
Acquisition and Maintenance of Constraints in
Engineering Design

Suraj Ajit1, Derek Sleeman1, David W. Fowler1, David Knott2 and Kit Hui1
1Department of Computing Science, University of Aberdeen, Scotland, AB24 3UE, UK

{sajit, sleeman, dfowler, khui}@csd.abdn.ac.uk
2Rolls-Royce plc, Derby, UK, david.knott@rolls-royce.com

ABSTRACT
The Designers’ Workbench is a system, developed by the
Advanced Knowledge Technologies (AKT) consortium to
support designers in large organizations, such as Rolls-
Royce, by making sure that a design is consistent with the
specification for the particular design as well as with the
company’s design rule book(s). Currently, to capture the
constraint information, a domain expert (design engineer)
has to work with a knowledge engineer to identify the con-
straints, and it is then the task of the knowledge engineer to
encode these into the Workbench’s knowledge base (KB).
This is an error prone and time consuming task. It is highly
desirable to relieve the knowledge engineer of this task,
and so we have developed a tool, ConEditor, that enables
domain experts themselves to capture and maintain these
constraints. The tool allows the user to combine selected
entities from the domain ontology with keywords and op-
erators of a constraint language to form a constraint expres-
sion. We hypothesize that to apply constraints appropri-
ately, it is necessary to understand the context in which
each constraint is applicable. We refer to this as “applica-
tion conditions”. We plan to make these application condi-
tions machine interpretable and investigate how they, to-
gether with a domain ontology, can be used to support the
verification and maintenance of constraints.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – knowledge acqui-
sition; I.2.4 [Artificial Intelligence]: Knowledge Represen-
tation Formalisms and Methods; J.2 Physical Sciences and
Engineering- aerospace, engineering

General Terms
Design, Experimentation

Keywords
Constraints, Application conditions, ConEditor, Mainte-
nance

 INTRODUCTION
In this short paper, firstly, we briefly describe how ConEditor
[1] helps design engineers in the acquisition of constraints
that are then used by systems such as Designers’ Work-
bench [2] to support the design activities. The main aim of
ConEditor is to enable domain experts themselves to cap-
ture and maintain the constraints, relieving the knowledge
engineer from this tedious, error prone and time consuming
task. Secondly, we give a sketch of our planned approach
towards the maintenance of constraints.

 Acquisition
ConEditor enables acquisition of constraints in the form of
a high-level constraint language known as CoLan [3]. A
simple constraint expressed in CoLan is as follows:
Constrain each f in Concrete Feature
to have max_operating_temp(has_material(f))
>= operating_temp(f)

This constraint states “For every instance of the class Con-
crete Feature, the value of the maximum operating
temperature of its material must be greater than or equal to
the environmental operating temperature.” ConEditor’s
GUI (Figure 1) consists of five components, namely, key-
words panel, taxonomy panel, central panel, tool bar and
result panel. More details about each panel and how to ex-
press a constraint using ConEditor can be found in [1].

 Maintenance
The engineering design process has an evolutionary and
iterative nature as designed artifacts develop through a se-
ries of changes before a final solution is achieved. A com-
mon problem encountered during the design process is that
of constraint evolution, which may involve the identifica-
tion of new constraints and the modification or deletion of
existing constraints. In order to tackle the various mainte-
nance issues/problems, our proposed approach can be
summarized as follows:
• Capture the “context” of a constraint as an application

condition

• Represent the application conditions in a machine inter-
pretable form

• Use application conditions together with constraints to
support maintenance

Copyright is held by the author/owner(s).
K-CAP’05, October 2–5, 2005, Banff, Alberta, Canada.
ACM 1-59593-163-5/05/0010.

Figure 1 Screenshot of ConEditor’s GUI

Representation of a sample constraint with its application
condition:
Constrain each k in Kite
such that has_type(k) = “Flat”
and has_shape(k) = “Diamond”
to have tail_length(has_tail(k)) = 7 *
spine_length(has_spine(k))

As shown in the above constraint, the application condition
(in italics) is introduced by the clause “such that”. This
constraint states that the length of a tail of a kite needs to be
seven times the length of the spine of the kite; this con-
straint is applicable for flat diamond shaped kites only.

Due to restricted availability of designers’ time and for
simplicity, we have used a kite domain for the case study.
We tried to manually detect different kinds of inconsisten-
cies among constraints and application conditions. These
are explained as follows:

Inconsistencies
Subsumption, contradiction, redundancy are types of incon-
sistencies that can be detected among the constraints and
application conditions using the domain ontology as back-
ground knowledge. For example, consider the following
constraints:

a) Constrain each s in Sled_kite
such that has_size(s) = “standard”
to have kite_line_strength(has_kite_line(s))
>= 15

b) Constrain each c in Conventional_sled_kite
such that has_size(c) = “standard”
to have kite_line_strength(has_kite_line(c))
>= 15

Conventional_sled_kite is a subclass of Sled_kite in the
domain ontology. It can be inferred that a) subsumes b).
The domain expert can be notified to remove or deactivate
constraint b). Similarly, subsumption among application
conditions occurs, when we have:

c) Constrain each s in Sled_kite
such that has_size(s) = “standard” or
has_size(s) = “large”
to have kite_line_strength(has_kite_line(s))
>= 15

d) Constrain each s in Sled_kite
such that has_size(s) = “standard”
to have kite_line_strength(has_kite_line(s))
>= 15

It can be inferred that c) subsumes d) as the application
conditions in d) are included in those of c). Similarly con-
tradiction and redundancy can be detected among con-
straints and their application conditions.

REFERENCES
[1] Ajit S., Sleeman D., Fowler D. W. and Knott D.,

ConEditor: Tool to Input and Maintain Constraints,
EKAW 2004, UK, pp. 466-468.

[2] Fowler D., Sleeman D., Wills G., Lyon T. and Knott
D., Designers’ Workbench, AI 2004, Cambridge,
UK, pp. 209-221.

[3] Gray P., Hui K. and Preece A., An Expressive Con-
straint Language for Semantic Web Applications, E-
Business and the Intelligent Web: Papers from the
IJCAI-01 Workshop, 2001, pp. 46-53.

