Capture and Maintenance of Engineering
Design Constraints

Suraj Ajitt, Derek SleemdnDavid }N Fowlet, David Knottand Kit
Hui
!Department of Computing Science, University of Atesm,
Scotland, UK
{sqjit, sleeman, dfowler, khui}@csd.abdn.ac.uk
“Rolls Royce plc, Derby, UK
david.knott@rolls-royce.com

Abstract

The Designers’ Workbench is a system, developedéydvanced
Knowledge Technologies (AKT) consortium to supporsigeers in

large organizations, such as Rolls Royce, by makung that the
design is consistent with the specification for piagticular design as
well as with the company’s design rule book(s).r€ntly, to capture
the constraint information, a domain expert (desiggineer) has to
work with a knowledge engineer to identify the doaisits, and it is
then the task of the knowledge engineer to encbdset into the
workbench’s knowledge base (KB). This is an erranprand time-
consuming task. It is highly desirable to relievee tknowledge
engineer of this task, and so we have developetbla ConEditor

that enables domain experts themselves to captrenaintain these
constraints. The tool allows the user to combineced entities
from the domain ontology with keywords and opemataf a

constraint language to form a constraint expressitmwever we
hypothesize that to apply constraints appropriaiélg necessary to
understand the context in which each constrairgpiglicable. We
refer to this as “application conditions”. We plém make these
application conditions machine interpretable andestigate how
they, together with a domain ontology, can be usedupport the
verification and maintenance of constraints.

1. Introduction

The context for the system reported here, ConEditdr if the Designers’
Workbench [2] that we have developed to enable aumrof designers to
produce cooperatively a component that conformihdooverall specifications
and the company’'s design rule book(s). An introimctto Designers’
Workbench is given in the following section.

1.1 Introduction to the Designers’ Workbench

Designers in Rolls-Royce [3], as in many large aigations, work in teams.

Thus it is important when a group of designers aoekimg on aspects of a
common project, that the subcomponent designedhbyengineer is consistent
with the overall specification, and with those desid by other members of the
team. Additionally, all designs have to be consisteith the company’s design
rule book(s). Making sure that these various cairgs are complied with is a
complicated process, and so the AKT [4] consortiuas hdeveloped a

Designers’ Workbench, which seeks to support thetigities.

The Designers’ Workbench (Figure 1) uses an ontol6pto describe elements
in a configuration task. The system supports hunesigders by checking that
their configurations satisfy both physical and origational constraints.
Configurations are composed of features, which bangeometric or non-
geometric, physical or abstract. A graphical digptamables the designer to
easily add new features, set property values, anfgn constraint checks. If a
constraint is violated, the affected features aighllyghted and a report is
generated. The report gives the designer a shartigésn of the constraint that
is violated, the features affected by that violatiand a link that can be clicked
on, to read the source document. The designer catvesthe violations by
adjusting the property values of the affected flee@UON selecting a feature, a
table is listed with the corresponding propertied their values. These property
values can then be adjusted to resolve the constrialations.

8 Dosigners orkbench [est

e
REIEE BEY BE

eeeeeeeeee

Figure 1 Screenshot of the Designers’ Workbench

1.1.1 What isthe problem?

As noted above, the Designers’ Workbench needssacte the various
constraints, including those inherent in the comfsmmesign rule book(s).
Currently, to capture this information, a desiggiaeer (domain expert) works
with a knowledge engineer to identify the constigiand it is then the task of
the knowledge engineer to encode these into thekiéoch's KB. This is an
error prone and time consuming task. As constrairgsexplained very briefly
in design rule book(s), a non-expert in the fielth dind it very difficult to
understand the context and formulate constraimectly from the design rule
book(s), and so a design engineer has to help nbwlkdge engineer in the
process. Adding a new constraint into Designersriliench’s KB currently
requires coding a query in RDQL (RDF Query Langud@g)and a predicate
in Sicstus Prolog [7].

