals on its agenda
(which is a priority queue) and realises them one after an-
other, so no two goals can be active simultaneously.

When high-priority goals are posted to the generator, sur-
face realisation is temporarily suspended while the text for the
new goal is generated. This effectively opens a new discourse
segment [Grosz and Sidner, 1986], which is dominated by the
main explanation. All previously mentioned entities become
part of the new focus space, so the generator can refer to them
if necessary. The monitor also specifies some system param-
eters which influence the form of the newly generated text.
For example, term definitions in brackets need to be noun

phrases, instead of full sentences (see example in Figure 2),
so the system configuration is changed from the default pref-
erence for sentences. When the text corresponding to the new
goal is generated, the monitoring module evaluates the result
and, if suitable, integrates it with the main text. Finally, text
realisation is resumed until a new interruption occurs or the
entire text plan has been verbalised.

If the newly generated text is found to be unsuitable (e.g.,
the definition is too long and will disturb the flow of the main
text), the monitoring module tries another adaptivity tech-
nique if such is available (e.g., provide a known superconcept
instead). Otherwise it leaves the text content as originally
planned and the unknown concept is realised with its corre-
sponding term with a hypertext link to a separate page.

In effect, the content planner first produces the text plan for
the concise, unadapted hypertext which contains only facts
about the explained concept (e.g., personal computer). Then
during surface realisation, when formatting has been decided,
the most suitable adaptivity alternative is chosen. In some
cases this leads to the posting of a new communicative goal to
the generator, which results in expanding the basic text with
extra information.

Below we will show how the recursive pipeline is used for
providing clarifying information about subtypes, parts, and
unknown concepts in term definitions. The present experi-
ence shows that the efficiency of the pipeline architecture and
the schemas is retained while the generator’s scope and flexi-
bility is improved.

4 Clarifying Unknown Terms
The content planner uses information from the user model to
detect and annotate unknown concepts [Bontcheva and Wilks,
1999]. During surface realisation hypertext links, leading to
separate explanation pages, are added for these concepts. In
addition, some clarifying information is considered for un-
known concepts in definitions, parts and subtypes.

The system mockup experiments [Bontcheva, 2001]
showed that users prefer two types of concise parenthetical in-
formation: brief term definitions and a familiar superconcept.
For longer texts, paragraph-long clarifying information can
be provided in a separate section, containing more detail than
just the definition/superconcept. Here we will only provide
examples of using the recursive pipeline architecture to gen-
erate additional term definitions and paragraph-long explana-
tions. Further details and a thorough discussion of the other
adaptivity techniques are available in [Bontcheva, 2001].

4.1 Generating the definitions
Let us assume a user who has looked up computer programs
and then followed a link to personal computer; the user has
not specified preferences for types of clarifying information,
so definitions can be provided where appropriate. Following
this request, the content planner passes the following facts for
realisation (the fact listing all parts is truncated here4):

4The facts are encoded as conceptual graphs, a type of semantic
network, where concepts are written in square brackets and relations
in round ones. Extra information (e.g., whether a concept is familiar
to the user) can be associated with concepts and graphs as feature



define(microcomp)

define(microcomp)entity stack: CPU
microproc
computer
PC

global focus: microcomp

output:

a small computer that uses a 
microprocessor as its CPU

input goal: PC
describe(PC) microcomp

microcomputer

A typical PC consists of...

A personal computer is a type of 

(a small computer that uses a micro...)

global focus:

entity stack:

input goal:

Figure 2: An example of clarifying information added during surface realisation

[PC] <– (ISA)<– [MICRO COMP fs(um state:unknown)].

[PC]<– (PART OF) <– [CPU fs(um state:unknown)]
– (PART OF) <– [MEMORY fs(um state:unknown)]
– (PART OF) <– [HDD fs(um state:unknown)]
– (PART OF) <– [DISPLAY]...

First the realiser determines the document formatting; in
this case a bullet list is chosen to enumerate all parts. Then
it starts generating text for the first graph. Because the in-
troduced supertype is unknown, but important for the under-
standing of the text, the realisation monitor decides to pro-
vide some extra material about it. The action corresponding
to generating a new definition is define(micro comp),
which is passed as a parameter to the recursively called gen-
erator. The generation parameters are also set to very short
texts with syntactic preference for noun phrases. The result-
ing text – ”a small computer that uses a microprocessor
as its central processing unit” – is evaluated for length and
provided in brackets (see Figures 2 and 3).

