
An Infrastructure for Acquiring High Quality
Semantic Metadata

Yuangui Lei, Marta Sabou, Vanessa Lopez, Jianhan Zhu, Victoria Uren, and
Enrico Motta

Knowledge Media Institute (KMi), The Open University, Milton Keynes,
{y.lei, r.m.sabou, v.lopez, j.zhu, v.s.uren, e.motta}@open.ac.uk

Abstract. Because metadata that underlies semantic web applications
is gathered from distributed and heterogeneous data sources, it is impor-
tant to ensure its quality (i.e., reduce duplicates, spelling errors, ambigui-
ties). However, current infrastructures that acquire and integrate seman-
tic data have only marginally addressed the issue of metadata quality.
In this paper we present our metadata acquisition infrastructure, ASDI,
which pays special attention to ensuring that high quality metadata is
derived. Central to the architecture of ASDI is a verification engine that
relies on several semantic web tools to check the quality of the derived
data. We tested our prototype in the context of building a semantic
web portal for our lab, KMi. An experimental evaluation comparing the
automatically extracted data against manual annotations indicates that
the verification engine enhances the quality of the extracted semantic
metadata.

1 Introduction

The promise of the semantic web is to automate several information gathering
tasks on the web by making web data interpretable to software agents [1]. A
condition for realizing this technology is the existence of high quality semantic
metadata that would provide a machine understandable version of the web.
By quality we mean that the semantic metadata should accurately capture the
meaning of the data that it describes. For example, it should capture the meaning
of each entity as intended in the context of its use (describe “jaguar” as a car
or as a animal depending on its context). Further, a single semantic identifier
should be attached to each entity even if this entity is referred to in the web
page using different variants of its name or its name is misspelled. Also, metadata
should be up to date when the described web page changes.

However, as previously debated in the literature [16], the characteristics of
the web data hamper the acquisition of quality metadata. Besides its large scale,
web data is usually distributed over multiple knowledge sources. These sources
are heterogeneous in their level of formality, representation format, content and
the quality of knowledge they contain. Integrating data from several of these
sources often leads to errors that decrease the quality of the metadata. Also, the



data on the web is changing continuously so the derived metadata has to be kept
up to date.

Our overview of the most relevant infrastructures that acquire and aggregate
semantic web metadata reveals that they offer limited or no support for verifying
the quality of the derived metadata. In contrast with these, the system we present
here, ASDI, provides several means to ensure the quality of the extracted data.
First, it aims to reduce ambiguities by taking into account the context in which
an entity is mentioned in order to determine its type. Second, it contains a
verification engine that checks the validity of any derived metadata against a
repository of trusted domain knowledge and against the information available
on the web. Finally, since the whole acquisition process is automatic, it can be
automatically run whenever new data becomes available, thus ensuring that the
semantic metadata is always up to date.

The rest of the paper is organized as follows. We begin by describing the
KMi context in which our prototype was designed and tested (section 2). Based
on this description we discuss some of the tasks that an infrastructure needs
to perform in order to ensure the quality of the derived semantic metadata.
We then investigate how current semantic web infrastructures approach quality
control for semantic metadata (section 3). In section 4 we present the ASDI
infrastructure and detail its components that play a role in the quality control
process. Thereafter, we describe an experimental evaluation of ASDI’s validation
functionality in section 5. Finally, we conclude our paper with a discussion of
our results, the limitations of ASDI and future work in section 6.

2 Building the KMi semantic web Portal

We have designed and tested our infrastructure in the context of building a
semantic web portal for KMi that would provide an integrated access to various
aspects of the academic life of our lab1. By relying on semantic web technology
the content of the portal is usable both by humans and software agents. While
the KMi portal is a particular application, we believe that it provides the generic
characteristics of a semantic web application scenario. In this section we briefly
describe the particularities of the KMi context that are needed to understand the
content of this paper (section 2.1). In the second part of this section, section 2.2,
based on our experience with the KMi context, we extract and generalize a set
of tasks that should be performed by any integration platform in order to ensure
the quality of the extracted metadata.

