
Capture and Maintenance of Engineering
Design Constraints

Suraj Ajit1, Derek Sleeman1, David W. Fowler1, David Knott2 and Kit

Hui1
1Department of Computing Science, University of Aberdeen,

Scotland, UK
{sajit, sleeman, dfowler, khui}@csd.abdn.ac.uk

2Rolls Royce plc, Derby, UK
david.knott@rolls-royce.com

Abstract

The Designers’ Workbench is a system, developed by the Advanced
Knowledge Technologies (AKT) consortium to support designers in
large organizations, such as Rolls Royce, by making sure that the
design is consistent with the specification for the particular design as
well as with the company’s design rule book(s). Currently, to capture
the constraint information, a domain expert (design engineer) has to
work with a knowledge engineer to identify the constraints, and it is
then the task of the knowledge engineer to encode these into the
workbench’s knowledge base (KB). This is an error prone and time-
consuming task. It is highly desirable to relieve the knowledge
engineer of this task, and so we have developed a tool, ConEditor
that enables domain experts themselves to capture and maintain these
constraints. The tool allows the user to combine selected entities
from the domain ontology with keywords and operators of a
constraint language to form a constraint expression. However we
hypothesize that to apply constraints appropriately, it is necessary to
understand the context in which each constraint is applicable. We
refer to this as “application conditions”. We plan to make these
application conditions machine interpretable and investigate how
they, together with a domain ontology, can be used to support the
verification and maintenance of constraints.

1. Introduction
The context for the system reported here, ConEditor [1], is the Designers’
Workbench [2] that we have developed to enable a group of designers to
produce cooperatively a component that conforms to the overall specifications
and the company’s design rule book(s). An introduction to Designers’
Workbench is given in the following section.

1.1 Introduction to the Designers’ Workbench

Designers in Rolls-Royce [3], as in many large organizations, work in teams.
Thus it is important when a group of designers are working on aspects of a
common project, that the subcomponent designed by one engineer is consistent
with the overall specification, and with those designed by other members of the
team. Additionally, all designs have to be consistent with the company’s design
rule book(s). Making sure that these various constraints are complied with is a
complicated process, and so the AKT [4] consortium has developed a
Designers’ Workbench, which seeks to support these activities.

The Designers’ Workbench (Figure 1) uses an ontology [5] to describe elements
in a configuration task. The system supports human designers by checking that
their configurations satisfy both physical and organisational constraints.
Configurations are composed of features, which can be geometric or non-
geometric, physical or abstract. A graphical display enables the designer to
easily add new features, set property values, and perform constraint checks. If a
constraint is violated, the affected features are highlighted and a report is
generated. The report gives the designer a short description of the constraint that
is violated, the features affected by that violation, and a link that can be clicked
on, to read the source document. The designer can resolve the violations by
adjusting the property values of the affected features. On selecting a feature, a
table is listed with the corresponding properties and their values. These property
values can then be adjusted to resolve the constraint violations.

Figure 1 Screenshot of the Designers’ Workbench

1.1.1 What is the problem?

As noted above, the Designers’ Workbench needs access to the various
constraints, including those inherent in the company’s design rule book(s).
Currently, to capture this information, a design engineer (domain expert) works
with a knowledge engineer to identify the constraints, and it is then the task of
the knowledge engineer to encode these into the Workbench’s KB. This is an
error prone and time consuming task. As constraints are explained very briefly
in design rule book(s), a non-expert in the field can find it very difficult to
understand the context and formulate constraints directly from the design rule
book(s), and so a design engineer has to help the knowledge engineer in the
process. Adding a new constraint into Designers’ Workbench’s KB currently
requires coding a query in RDQL (RDF Query Language) [6], and a predicate
in Sicstus Prolog [7].

It would be useful if a new constraint can be formulated in an intuitive way, by
selecting classes and properties from the ontology, and somehow combining
them using a predefined set of operators. This would help engineers to input all
the constraints themselves and relieve the programmer of that task. The
programmer could then certainly avoid having to go through all the design rule
book(s), formulate the constraints and input them into Designers’ Workbench’s
KB. This would also enable designers to have control over the definition and
refinement of constraints, and presumably, to have greater trust in the results of
constraint checks. This led to the development of a system, known as
ConEditor, which enables a domain expert to input and maintain constraints.
ConEditor is explained further in the next section.

2. ConEditor
ConEditor [1] is a tool to enable domain experts themselves to input and
maintain constraints. ConEditor’s graphical user interface (GUI) is shown in
Figure 2. A constraint expression can be created by selecting entities from a
taxonomy (domain ontology) and combining them with a pre-defined set of
keywords and operators from the high level constraint language, CoLan [8, 9].