Similarly for all unknown parts of the PC, the realisation
monitor calls the generator recursively and obtains their defi-
nitions. Since the parts are described in a bullet list, it is more
appropriate to provide their definitions with dashes, instead
of brackets (see Figure 3).

The realisation monitor has a set of rules which examine
the type of proposition (e.g., definition, part of, at-
tribute) and the formatting of the main text, in order to de-
termine the best formatting for the new material. At present,
new material which is to be integrated in unformatted text is
put in brackets. Since such parentheses disturb the flow of the
main text, they are only provided once per sentence, usually
for the most important concept in the proposition (e.g., the
supertype). Other important unknown concepts in the same
sentence are supplemented with a familiar supertype.

When a concept has been defined in brackets, the generated
hypertext link also has a tag saying Further information to
indicate that more information is available and can be reached
by following the link (see Figure 3). If the knowledge base
contains only the definition and no other information, then no
link is provided because all relevant material has already been
included in the current page.

structures.

4.2 Generating Paragraph-Length Clarifying
Descriptions

So far we have discussed the generation of concise hypertext,
where the main describe(entity) goal is realised in a
schema-based, sequential fashion and brief additional defini-
tions of unknown terms are included by posting additional
high-priority goals. However, our empirical studies showed
that in some cases users can prefer longer texts.

The corpus study showed that long encyclopedic articles
often provide detailed descriptions of subtypes and/or object
parts. Therefore, one way to adapt longer generated hypertext
is to provide paragraph-length descriptions of the unknown
subtypes/parts, instead of including just their definitions or
familiar supertypes. The experiments showed that such pages
are preferred when users need more detailed information on
the topic (e.g., for a school essay); in this case, the additional
material is best organised in a separate section.

HYLITE+ generates such longer additional material in sep-
arate sections based on new communicative goals posted
on its agenda by the monitor (see Figure 1). For exam-
ple, if the main explanation contains propositions about
several unknown object parts (e.g., computer parts) and
more detailed texts are preferred by the user, a new
describe all(part of, computer) goal is posted
on the agenda. In this case, the goal is not marked as a high-
priority one, so surface realisation is not interrupted. After
the main explanation is completed, the generator fetches the
new goal and starts a new section in the document describing
all computer parts.

The describe all(Rel, X) goal is decomposed in
the following way:

forall C where Rel(C, X)
describe(C)

i.e., describe all concepts C for which the relation Rel holds
with X, e.g. describe all parts of the computer. Apart from the
new goal, the generator is also passed parameters that specify
to generate the explanations as paragraphs, not whole pages.

In this way the generated document is regarded as an or-
dered set of goals and the text for each one of them is gen-
erated separately. This separation approach has the benefit
of breaking down the text organisation problem into smaller
parts which (i) can be more efficient to compute, but also (ii)
can use different text organisation approaches for the differ-
ent parts, e.g., schemas for the more ‘rigid’ parts and planning
otherwise.



Figure 3: Example of clarifying definitions integrated in the main text

5 Related Work

The way in which the recursive pipeline architecture handles
the dependencies between content planning and surface reali-
sation bears some similarity with interleaved language gener-
ation. For example, [Rubinoff, 1992] describes an approach
where the planner obtains feedback from the linguistic com-
ponent in the form of a set of possible ways of expressing
each plan element; the most suitable one is then added to
the utterance. Some interleaved systems (e.g., [Finkler and
Neumann, 1989; De Smedt, 1990]) are also incremental, i.e.,
their planner and realiser operate in parallel on different seg-
ments of an utterance. The most similar interleaved system
is PAULINE [Hovy, 1988] where the planner produces only a
partial text plan and makes the remaining commitments only
when the realisation component needs them. In this way un-
expected syntactic opportunities can be exploited and long-
term goals (e.g., conciseness, politeness) taken into account
during planning as well as realisation.

The main difference between the recursive pipeline ap-
proach and interleaved systems is that the latter tend to use
feedback for every choice that depends on information from
another module. In HYLITE+ the main text is always pro-
duced in a sequential fashion; interleaved planning and re-
alisation only occur if the user preferences allow the use of
adaptivity techniques that lead to new goals. Although poten-
tially less flexible, the recursive approach enables the use of
efficient techniques (schemas, sequential execution) to com-
pute the main text reliably and quickly.