It would be useful if a new constraint can be folaited in an intuitive way, by

selecting classes and properties from the ontolagy, somehow combining
them using a predefined set of operators. This wheald engineers to input all
the constraints themselves and relieve the progemofi that task. The

programmer could then certainly avoid having tatlgough all the design rule
book(s), formulate the constraints and input theta Designers’ Workbench'’s
KB. This would also enable designers to have cordvelr the definition and

refinement of constraints, and presumably, to fgreater trust in the results of
constraint checks. This led to the development ofyatem, known as

ConEditor, which enables a domain expert to input araintain constraints.

ConEditor is explained further in the next section.

2. ConEditor

ConEditor [1] is a tool to enable domain expertsntbelves to input and
maintain constraints. ConEditor's graphical useeriiace (GUI)is shown in
Figure 2. A constraint expression can be createddbdgcting entities from a
taxonomy (domain ontology) and combining them watlpre-defined set of
keywords and operators from the high level constlanguage, ColLan [8, 9].

We shall now consider an example of a constraidtsee how it can be input
using ConEditor's GUI. (Figure 2). One of the coasits states that for every
instance of the class Concrete Feature, the vadlubeomaximum operating
temperature of its material must be greater thaaquaal to the environmental
operating temperature. This constraint can be egpdeim ColLan as follows:

Constrain each f in Concrete Feature
t o have max_operating_temp(has_material(f)) >=
operating_temp(f)

ConEditor's GUI essentially consists of five compotse namely, keywords
panel, taxonomy panel, central panel, tool bar mssdlt panel. These panels

provide the user with the various entities requirted form a constraint
expression. A brief description of each panel igegi below. The ordering
below corresponds to the labels in Figure 2.

A. Keywords panel

This panel consists of a list of keywords from tbhestraint language CoLan. A
keyword can be selected from this panel to formompmonent of a constraint
expression. Clicking the “Add” button appends tlebested keyword to the
constraint expression being formed in the resulbhepaln the example
considered, the keywords “Constrain each”, “erid “to have” are selected
from this list of keywords.

B. Taxonomy panel

This panel displays a taxonomy of classes, subdaasée properties in a tree
structure, extracted from the domain ontology (ilee ontology used by
Designers’ Workbench). A node (icon) representihg toot of the tree is
initially displayed on the panel. Double-clicking this node expands the tree,
displaying more nodes of the tredodes represented by letter ‘P’ denote
properties of a class. A node can be selected flostree and clicking the
“Add” button appends it to the constraint expresdieing formed in the result
panel. In the example considered, the entities “Concrete Feature”
“max_operating_temp”, “has_material” and “operatitemp” are selected from
this panel.

& AEE

KEYWORDS TAXONOMY

2@ CdFeature

name

drawing_marker
awner
source_doc

@ [T Concrete Feature

? Phas,matena\
alpha_tode
rnax_operating_termp.
Add HCDHS"EIH each Add ‘ has_material || Export
CONSTANTS FUNCTIONS
Real ERASE UPDATE
Integer REFRESH CREATE TABLE
TOOL BAR @
() + — %/ =<>< 2 not and or
Constrain each fin Concrele Faalure T

Undo addition

to have max_operafing_temp (has_material ()) == operating_temp (f) Style +| Redo deletion
cut-to-clipboard
copy-to-cliphoard

paste-from-cliphoard

select-all

Figure 2 Screenshot of ConEditor's GUI

C. Central panel

This panel has two sections. One is the constatibeeevhere two text fields
are provided for inputting real and integer constarClicking the “update”
button appends the constant to the constraint egjme being formed. The
other is the functions section, where function dmstare provided for editing
the constraint expression, adding a constant,gieiffitg the panel and creating a
table.

D. Tool bar

The Tool Bar displays the arithmetic, relational dndical operators and
delimiters. Clicking on any of the operators appetite operator to the result
panel. The operator ‘>=" and the delimiters (', iji the example are chosen
from the tool bar.