2.1 The KMi Context

In the case of KMi the data relevant for building the semantic portal is spread in
several different data sources such as departmental databases, knowledge bases
and HTML pages. Information about people, technologies, projects and research

1 http://semanticweb.kmi.open.ac.uk



areas is maintained in our departmental databases. Bibliographic data is stored
in an internal knowledge base. In addition, KMi has an electronic newsletter2,
which now contains an archive of several hundreds of news items, describing
events of significance to the KMi members.

Beside its heterogeneous nature, another important feature of the KMi do-
main data is that it continuously undergoes changes. The departmental databases
change to reflect events such as additions of new projects. KMi-related events
are reported in the newsletter and added to the news archive. Therefore, the
semantic data that underlies the portal has to be often updated.

We decided to use and extend an existing ontology for representing the se-
mantic metadata on which the portal realizes. We use the AKT reference ontol-
ogy3, which has been designed to support the AKT-2 demonstrator.We extended
this ontology by adding some domain specific concepts, such as kmi-planet-news-
item, kmi-research-staff-member, kmi-support-staff-member, etc.

2.2 Tasks for Insuring Metadata Quality

Based on the characteristics of the KMi semantic web portal context, we identify
three generic tasks that are related to ensuring semantic metadata quality and
which should be supported by any semantic web infrastructure. Note, however,
that while this set of tasks is grounded in our practical experience, it is by no
means exclusive. The generic tasks are:

A. Extract information from un-structured or semi-structured data sources in
an automatic and adaptive manner. Useful knowledge is often distributed in sev-
eral data sources which can be heterogeneous from the perspective of their level
of structure or the used representation language. Methods have to be developed
that extract the required data from each data source. It is important to employ
automatic methods so that the process can be easily repeated periodically in
order to keep the knowledge updated. Another important characteristic of the
extraction mechanism is that it should be adaptable to the content of the sources
that are explored. Being able to distinguish the type of an entity depending on
its context is a pre-requisite for ensuring the quality of the semantic metadata.
For example, we would expect from an adaptive information extraction tool to
identify the different meanings that a given term can have on different web sites.
For instance, “Magpie” is the name of a project in many web pages related to
KMi, and should be identified as such. However, in other web sites it is more
likely that it denotes a bird.

B. Ensure that the derived metadata is free of common errors. Since seman-
tic data is typically gathered from different data sources which were authored
by different people, it is often the case that it contains several errors, such as
different identifiers that refer to the same entity, or instances whose meaning is
not clear and needs to be disambiguated. Errors can be caused by data entry

2 http://kmi.open.ac.uk/news
3 http://kmi.open.ac.uk/projects/akt/ref-onto/



mistakes, by information extraction tools, or by the inconsistency and duplica-
tion entries of diverse data sources. We envision two major approaches to avoid
these errors.

First, one might attempt to tackle these errors before the data has been ex-
tracted. In particular, domain specific knowledge can help to avoid some prob-
lems, e.g., using lexicons to get rid of some domain specific noisy data. Such
knowledge can be either supplied at design time in formats of transformation
instructions or be generated automatically and incrementally according to the
user’s assessment on the performance of the system.

The second way to approach this problem is to clean the semantic data after
it has been extracted. This approach requires mechanisms to correctly diagnose
the problem at hand and then algorithms to correct each individual problem.

C. Update the semantic metadata as new information becomes available. Since
the underlying data sources are likely to change, the whole data acquisition and
verification process must be repeated so that the knowledge base is updated in
an appropriate fashion.

In our prototype we provide support for all these quality insurance related
tasks (as described in section 4). In the following section we overview a set
of semantic web applications that rely on data acquisition and integration and
describe how they approach the issue of quality control.

3 State of the Art

In this section we describe how existing approaches address semantic metadata
quality control. We survey a representative sample of these approaches without
performing an exhaustive study of this research direction. In particular, we focus
on the approaches which address heterogeneous sources. We therefore leave out
the approaches which either support the annotation of textual sources ([17]), the
migration of data from structured sources ([2], [14]) and the creation of semantic
web data from scratch ([10]).