Another approach to the content adaptivity problem was
explored in the ILEX system [Mellish et al., 1998], which
uses opportunistic planning to tailor the hypertext descrip-
tions of museum exhibits. The planning mechanism is based
on a structure called text potential – a graph of facts con-
nected with thematic and rhetorical relations. Facts are cho-
sen depending on their connection to the focus of the page
(the described entity), interest and importance weights. This
approach, however, seems difficult to apply to generated
encyclopaedic-style explanations because it requires the cre-
ation of all links and weights in the text potential. Assigning

values for importance and interest are particularly difficult be-
cause they both depend on the user goal (which is unknown
to the system) and can change from one session to another
(e.g., in-depth reading for a school essay versus looking up
an unknown term).

The pipeline-based STOP system [Reiter, 2000] operates
under very strict text size constraints which proved difficult
to estimate at the content planning stage. In order to improve
the generation results, Reiter experimented with a multiple-
solution pipeline5 (MSP) and revision-based variants of the
system. The results showed that multiple-solution pipelines
(for 4 solutions) and revision-based NLG are best suited for
the task. The processing time per document is naturally
higher – linearly increasing with the number of generated al-
ternatives for the multiple-solution approach and the revision-
based one is even slower than the MSP. The recursive pipeline
architecture discussed here might not always produce the best
texts under such tight constraints because the length of the yet
unrealised propositions can only be approximated.

6 Conclusion and Future Work

This paper presented the recursive pipeline architecture de-
veloped as part of the dynamic hypertext generation system
HYLITE+. The approach allows additional content to be
requested in later stages of the generation process and inte-
grated in the main explanation. The architecture also allows
new goals to be executed after the main body of the explana-
tion has been generated.

Although interleaved and revision-based approaches offer
more flexibility, the advantages of the recursive pipeline is
that it can be added to an already implemented sequential
system with relatively minor modifications to the code. In
addition, with our approach the main text is always computed
in a sequential fashion, based on efficient applied NLG tech-
niques (e.g., schemas, phrasal lexicon). Interleaved planning

5Several different document plans are produced and after surface
realisation a choice module selects the one that provides most con-
tent within the given size limit.



and realisation only occur if the user preferences allow the
use of adaptivity techniques that lead to new goals.

In the case when the additional text is generated during sur-
face realisation, the monitor determines the overall text length
based on the length of the already realised facts plus an esti-
mated length for all unrealised ones. Therefore the result is
only an approximation of the final length, which is sufficient
when, as in hypertext, size constraints are important but not
very strict.

The results from a small-scale formative evaluation have
confirmed that the majority of users prefer the adapted texts
to the neutral version where no additional information is pro-
vided for the unknown terms. More exhaustive subject-based
evaluation is currently being undertaken and the goal is to
gain further insight into the users’ acceptance of hypertext
adaptivity.

Performance-based evaluation of the recursive pipeline
versus the baseline system (a version that does not provide
additional information, just generates the main explanation)
revealed that the new goals only add between 5% and 20%
to the overall execution time – e.g., 5-10% for additional in-
formation which is less than 33% of the baseline explanation;
20% for additional information which is 50-60% of the base-
line one. With both systems the overall processing time for
a half page of hypertext is less than 1.5 seconds – a response
time which allows users to stay focused on the interaction
without any need for extra feedback [Nielsen, 2000].

In the future we plan to experiment with using different
content organisation strategies to generate different parts of
the text. For example, following the ideas of [Paris, 1993]
different kinds of knowledge can be provided depending on
the user’s level of expertise. Also, in some cases schemas can
be replaced with text planning based on rhetorical relations,
e.g., [Moore, 1995; Power, 2000]. In this way the more ‘rigid’
parts of the text can be generated efficiently with schemas,
while more powerful but computationally expensive planning
techniques are used only when necessary.

Acknowledgements
We wish to thank Hamish Cunningham and the anonymous

reviewers for their helpful comments and suggestions.

References
[Ballim and Wilks, 1991] A. Ballim and Y. Wilks. Artificial

Believers. Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1991.

[Bontcheva and Wilks, 1999] Kalina Bontcheva and Yorick
Wilks. Generation of adaptive (hyper)text explanations
with an agent model. In Proceedings of the European
Workshop on Natural Language Generation (EWNLG’99),
Toulouse, France, May 1999.

[Bontcheva, 2001] Kalina Bontcheva. Generating Adaptive
Hypertext Explanations with a Nested Agent Model. PhD
thesis, University of Sheffield, 2001. Forthcoming.