We shall now consider an example of a constraint and see how it can be input
using ConEditor’s GUI. (Figure 2). One of the constraints states that for every
instance of the class Concrete Feature, the value of the maximum operating
temperature of its material must be greater than or equal to the environmental
operating temperature. This constraint can be expressed in CoLan as follows:

Constrain each f in Concrete Feature
to have max_operating_temp(has_material(f)) >=
operating_temp(f)

ConEditor’s GUI essentially consists of five components, namely, keywords
panel, taxonomy panel, central panel, tool bar and result panel. These panels

provide the user with the various entities required to form a constraint
expression. A brief description of each panel is given below. The ordering
below corresponds to the labels in Figure 2.

A. Keywords panel

This panel consists of a list of keywords from the constraint language CoLan. A
keyword can be selected from this panel to form a component of a constraint
expression. Clicking the “Add” button appends the selected keyword to the
constraint expression being formed in the result panel. In the example
considered, the keywords “Constrain each”, “in” and “to have” are selected
from this list of keywords.

B. Taxonomy panel

This panel displays a taxonomy of classes, subclasses and properties in a tree
structure, extracted from the domain ontology (i.e. the ontology used by
Designers’ Workbench). A node (icon) representing the root of the tree is
initially displayed on the panel. Double-clicking on this node expands the tree,
displaying more nodes of the tree. Nodes represented by letter ‘P’ denote
properties of a class. A node can be selected from this tree and clicking the
“Add” button appends it to the constraint expression being formed in the result
panel. In the example considered, the entities “Concrete Feature”,
“max_operating_temp”, “has_material” and “operating_temp” are selected from
this panel.

Figure 2 Screenshot of ConEditor’s GUI

A B

C

D

E

C. Central panel

This panel has two sections. One is the constant section, where two text fields
are provided for inputting real and integer constants. Clicking the “update”
button appends the constant to the constraint expression being formed. The
other is the functions section, where function buttons are provided for editing
the constraint expression, adding a constant, refreshing the panel and creating a
table.

D. Tool bar

The Tool Bar displays the arithmetic, relational and logical operators and
delimiters. Clicking on any of the operators appends the operator to the result
panel. The operator ‘>=’ and the delimiters ‘(‘, ‘)’ in the example are chosen
from the tool bar.

E. Result panel

This is situated at the bottom of the main screen. It contains a large text area,
displaying the evolving expression specified by the user. Edit/Style menus are
provided, on right-clicking the mouse in the result panel, which allow the user
to undo/redo actions, cut, copy and paste text and specify the font and size of
the text.

ConEditor is implemented in the Java programming language; the ontology
(developed in OWL [10]) is read using Jena [3], and the Protégé [11] tool is
used to develop/view the ontology. The constraints expressed in CoLan using
ConEditor, can be converted into a XML encoded standard format, Constraint
Interchange Format (CIF) [9], making them portable. Constraint solvers or
systems such as Designers’ Workbench can then process these constraints.

2.1 Constraints in tabular form

An analysis of the Rolls-Royce’s design rule book(s) showed that a number of
constraints are expressed in tables. ConEditor has a facility to input such
constraints in tabular form. A table is created using the “Create Table” function
button in the central panel. Clicking this button prompts the user to enter the
desired number of rows and columns in the table. Further, clicking the “OK”
button after each entry accepts the value. A table is then created with the
specified number of rows and columns and opens up in a new window (Figure
3). The column headers of the table are set by importing entities from the
taxonomy panel, using the “Export” button, located at the bottom end of the
taxonomy panel. Depending on the entities in the column headers, particular
columns are provided with drop-down menus in their fields, consisting of a set
of values to choose from. There are facilities provided to add/delete rows and
columns to/from the table, resize the columns of the table, etc. Figure 3 shows a
table created using ConEditor.

Figure 3 A screenshot showing constraints expressed in tables using ConEditor

3. Evaluation
A demonstration of the system was given to several design engineers at Rolls-
Royce plc, Derby, UK. The focus of the demonstration was one of the
constraints found in the design rule book(s). This demonstration involved 3
distinct phases:

Phase 1: Presenting the constraint as in the rule book(s)

The description of the constraint, as found in the rule book(s), is shown in
Figure 4. The design rule book(s) gives the description of constraints, in the
form of tables and figures in most cases and very little explanation is provided.
Clearly, it is very hard for a non-expert to understand the context and to
formulate a constraint from the rule book(s). The English rendering of a part of
the constraint in Figure 4 is:

Constraint: Bolted joints must conform to the formula

Nmin = PCD + 2*M + Max. Nut Width

where Nmin = trap diameter of the flange, PCD = pitch circle diameter of flange
and 150.0<PCD<=180.0, M = gap in the flange = 0.5.