The On-To-Knowledge project [15] provided one of the first suits of tools to
be used for semantics based knowledge management. This tool suite not only
supports semantic data acquisition from heterogeneous sources, but also supports
ontology sharing, editing, versioning, and visualization. However, it does not
provide explicit support to ensure the quality of the acquired semantic data.

The Semantic Content Organization and Retrieval Engine (SCORE) [13]
is one of the semantic web based technologies, which has been commercial-
ized. Quality control is addressed by i) enhancement rules which exploit the
trusted knowledge to populate empty attribute values and ii) disambiguation
mechanisms which make use of domain classification and the underlying trusted
knowledge to address ambiguities.

The KIM platform [11] addresses the complete cycle of metadata creation,
storage and semantic-based search. It pre-populates its ontology from several
publicly available knowledge sources. This populated ontology supports the sys-
tem to perform named entity recognition (NER) in a wide range of domains.



The focus of this work is very much on scaling up and adapting NER to the
needs of the semantic web.

The CS AKTive Space [12], the winner of the 2003 semantic web Challenge
competition, gathers data automatically on a continuous basis. It relies on Ar-
madillo [4] to achieve the task of automatic data acquisition. Quality control
related issues such as the problem of duplicate entities are only weakly addressed
(for example, by heuristics based methods or using manual input).

MuseumFinland [6] is the first and largest semantic web based portal that ag-
gregates heterogeneous museum collections. In the MuseumFinland application
possible errors are logged by the system for correction by a human user.

The Flink system [9], winner of the 2004 semantic web Challenge competi-
tion, is an infrastructure for extracting, aggregating and visualizing online social
networks. The data is aggregated in an RDF(S) repository and a set of domain-
specific inference rules are used to ensure its quality. In particular, identity rea-
soning (smushing) is performed to determine if different resources refer to the
same individual (i.e., co-relation).

All the approaches mentioned above support acquiring semantic web data
from heterogeneous sources in an automatic fashion. They typically exploit man-
ually (e.g., On-To-Knowledge, SCORE, MuseumFinland) or semi-automatically
(e.g., CS AKTive Space) constructed rules to define how metadata is to be ex-
tracted from domain specific structured or semi-structured sources.

Although they do provide comprehensive support for the acquisition activity
in their specific problem domain, the support for quality control is relatively weak.
Even though some co-relation (e.g., in CS AKTive Space and Flink) and disam-
biguation mechanisms (e.g., in SCORE) have been exploited, quality control has
not been fully addressed. For example, the problems of duplicate or erroneous
entities have not been addressed in any of the approaches mentioned above. Such
problems may significantly de-crease the quality of the acquired semantic data.

4 The ASDI Infrastructure

In this section, we describe the infrastructure that we developed to build the
semantic portal at KMi. An important characteristic of ASDI is that, in com-
parison with the approaches we have described in section 3, it addresses the
quality control issue. We first present an overview of the ASDI infrastructure.
Then we detail two of the most important layers of the infrastructure that ensure
adaptive data extraction and the quality check of this extracted data.

4.1 An Overview

Figure 1 shows the four layered architecture of ASDI, which contains:

A Source Data Layer contains the collection of all available data sources such
as semi-structured textual documents (e.g. web pages) or structured data in
the form of XML feeds, databases, and knowledge bases.



Fig. 1. An overview of the ASDI infrastructure.

An Extraction Layer is responsible with the generation of semantic data from
the source data layer. It comprises an automatic and adaptive information
extraction tool, which marks-up textual sources, a semantic transformation
engine, which converts data from source representations into the specified
domain ontology according to the transformation instructions specified in a
mapping ontology, and a set of mappings specification/discovery tools, which
support the construction of transformation instructions. The output of this
layer consists of i) raw semantic data entries and ii) logs of acquisition op-
erations which describe the provenance of data entries.

A Verification Layer checks the quality of the previously generated semantic
data entries. The core component is the verification engine, which makes
use of a number of semantic web tools to achieve high quality data. While
the verification engine is completely automatic, we allow users to inspect the
changes made to the semantic data through a user evaluation engine. This
engine assists users to assess the performance of the system and generates
transformation rules according to the feedback given by them. A KB editor
is also included in this layer to allow users (i.e., knowledge engineers) to
inspect the final results and modify them whenever necessary.