[De Smedt, 1990] Koenraad De Smedt. IPF: An incremen-
tal parallel formulator. In Robert Dale, Chris Mellish, and
Michael Zock, editors, Current Research in Natural Lan-
guage Generation, pages 167–192. Academic Press, New
York, 1990.

[Finkler and Neumann, 1989] Wolfgang Finkler and Günter
Neumann. POPEL-HOW: A distributed parallel model for
incremental natural language production with feedback. In
Proceedings of the 11th International Joint Conference on
Artificial Intelligence (IJCAI-89), volume 2, pages 1518–
1523, Detroit, MI, August 20-25, 1989.

[Grosz and Sidner, 1986] Barbara J. Grosz and Candace L.
Sidner. Attention, intentions and the structure of discourse.
Computational Linguistics Journal, 12(3):175–204, 1986.

[Hovy, 1988] Eduard H. Hovy. Generating natural language
under pragmatic constraints. Lawrence Erlbaum, Hills-
dale, New Jersey, 1988.

[Knott et al., 1996] Alistair Knott, Chris Mellish, Jon Ober-
lander, and Mick O‘Donnell. Sources of flexibility in dy-
namic hypertext generation. In Proceedings of the 8th
International Workshop on Natural Language Generation
(INLG’96), 1996.

[McKeown, 1986] Kathleen R McKeown. Discourse strate-
gies for generating natural-language text. In B. L. Webber
B. Grosz, K. S. Jones, editor, Readings in Natural Lan-
guage Processing. Morgan Kaufmann Publishers, 1986.

[Mellish et al., 1998] Chris Mellish, Mick O’Donnell, Jon
Oberlander, and Alistair Knott. An architecture for
opportunistic text generation. In Proceedings of the
International Natural Language Generation Workshop
IWNLG’98, 1998.

[Milosavljevic et al., 1996] Maria Milosavljevic, Adrian
Tulloch, and Robert Dale. Text Generation in a Dynamic
Hypertext Environment. In Proc. of 19th Australian
Computer Science Conference, Melbourne, 1996.

[Moore, 1995] Johanna D. Moore. Participating in Explana-
tory Dialogues. MIT Press, Cambridge, MA, 1995.

[Nielsen, 2000] Jakob Nielsen. Designing Web Usability:
The Practice of Simplicity. New Riders Publishing, 2000.

[Paris, 1993] Cécile L. Paris. User modelling in text genera-
tion. Francis Pinter Publishers, London, 1993.

[Power, 2000] Richard Power. Planning by constraint satis-
faction. In Proceedings of COLING’2000, 2000.

[Reinking and Schreiner, 1985] David Reinking and Robert
Schreiner. The effects of computer-mediated text on mea-
sures of reading comprehension and reading behaviour.
Reading Research Quarterly, Fall:536—551, 1985.

[Reiter and Dale, 2000] Ehud Reiter and Robert Dale. Build-
ing Natural Language Generation Systems. Cambridge
University Press, Cambridge, U.K., 2000.

[Reiter, 1994] Ehud Reiter. Has a Consensus NL Generation
Architecture Appeared, and is it Psycholinguistically Plau-
sible? In Proceedings of 7th Int. Workshop on NL Gener-
ation (INLG-94), pages 163–170, Kennebunkport, Maine,
USA, 1994.

[Reiter, 2000] Ehud Reiter. Pipelines and size constraints.
Computational Linguistics, 26:251–259, 2000.

[Robin and McKeown, 1996] Jacques Robin and Kathy
McKeown. Empirically designing and evaluating a new



revision-based model for summary generation. Artificial
Intelligence, 85(1-2), 1996.

[Rubinoff, 1992] Robert Rubinoff. Integrating text planning
and linguistic choice. In Aspects of Automated Natural
Language Generation, Lecture Notes in Artificial Intelli-
gence, 587, pages 45–56. Springer Verlag, Berlin, April
1992.

[White, 1998] Michael White. Designing dynamic hyper-
text. In 2nd Workshop on Adaptive Hypertext and Hyper-
media, June 1998. Held in conjunction with Hypertext’98,
Pittsburgh, USA.

[Zuckerman and McConachy, 1995] Ingrid Zuckerman and
Richard McConachy. Generating explanations across sev-
eral user models: Maximizing belief while avoiding bore-
dom and overload. In Proceedings of 5th European
Workshop on Natural Language Generation (EWNLG-95),
1995.