Phase 2: Expressing the constraint in CoLan

This constraint can be expressed in CoLan as:

Constrain each j in Bolted Joint
such that has_nut(j) in Captive Nut
and dimension(pcd(has_flange(j))) > 150.0
and dimension(pcd(has_flange(j))) <= 180.0
and not is_external(has_flange(j))
to have gap(has_flange(j))= 0.5
and trap_diameter(has_flange(j))=
dimension(pcd(has_flange(j))
+ 2 * gap(has_flange(j))
+dimension(captive_nut_width(has_nut(j))
+tolerance(captive_nut_width(has_nut(j)))

Phase 3: Representing the expression in CoLan using
ConEditor

In the final stage of the demonstration, the CoLan expression was input to
ConEditor by its developer (Suraj Ajit).

3.1 Overview

• The GUI seems to be simple, user friendly and fairly intuitive to use.

• The designers were able to follow the steps where we mapped a
constraint written in English to one expressed in CoLan; further they
were able to understand how the CoLan expression was input to the
ConEditor system. However, they felt they would need training to do
either of these stages unsupported.

• Controlled Acquisition Scenario: The tool restricts the user to choose
from a limited number of pre-defined keywords of the constraint
language CoLan. Even though the constraint language is expressive
and user-friendly, the engineers said they were not as comfortable
about using it as with expressing the constraint directly in English.

• They also made the general point that in this company it is the Design
Standards group that has the responsibility for creating and
maintaining the company-wide rule book(s), and so they would expect
the standards group to input such constraints into a system like
ConEditor. The designers would subsequently use the information
either in the current form or in a Designers’ Workbench-like
environment.

It is planned to conduct more trials of ConEditor with a wide range of engineers
shortly.

Figure 4 Constraint as expressed in the rule book (s)

4. Proposed system architecture
The proposed system architecture in Figure 5 shows how ConEditor fits into the
whole framework. A Design Standards author initially inputs all the design rules
(constraints) into ConEditor. The design rules are initially represented in a
constraint language known as CoLan. They are then converted into a standard
machine interpretable format known as Constraint Interchange Format (CIF)
[9]. These are then transformed into appropriate RDQL [6] queries and Sicstus
Prolog [7] predicates for use in the Designers’ Workbench. More details about
how they are used in Designers’ Workbench can be found in [2]. As can be seen
from Figure 5, it is planned to interface Designers’ Workbench to a more
sophisticated CAD/KBE system. The domain knowledge is represented as an
ontology in OWL [10] and is used by both Designers’ Workbench and
ConEditor.

5. Maintenance of constraints in engineering design
The issues faced in KB maintenance were first raised by the XCON
configuration system at Digital Equipment Corporation [12, 13]. Initially it was
assumed that knowledge-based systems could be maintained by simply adding
new elements or replacing existing elements. However this “simplicity” proved
to be illusory as indicated by the experience of R1/XCON [14].

The engineering design process has an evolutionary and iterative nature as
designed artifacts develop through a series of changes before a final solution is
achieved. A common problem encountered during the design process is that of

constraint evolution, which may involve the identification of new constraints
and the modification or deletion of existing constraints. The reasons for such
changes include changes in the technology, changes to improve performance,
changes to reduce development costs, time, changes in application contexts.

In order to reduce/overcome the various maintenance issues/problems, systems
that capture and represent the rationales associated with design knowledge have
been developed. Design rationales [8, 17] capture the following types of
information:

a) the reasons behind the design decisions taken (why a decision was taken).

b) the design alternatives considered with reasons for acceptance/rejection.

c) how certain design actions are performed.

However, design rationale systems have not been capturing information about
when a particular section of the design knowledge is applicable. It is important
to know the context in which a particular constraint or a rule can be applied. We
refer to this as the application conditions associated with a constraint. Consider
the following constraint in the domain of kite design along with its associated
rationale and application condition:

Figure 5 Proposed system architecture

Constraint – “The strength of the kite line of a kite needs to be greater than 90
daN1 units”

Associated rationale – This provides the required stability for the kite to fly.

Application condition – This is applicable for stunt kites (of standard size) in
strong winds only.

The difference between a rationale and an application condition is evident from
the constraint considered above; the rationale states the reason for a constraint
(why), whereas the application condition states the context in which it is
applicable (when).