E. Result panel

This is situated at the bottom of the main screeoomtains a large text area,
displaying the evolving expression specified by tser. Edit/Style menus are
provided, on right-clicking the mouse in the resqdnel, which allow the user
to undo/redo actions, cut, copy and paste textspetify the font and size of
the text.

ConEditor is implemented in the Java programmingylage; the ontology
(developed in OWL [10]) is read using Jena [3], dnel Protégé [11] tool is
used to develop/view the ontology. The constrainfgressed in ColLan using
ConEditor, can be converted into a XML encoded stahftarmat, Constraint
Interchange Format (CIF) [9], making them portalBanstraint solvers or
systems such as Designers’ Workbench can thenggdlcese constraints.

2.1 Constraints in tabular form

An analysis of the Rolls-Royce’s design rule bodlstsowed that a number of
constraints are expressed in tables. ConEditor héacifity to input such
constraints in tabular form. A table is createchgghe “Create Table” function
button in the central panel. Clicking this buttommpts the user to enter the
desired number of rows and columns in the tablethEy clicking the “OK”
button after each entry accepts the value. A tabléhen created with the
specified number of rows and columns and openswpriew window (Figure
3). The column headers of the table are set by itimgoentities from the
taxonomy panel, using the “Export” button, locattdthe bottom end of the
taxonomy panel. Depending on the entities in thieimo headers, particular
columns are provided with drop-down menus in tfieids, consisting of a set
of values to choose from. There are facilities piedi to add/delete rows and
columns to/from the table, resize the columns eftttble, etc. Figure 3 shows a
table created using ConEditor.

fgglication Type | Hole Diameter | NutWicth | Boh Diameter

Clearance PD Shank 575 583 483

Cloge clearance 738 756 £.35

Clearance PD Shank 898 816 794

Clearance PD Shank 10415 10,605 853

Clearance PD Shank 12115 12205 11.11

Clearance PD Shank 11714 13805 1270

Cloge clearance 504 512 483

Cloge clearance £.575 B.755 £.35

v
(Clearance PD Shank Addl Row
Close clearance Delete Row
Resize Subsequent Columns ¥

Aidd Column
Delete Calumn

Figure 3 A screenshot showing constraints expreisstbles using ConEditor

3. Evaluation

A demonstration of the system was given to sevdealgn engineers at Rolls-
Royce plc, Derby, UK. The focus of the demonstratisas one of the
constraints found in the design rule book(s). Theésndnstration involved 3
distinct phases:

Phase 1: Presenting the constraint as in the ruledok(s)

The description of the constraint, as found in thke tbook(s), is shown in
Figure 4. The design rule book(s) gives the desoripdf constraints, in the
form of tables and figures in most cases and \ifg Explanation is provided.
Clearly, it is very hard for a non-expert to undensl the context and to
formulate a constraint from the rule book(s). ThelBhgendering of a part of
the constraint in Figure 4 is:

Constraint: Bolted joints must conform to the formula
Nmin= PCD + 2*M + Max. Nut Width

where N,,= trap diameter of the flange, PCD = pitch circiandgeter of flange
and 150.0<PCD<=180.0, M = gap in the flange = 0.5.

Phase 2: Expressing the constraint in CoLan

This constraint can be expressed in ColLan as:

Constrain eachj in Bolted Joint
such t hat has_nut()) i n Captive Nut
and dimension(pcd(has_flange(j))) > 150.0
and dimension(pcd(has_flange(j))) <= 180.0
and not is_external(has_flange(j))

t o have gap(has_flange(j))= 0.5

and trap_diameter(has_flange(j))=
dimension(pcd(has_flange(j))

+ 2 * gap(has_flange(j))
+dimension(captive_nut_width(has_nut(j))
+tolerance(captive_nut_width(has_nut(j)))

Phase 3: Representing the expression in CoLan using
ConEditor

In the final stage of the demonstration, the ColLapression was input to
ConEditor by its developer (Suraj Ajit).