An Application Layer sums up all the applications that use the acquired and
verified semantic data (stored in the semantic web data repository).



4.2 The Extraction Layer

The role of extraction layer is to acquire data from heterogeneous sources and
convert them to semantic web data objects equipped with rich semantic relations.

To address the issue of adaptive information extraction, we use ESpotter [18],
a named entity recognition (NER) system that provides an adaptive service.
ESpotter accepts the URL of a textual document as input and produces a list
of the named entities mentioned in that text. The adaptability is realized by
means of domain ontologies and a repository of lexicon entries. For example, in
the context of the KMi domain, ESpotter is able to mark the term “Magpie” as
a project, while in other domains it marks it as a bird.

For the purpose of converting the extracted data to the specified domain
ontology (i.e., the ontology that should be used by the final applications), an
instance mapping ontology has been developed, which supports i) representation
independent semantic transformations, ii) the generation of rich semantic rela-
tions along with the generation of semantic data entries, and iii) the specification
of domain specific knowledge (i.e. lexicons). This lexicons are later used by the
verification process. Using this ontology (see details in [7]) one can define a set of
mappings between the schema of the original data sources and the final domain
ontology. A semantic transformation engine is prototyped, which accepts struc-
tured sources and transformation instructions as input and produces semantic
data entries. Since writing these mapping rules manually is a considerable effort,
we are currently focusing on semi-automating this process.

To ensure that the acquired data stays up to date, a set of monitoring services
detect and capture changes made in the underlying data sources and initiate the
whole extraction process again. This ensures a sustainable and maintenance-free
operation of the overall architecture.

4.3 The Verification Layer

The role of verification layer is to identify problems of the extracted data entries
and to resolve them properly. This layer relies on two components. First, an
automatic verification engine employs several tools to verify the extracted data.
Second, a user evaluation tool allows a knowledge engineer to evaluate and fine-
tune the verification process of the engine. We describe both components.

The Verification Engine The goal of the verification engine is to check that
each entity has been extracted correctly by the extraction layer. For example,
it checks that each entity has been correctly associated with a concept and in
the cases when the type of the entity is dubious it performs disambiguation.
This engine also makes sure that a newly derived entity is not a duplicate for
an already existing entity. The verification process consists of three increasingly
complex steps as depicted in figure 2. These steps employ several semantic web
tools and a set of resources to complete their tasks.



Fig. 2. The overall algorithm of the data verification engine.

Step1: Checking the internal lexicon library. In the first step, a lexicon
library, which maintains domain specific lexicons, is checked. If no match is
found there, the verification process continues.

Step2: Querying the semantic web data repository. The second step uses
an ontology-based QA tool, AquaLog [8], to query the already acquired se-
mantic web data (which is assumed to be correct, i.e. trusted) and to solve
obvious typos and minor errors in the data. This step contains a disam-
biguation mechanism, whose role is to de-reference ambiguous entities (e.g.,
whether the term “star wars” refers to the Lucas’ movie or President Rea-
gan’s military programme).

Step3: Investigating external resources. If the second step fails, the third
step relies on investigating external resources such as the web. An instance
classification tool is developed, which makes use of PANKOW [3] and Word-
Net [5], to determine the appropriate classification of the verified entity.

We will now detail all these three steps.

Step1: Checking the lexicon library. The lexicon library maintains domain
specific lexicons (e.g., abbreviations) and records the mappings between strings
and instance names. One lexicon mapping example in the KMi semantic web
portal is that the string “ou” corresponds to the the-open-university entity. The
verification engine will consider any appearances of this abbreviation as referring
to the corresponding entity.



The lexicon library is initialized by lexicons specified through the mapping
instruction and expands as the verification process goes on. By using the lexicon
library, the verification engine is able to i) exploit domain specific lexicons to
avoid domain specific noisy data and ii) avoid repeating the verification of the
same entity thus making the process more efficient. However, there is a risk
of mis-identifying different entities in different contexts which share the same
name. For example, in one context the name Victoria may refer to the entity
Victoria-Uren and in other contexts it may not.