5.1 Our planned approach

In order to tackle the various maintenance issues/problems, our proposed
solution can be summarized as follows:

• Capture the “context” of a constraint as an application condition

• Represent the application conditions in a machine interpretable form

• Use application conditions together with constraints to support
maintenance

We intend to capture the “context” of each constraint i.e. the information
pertaining to when a constraint is applicable referred to as its application
conditions. Often, such information is implicit to the person who formulates the
constraint. It is important to make the application conditions explicit so that it
can be used for both maintenance and reuse. The assumptions/conditions on
which a constraint is based may no longer be true/applicable; in such cases, it
becomes necessary to deactivate or remove those constraints. Further an
application condition may not be satisfied by a particular design task.

We plan to capture both the constraint and the application conditions in the
same language, which is CoLan [6]. Both the constraints and the application
conditions will then be converted into a standard machine interpretable format
known as CIF [9]. The system can then detect inconsistencies among the
constraints and application conditions, in which case, it could notify the user
and suggest the constraint(s) be removed or modified. In the next section, we
describe a case study based on a sample kite design.

5.2 Case study

Due to restricted availability of designers’ time and for simplicity, we have used
a kite domain for the case study. We tried to manually detect different kinds of
inconsistencies among constraints and application conditions. These are
explained as follows:

1 symbol for deca Newton, a common metric unit of force.

Representation of a sample constraint with its application condition:

Constrain each k in Kite
such that has_type(k) = “Flat”
and has_shape(k) = “Diamond”
to have tail_length(has_tail(k)) = 7 *
spine_length(has_spine(k))

As shown in the above constraint, the application condition (in italics) is
introduced by the clause “such that”. This constraint states that the length of a
tail of a kite needs to be seven times the length of the spine of the kite; this
constraint is applicable for flat, diamond shaped kites only.
Subsumption, contradiction, redundancy are types of inconsistencies that can be
detected among the constraints and application conditions using the domain
ontology as background knowledge. For example, consider the following
constraints:

a) Constrain each s in Sled_kite
such that has_size(s) = “standard”
to have kite_line_strength(has_kite_line(s)) >= 15

b) Constrain each c in Conventional_sled_kite
such that has_size(c) = “standard”
to have kite_line_strength(has_kite_line(c)) >= 15

Conventional_sled_kite is a subclass of Sled_kite in the domain ontology. It can
be inferred that a) subsumes b). The domain expert can be notified to remove or
deactivate constraint b). Similarly, subsumption among application conditions
occurs, when we have:

a) Constrain each s in Sled_kite
such that has_size(s) = “standard” or has_size(s) =
“large”
to have kite_line_strength(has_kite_line(s)) >= 15

b) Constrain each s in Sled_kite
such that has_size(s) = “standard”
to have kite_line_strength(has_kite_line(s)) >= 15

It can be inferred that a) subsumes b) as the application conditions in b) are
included in those of a). The domain expert can then be notified of this fact and
be allowed to decide what action (if any) to take.

It is planned to develop a domain ontology in OWL [16] using Protégé [15] and
to input both the constraints and the application conditions using an extended
version of ConEditor that can detect and resolve such inconsistencies.

6. Related work
Alice [15] is another declarative language for the expression of complex logic
based constraints, closely related to CoLan. In comparison with Alice, CoLan
has better readability and expressive power. Goonetillake and Wikramanayake

[16] propose a framework for the management of evolving constraints in a
computerized engineering design environment. But there is no mention of
capturing the contexts/application conditions associated with the constraints.
Enabling a domain expert to maintain his own knowledge in a knowledge-based
system has long been an ideal for the knowledge engineering community. Burge
and Brown [17] investigate the use of design rationales by building InfoRat, a
system that makes inferences over a design’s rationales in order to detect
inconsistencies in the decisions made and to assess the impact of proposed
changes. ConEditor’s objective is to develop a maintenance tool to help domain
experts directly implement the required changes in the system without repeated,
time consuming and error prone interactions with a knowledge engineer. Regli,
et al. [18] provide a survey on recent research in the area of design rationales;
this paper reviews a number of recent design rationale systems, including
JANUS, COMET, ADD, REMAP, HOS, PHIDIAS, DRIVE and IBIS.

7. Summary and future work
In this paper, we describe a methodology to enable domain experts to capture
and maintain constraints in an engineering design environment. The context is a
system known as Designers’ Workbench that has been developed to
automatically check if all the constraints have been satisfied and if not, enable
the designers to resolve them. Designers’ Workbench is faced with the task of
accumulating all the constraints associated with the domain. This needs a
knowledge engineer to study the design rule book(s), consult the design
engineer (domain expert) and encode all the constraints into the Designers’
Workbench. We describe the tool ConEditor that has been developed to help
domain experts themselves capture and maintain engineering design constraints
for use in systems such as Designers’ Workbench.