3.1 Overview
* The GUI seems to be simple, user friendly and fairyitive to use.

e« The designers were able to follothe steps where we mapped a
constraint written in English to one expressed in&n further they
were able to understand how the CoLan expressioninpag to the
ConEditor system. However, they felt they would chémining to do
either of these stages unsupported.

« Controlled Acquisition Scenario: The tool restrithe user to choose
from a limited number of pre-defined keywords ok tkonstraint
language ColLan. Even though the constraint langusigexpressive
and user-friendly, the engineers said they were asotcomfortable
about using it as with expressing the constrairgadlly in English.

« They also made the general point that in this comjitais the Design
Standards group that has the responsibility foratang and
maintaining the company-wide rule book(s), andrey twould expect
the standards group to input such constraints mtgystem like
ConEditor. The designers would subsequently use rif@nation
either in the current form or in a Designers’ Wakbh-like
environment.

It is planned to conduct more trials of ConEditothwa wide range of engineers
shortly.

Internally trapped nuts (see Fig 4 Table 4) {

Pa¥it —
TABLE 4 é’ —-‘*n.
l_ljfi 0 | om | //i/@
[m om | e \ '
15 | L \ ———
il wA
! J|1‘..i“ | 0,60 = ;f \/

d N MIN.= PCD (NOM) + 2M + MAX.NUT WIOTH a’fl ~ FCD NOM
J N MIN.= PCD (NOM) + 2M + MAX.NUT WIOT) L e ’
(SEE TABLE 5) OLERANCE

GRADE IT.8

3

Figure 4 Constraint as expressed in the rule bgok (s

4. Proposed system architecture

The proposed system architecture in Figure 5 sh@ms@onEditor fits into the

whole framework. A Design Standards author iniiatiputs all the design rules
(constraints) into ConEditor. The design rules aréally represented in a
constraint language known as ColLan. They are thewectad into a standard
machine interpretable format known as Constraimérohange Format (CIF)
[9]. These are then transformed into appropriate RIP&) queries and Sicstus
Prolog [7] predicates for use in the Designers’ kbench. More details about
how they are used in Designers’ Workbench can bedan [2]. As can be seen
from Figure 5, it is planned to interface DesighaMorkbench to a more

sophisticated CAD/KBE system. The domain knowledgeemesented as an
ontology in OWL [10] and is used by both Designeorkbench and

ConEditor.

5. Maintenance of constraints in engineering design

The issues faced in KB maintenance were first raibgd the XCON

configuration system at Digital Equipment Corponatj®2, 13]. Initially it was
assumed that knowledge-based systems could beaim@idtby simply adding
new elements or replacing existing elements. How#he “simplicity” proved

to be illusory as indicated by the experience oX&ION [14].

The engineering design process has an evolutionady iterative nature as
designed artifacts develop through a series of gémmefore a final solution is
achieved. A common problem encountered during #sgad process is that of

constraint evolution, which may involve the ideictition of new constraints
and the modification or deletion of existing coasits. The reasons for such
changes include changes in the technology, chatmgaaprove performance,
changes to reduce development costs, time, chamggplication contexts.

In order to reduce/overcome the various mainten@gsees/problems, systems
that capture and represent the rationales assdaiatie design knowledge have
been developed. Design rationales [8, 17] capthee following types of
information:

a) the reasons behind the design decisions takiepgwlecision was taken).
b) the design alternatives considered with reafmmacceptance/rejection.
¢) how certain design actions are performed.