If no match can be found in this step, the engine proceeds to the next step.
Otherwise, the verification process ends.

Step2: Querying the semantic web data repository. The semantic web
data repository stores both the semantic entries extracted from trusted knowl-
edge sources and the final results of the verification engine. In this second step,
the verification engine relies on AquaLog to find possible matches for the verified
entity in the semantic web data repository.

AquaLog is a fully implemented ontology-driven QA system, which takes
an ontology and a natural language query as an input and returns answers
drawn from semantic data compliant with the input ontology. In the context of
the ASDI infrastructure, we exploit AquaLog’s string matching algorithms to
deal with obvious typos and minor errors in the data. For example, in a news
story a student called Dnyanesh Rajapathak is mentioned. The student name
is however misspelled as it should be Dnyanesh Rajpathak. While the student
name is successfully marked up and integrated, the misspelling problem is carried
into the generated data as well. With support from AquaLog, this problem is
corrected by the verification engine. AquaLog queries the knowledge base for all
entities of type Student and discovers that the difference between the name of
the verified instance (i.e., Dnyanesh Rajapathak) and that of one of the students
(i.e, Dnyanesh Rajpathak) is minimal (they only differ by one letter). Therefore,
AquaLog returns the correct name of the student as a result of the verification.
Note that this mechanism has its downfall when similarly named entities denote
different real life objects.

If there is a single match, the verification process ends. However, when more
matches exist, contextual information is exploited to address the ambiguities.

In the disambiguation step, the verification engine exploits i) other entities
appearing in the same news story and ii) the semantic relations contained in the
semantic web data repository as the contextual information. To illustrate the
mechanism by means of a concrete example, suppose that in the context of the
KMi semantic web portal, ESpotter marks Victoria as a person entity in a news
story. When using AquaLog to find matches for the entity, the verification engine
gets two matches: Victoria-Uren and Victoria-Wilson. To decide which one is
the appropriate match, the verification engine looks up other entities referenced
in the same story and checks whether they have any relation with any of the
matches in the knowledge base. In this example, the AKT project is mentioned
in the same story, and the match Victoria-Uren has a relation (i.e., has-project-



member) with the project. Hence, the appropriate match is more likely to be
Victoria-Uren than Victoria-Wilson.

Fig. 3. The algorithm of the instance classification tool.

Step3: Investigating external resources. When a match cannot be found
in the internal resources, the entity can be:

1) partially correct, e.g., the entity IEEE-conference is classified as an Orga-
nization,

2) correct but new to the system, e.g., the entity IBM, is correctly classified
as an Organization, but the local knowledge sources do not contain this
information so it cannot be validated,

3) miss-classified, e.g., sun-microsystems is classified as a Person, and
4) erroneous, which does not make any sense and should be removed, e.g. the

entity today classified as a Person.

The task of this step is to find out in which category the verified entity falls
into. For this purpose, a classification tool is developed, which uses PANKOW
and WordNet to support the classification of unknown terms. Figure 3 shows
the algorithm of the instance classification tool. We describe each step of this
process and provide as an example the process of verifying the IBM entity which
was classified by ESpotter as an Organization.

Step 3.1. The PANKOW service is used to classify the string IBM. PANKOW
employs an unsupervised, pattern-based approach on web data to categorize the
string and produces a set of possible classifications along with ranking values.
As shown in figure 3, if PANKOW cannot get any result, the term is treated as
erroneous but still can be partially correct. Thus, its variants are investigated
one by one until classifications can be drawn. If PANKOW returns any results,
the classifications with the highest ranking are picked up. In this example, the
term “company” has the highest ranking.

Step 3.2. Next the algorithm uses WordNet to compare the similarity be-
tween the type of the verified entity as proposed by the extraction layer (i.e.,
“organization”) and an alternative type for the entity as returned by PANKOW



(i.e.,“company”). If they are similar (which is the case of the example), it is con-
cluded that the verified entity is classified correctly (its derived type is similar
to that which is most frequently used on the web) but it was not added yet into
the trusted knowledge base. Thus, a new instance (IBM of type Organization)
needs to be created and added to the repository.