We hypothesize that in order to apply constraints appropriately, it is necessary
to capture the context, the application conditions, associated with the constraints
and that these would be beneficial for maintenance. A case study on a sample
kite design domain has been performed. A number of constraints and their
associated application conditions were elicited and input into ConEditor.

As part of the future work, it is planned to extend ConEditor to enable detection
and resolution of inconsistencies among constraints and application conditions.
A query facility using RDQL [6] to retrieve the appropriate constraints and
application conditions according to specified criteria is planned. We then plan
to further apply our ideas of application conditions to aspects of Rolls-Royce’s
design work.

8. Acknowledgements
This work is supported by the EPSRC Sponsored Advanced Knowledge
Technologies project, GR/NI5764, which is an Interdisciplinary Research
Collaboration involving the University of Aberdeen, the University of

Edinburgh, the Open University, the University of Sheffield and the University
of Southampton. We would like to acknowledge the assistance of engineers and
designers in the Transmissions and Structures division of Rolls-Royce plc,
Derby, UK.

References
1. Ajit S., Sleeman D., Fowler D. W. and Knott D., ConEditor: Tool to Input and

Maintain Constraints, Proceedings of EKAW 2004, October 5-8, Whittlebury
Hall, Northampton, UK, 2004, pp. 466 - 468.

2. Fowler D., Sleeman D., Wills G., Lyon T. and Knott D., Designers'

Workbench, Proceedings of the Twenty-fourth SGAI International Conference
on Innovative Techniques and Applications of Artificial Intelligence,
Cambridge, UK, 2004.

3. Rolls-Royce, Derby, UK, [WWW], Available from: http://www.rolls-

royce.com/, [Accessed].

4. AKT, Advanced Knowledge Technologies (AKT Project), [WWW], Available

from: http://www.aktors.org/akt/, [Accessed].

5. Chandrasekaran B., Josephson J. R. and Benjamins V. R. What are ontologies

and why do we need them? IEEE Intelligent Systems Jan/Feb 1999; 14:20-26

6. Jena, A semantic web framework for Java, [WWW], Available from:

http://jena.sourceforge.net/index.html, [Accessed].

7. Prolog S. Version 3.10.0, Swedish Institute of Computer Science 2001.

8. Bassiliades N. and Gray P. CoLan: a Functional Constraint Language and Its

Implementation Data and Knowledge Engineering 1994; 14:203-249

9. Gray P., Hui K. and Preece A., An Expressive Constraint Language for

Semantic Web Applications, E-Business and the intelligent Web: Papers from
the IJCAI-01 Workshop, 2001, pp. 46-53.

10. OWL, OWL Web Ontology Language, [WWW], Available from:

http://www.w3.org/TR/owl-features/, [Accessed].

11. Noy N. F., Fergerson R. W. and Musen M. A., The knowledge model of

Protege-2000: Combining interoperability and flexibility, International
Conference on Knowledge Engineering and Knowledge Management (EKAW'
2000), Juan-les-Pins, France, 2000.

12. Barker V. E. and O'Connor D. E. Expert Systems for Configuration at Digital:

XCON and Beyond Communications of the ACM 1989; 32:298-318.

13. Soloway E., Bachant J. and Jensen K., Assessing the Maintainability of

XCON-in-RIME: Coping with Problems of a Very Large Rule-Base,
Proceedings of AAAI-87, 1987, pp. 824-829.

14. Coenen F. P., A Methodology for the Maintenance of Knowledge based
Systems, In Niku-Lari, A. (Ed), EXPERSYS-92 (Proceedings), IITT-
International, Gournay sur Marne, France, 1992, pp. 171-176.

15. Urban S., ALICE: an Assertion Language for Integrity Constraint Expression,

Conference on Computer Software Applications, 1989.

16. Goonetillake J. S. and Wikramanayake G. N., Management of Evolving

Constraints in a Computerised Engineering Design Environment, Proceedings
of the 23rd National IT Conference, Colombo, Sri Lanka, 2004.

17. Burge J. E. and Brown D. C., Reasoning with Design Rationale, in Artificial

Intelligence in Design '00, J. Gero, Ed. Netherlands: Kluwer Academic
Publishers, 2000, pp. 611-629.

18. Regli W. C., Hu X., Atwood M. and Sun W. A Survey of Design Rationale

Systems: Approaches, Representation, Capture and Retrieval Engineering with
Computers: An Int'l Journal for Simulation-Based Engineering, special issue
on Computer Aided Engineering in Honor of Professor Steven J. Fenves, 2000
2000; 16:209-235.