If the two compared terms are not similar, other major concepts of the domain
ontology are compared to the web-endorsed type (i.e.,“company”) in an effort
to find a classification for the entity. If one concept is found similar to the web-
endorsed type, it is concluded that the verified entity was wrongly classified by
the extraction layer. The verification engine then associates the verified entity
with the correct concept and places it back to the step 2 (which is to seek matches
from the semantic web data repository). Otherwise, it can be safely concluded
that the verified entity is erroneous.

The User Evaluation Engine While the verification engine is completely
automatic, it is often the case that the knowledge engineers wish to verify the
correctness of this process and to adjust it. For this we are currently developing
an user evaluation engine. The user evaluation engine accepts acquisition logs as
input and produces semantic transformation rules for improving the performance
of the system. As shown in figure 1, the transformation rules are represented in
terms of the instance mapping ontology. The user evaluation engine comprises a
tool which assists users to browse the provenance of semantic data entries and
the verification operations carried out and allows users to give feedback. Another
tool generates transformation rules according to user’s feedback.

5 Evaluation

The KMi semantic web portal has been running for several months generating
and maintaining semantic data from the underlying sources of the KMi web site
in an automated way. In this section, we describe an experimental evaluation of
the quality control mechanism provided by ASDI. We first describe the evalua-
tion setup and the metrics we use (section 5.1). We then discuss the results of
the evaluation (section 5.2).

5.1 Evaluation Setup

We randomly chose 36 news stories from the KMi news archive and then asked
several KMi researchers to manually mark them up in terms of person, organi-
zation and projects. Because the annotators have a good knowledge of the KMi
domain we consider the result of the annotation as a Gold Standard. We used
ASDI to produce semantic data from these news stories and compared the auto-
matically extracted data to the manual annotations. To illustrate the important
role of the verification engine, the performance of ESpotter is introduced in the
comparison, which shows the quality of the extracted data before and after the
verification process.



We assess the results in terms of recall, precision and f-measure, where recall
is the proportion of all possible correct annotations that were found by the
system with respect to the ones that can be in principle extracted from the
source text, precision is the proportion of the extracted annotations that were
found to be correct, and f-measure evaluates the overall performance by treating
recall and precision equally.

5.2 Evaluation Results

Table 1 shows the recall rates of ESpotter and ASDI. The manual annotation
of the news stories identified 92 people, 74 organizations, and 21 projects. Com-
pared to these manual annotations, ESpotter failed to identify 17 people, 16
organizations, and 5 projects, thus reaching an overall recall of 0.798. ASDI
reached a slightly lower recall (0.775) as it missed 21 people, 16 organizations,
and 5 projects in comparison with the manual annotation. The major reason for
this lower recall is that the instance classification tool sometimes has problems
in providing the appropriate classification. In some cases, PANKOW cannot find
enough evidence to produce a satisfactory classification. For example, the clas-
sification of the person named “Marco Ramoni” returns an empty result. As a
consequence, the verification engine loses one correct entry.

Table 1. Recall of ESpotter and ASDI.

Type People Organizations Projects Total

Manual annotations 92 74 21 187

ESpotter failures 17 16 5 38

ESpotter Recall 0.815 0.783 0.761 0.798

ASDI failures 21 16 5 42

ASDI Recall 0.771 0.783 0.761 0.775

Table 2 shows the precision of ESpotter and ASDI. ESpotter discovered 87
people, 96 organizations, and 19 projects when working on the sample stories.
Among them, 11 people and 32 organizations are not correct. This results in an
overall precision of 0.787. On the other hand, ASDI obtained 86 person entities,
74 organization entities, and 19 project entities. Among them, 12 person entities
and 4 organization entities are wrong. Hence, the overall precision of ASDI is
0.911. Note that the ASDI application improves the precision rate significantly.
One major problem of ESpotter is the significant amount of redundant entries.
For example, values like “open-university” and “ou” are often treated as the
same entity. The verification engine gets rid of this problem by defining lexicons
and relying on AquaLog to spot similar entities.

ESpotter derives several inaccurate classifications, which lead to a number
of erroneous values, such as considering “IBM global education”, or “the 2004
IEEE” Organization type entities. These values are successfully corrected during
the verification process by looking up their variants. Finally, some erroneous



values produced by ESpotter are kept out of the target knowledge base, as they
do not make any sense. Examples are“workshop chair”, “center”, etc.

Table 2. Precision of ESpotter and ASDI.

Type People Organizations Projects Total

ESpotter discovered 87 96 19 202

ESpotter spurious 11 32 0 43

ESpotter Precision 0.873 0.667 1 0.787

ASDI discovered 86 74 19 179

ASDI spurious 12 4 0 16

ASDI Precision 0.860 0.946 1 0.911

To give an overall insight in the performance of ASDI versus that of ESpot-
ter we computed the F-measure of these systems by giving equal importance to
both Recall and Precision. The values (listed in table 3) show that ASDI per-
forms better than ESpotter. This means that the quality of the extracted data
is improved by our verification engine.

Table 3. F-Measure of ESpotter and ASDI.

F-measure People Organizations Projects Total

ESpotter 0.843 0.72 0.864 0.792

ASDI 0.813 0.856 0.864 0.837

6 Discussion

The core observation that underlies this paper is that, in the case of semantic
web applications that rely on acquiring and combining semantic web data from
several data sources, it is crucial to ensure that this semantic data has a high
quality. By quality here we mean that the semantic data contains no duplicates,
no errors and that the semantic descriptions correctly reflect the nature of the
described entities. Our survey of a set of semantic web applications that gather
data from several sources shows that little or no attention is paid to ensure the
quality of the extracted data. In most cases heuristics based algorithms are used
to ensure referential integrity. In contrast with these efforts, our semantic web
infrastructure, ASDI, focuses on ensuring the quality of the extracted metadata.

Our evaluation of the quality verification module shows that it improved the
performance of the bare extraction layer. ASDI outperforms ESpotter by achiev-
ing 91% precision and 77% recall. In the context of the KMi portal precision
is more important than recall - erroneous results annoy user more than missing



information. We plan to improve the recall rate by introducing additional infor-
mation extraction engines to work in parallel with ESpotter. Such a redundancy
is expected to substantially improve recall. Another future work we consider is
to evaluate the added value of each component of the verification engine, i.e.,
determine the improvements brought by each individual component.

An interesting feature of ASDI is that it relies on a set of tools that were
developed in the context of the semantic web. These are: the ESpotter adaptive
NER system, the PANKOW annotation service and an ontology based question
answering tool AquaLog. This is a novelty because many similar tools often
adapt existing techniques. For example, the KIM platform adapts off the shelf
NER techniques to the needs of the semantic web. By using these tools we show
that the semantic web reached a development stage where different tools can
be safely combined to produce new, complex functionalities. Another benefit we
derived by using these domain independent tools is that our verification engine
is highly portable. We are currently making it available as a web service.

Once set up, ASDI can run without any human intervention. This is thanks
to the monitors that identify any updates in the underlying data structures and
re-initiate the semantic data creation process for the new data.

We are, however, aware of a number of limitations associated with ASDI. For
example, the manual specification of mappings in the process of setting up the
ASDI application makes the approach heavy to launch. We currently address this
issue by investing the use of automatic or semi-automatic mapping algorithms.
A semi-automatic mapping would allow our tool to be portable across several
different application domains.

Another limitation is related to AquaLog’s lack of providing a degree of
similarity between an entity and its match. For example, when querying for the
entity university-of-London, AquaLog returns a number of matches which are
university entities but it does not specify how similar they are to the entity that
is verified. This has caused a number of problems in the KMi portal scenario.

Our general goal for the future is to make our work more generic by provid-
ing a formal definition of what semantic data quality is and transforming our
prototype into a generic framework for verifying semantic data.

Acknowledgements. This work was funded by the Advanced Knowledge Tech-
nologies Interdisciplinary Research Collaboration (IRC), and the Knowledge
Sharing and Reuse across Media (X-Media) project. AKT is sponsored by the
UK Engineering and Physical Sciences Research Council under grant number
GR/N15764/01. X-Media is sponsored by the European Commission as part of
the Information Society Technologies (IST) programme under EC Grant IST-
FF6-26978.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34 – 43, May 2001.



2. C. Bizer. D2R MAP - A Database to RDF Mapping Language. In Proceedings of
the 12th International World Wide Web Conference, Budapest, 2003.

3. P. Cimiano, S. Handschuh, and S. Staab. Towards the Self-Annotating Web. In
S. Feldman, M. Uretsky, M. Najork, and C. Wills, editors, Proceedings of the 13th
International World Wide Web Conference, pages 462 – 471, 2004.

4. A. Dingli, F. Ciravegna, and Y. Wilks. Automatic Semantic Annotation using Un-
supervised Information Extraction and Integration. In Proceedings of the KCAP-
2003 Workshop on Knowledge Markup and Semantic Annotation, 2003.

5. C. Fellbaum. WORDNET: An Electronic Lexical Database. MIT Press, 1998.
6. E. Hyvonen, E. Makela, M. Salminen, A. Valo, K. Viljanen, S. Saarela, M. Junnila,

and S. Kettula. MuseumFinland – Finnish Museums on the Semantic Web. Journal
of Web Semantics, 3(2), 2005.

7. Y. Lei. An Instance Mapping Ontology for the Semantic Web. In Proceedings of
the Third International Conference on Knowledge Capture, Banff, Canada, 2005.

8. V. Lopez, M. Pasin, and E. Motta. AquaLog: An Ontology-portable Question
Answering System for the Semantic Web. In Proceedings of ESWC, 2005.

9. P. Mika. Flink: Semantic Web Technology for the Extraction and Analysis of Social
Networks. Journal of Web Semantics, 3(2), 2005.

10. N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W. Fergerson, and M.A. Musen.
Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems,
2(16):60 – 71, 2001.

11. B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M. Goranov.
KIM - Semantic Annotation Platform. In D. Fensel, K. Sycara, and J. Mylopou-
los, editors, The SemanticWeb - ISWC 2003, Second International Semantic Web
Conference, Proceedings, volume 2870 of LNCS. Springer-Verlag, 2003.

12. M.C. Schraefel, N.R. Shadbolt, N. Gibbins, H. Glaser, and S. Harris. CS AKTive
Space: Representing Computer Science in the Semantic Web. In Proceedings of the
13th International World Wide Web Conference, 2004.

13. A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke. Semantic
Content Management for Enterprises and the Web. IEEE Internet Computing,
July/August 2002.

14. L. Stojanovic, N. Stojanovic, and R. Volz. Migrating data-intensive web sites into
the semantic web. In Proceedings of the 17th ACM symposium on applied computing
(SAC), pages 1100 – 1107. ACM Press, 2002.

15. Y. Sure, H. Akkermans, J. Broekstra, J. Davies, Y. Ding, A. Duke, R. Engels,
D. Fensel, I. Horrocks, V. Iosif, A. Kampman, A. Kiryakov, M. Klein, Th. Lau,
D. Ognyanov, U. Reimer, K. Simov, R. Studer, J. van der Meer, and F van
Harmelen. On-To-Knowledge: Semantic Web Enabled Knowledge Management.
In N. Zhong, J. Liu, and Y. Yao, editors, Web Intelligence. Springer-Verlag, 2003.

16. F. van Harmelen. How the Semantic Web will change KR: challenges and oppor-
tunities for a new research agenda. The Knowledge Engineering Review, 17(1):93
– 96, 2002.

17. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna.
MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic
Markup. In Proceedings of the 13th International Conference on Knowledge Engi-
neering and Management (EKAW), Spain, 2002.

18. J. Zhu, V. Uren, and E. Motta. ESpotter: Adaptive Named Entity Recognition
for Web Browsing. In Proceedings of the Professional Knowledge Management
Conference, 2004.