However, design rationale systems have not beeturiag information about
when a particular section of the design knowledgapiplicable. It is important
to know the context in which a particular constraina rule can be applied. We
refer to this as thapplication conditions associated with a constraint. Consider
the following constraint in the domain of kite dgsialong with its associated
rationale and application condition:

f Feature Ontology |
(OWL)

CADIKBE
system Designer

ConEditor]‘
Designers'

Warkbench

Deslon Standards Authar

Design Rules
{CoLan) Sicstus Constraints
pradicates {OWL)
h A
| [\
1= CIF
bl Design Rules CIF > RDGL/
* (CF) » Sicstus Prolog
convartar

Figure 5 Proposed system architecture

Constraint — “The strength of the kite line of aekiteeds to be greater than 90
daN' units”

Associated rationale — This provides the requiradilty for the kite to fly.

Application condition — This is applicable for stukites (of standard size) in
strong winds only.

The difference between a rationale and an applicatimdition is evident from
the constraint considered above; the rationalestdie reason for a constraint
(why), whereas the application condition states toatext in which it is
applicable (when).

5.1 Our planned approach

In order to tackle the various maintenance issueslpms, our proposed
solution can be summarized as follows:

« Capture the “context” of a constraint as an apptcacondition
* Represent the application conditidnsa machine interpretable form

« Use application conditions together with constiind support
maintenance

We intend to capture the “context” of each conastrdie. the information

pertaining to when a constraint is applicable meférto as its application
conditions. Often, such information is implicitttee person who formulates the
constraint. It is important to make the applicat@mnditions explicit so that it
can be used for both maintenance and reuse. Thenpsuas/conditions on

which a constraint is based may no longer be tppdi@able; in such cases, it
becomes necessary to deactivate or remove thosstraions. Further an

application condition may not be satisfied by aipatar design task.

We plan to capture both the constraint and theiegimn conditions in the
same language, which is CoLan [6]. Both the constsa@and the application
conditions will then be converted into a standarthine interpretable format
known as CIF [9]. The system can then detect insteisties among the
constraints and application conditions, in whiclsesait could notify the user
and suggest the constraint(s) be removed or mddifie the next section, we
describe a case study based on a sample kite design

5.2 Case study

Due to restricted availability of designers’ timadafor simplicity, we have used
a kite domain for the case study. We tried to miyaketect different kinds of
inconsistencies among constraints and applicationditions. These are
explained as follows:

! symbol for deca Newton, a common metric unit a€é

Representation of a sample constraint with itsiapfibn condition:

Constrain eachk inKite

such that has_type(k) = “Flat”

and has_shape(k) = “Diamond”

to have tail_length(has_tail(k)) =7 *
spine_length(has_spine(k))

As shown in the above constraint, the applicati@mdition (in italics) is
introduced by the clause “such that”. This constratates that the length of a
tail of a kite needs to be seven times the lendtthe spine of the kite; this
constraint is applicable for flat, diamond shapeditesk only.
Subsumption, contradiction, redundancy are typasausistencies that can be
detected among the constraints and application itonsl using the domain
ontology as background knowledge. For example, idensthe following
constraints:

a)Constrain eachs in Sled_kite
such that has_size(s) = “standard”
to have kite line_strength(has_kite line(s)) >= 15

b) Constrai n eachc i n Conventional_sled_kite
such that has_size(c) = “standard”
t o have kite_line_strength(has_kite_line(c)) >= 15

Conventional_sled kite is a subclass dlled kite in the domain ontology. It can
be inferred that a) subsumes b). The domain exparbe notified to remove or
deactivate constraint b). Similarly, subsumptionoam application conditions
occurs, when we have:

a)Constrain eachs in Sled kite

such that has_size(s) = “standard” or has_size(s) =
“large”

t o have kite_line_strength(has_kite_line(s)) >= 15

b)Constrain eachs in Sled kite
such that has_size(s) = “standard”
t o have kite_line_strength(has_kite_line(s)) >= 15

It can be inferred that a) subsumes b) as the @gijgin conditions in b) are
included in those of a). The domain expert can theemotified of this fact and
be allowed to decide what action (if any) to take.

It is planned to develop a domain ontology in OWE][lising Protégé [15] and
to input both the constraints and the applicationditions using an extended
version of ConEditor that can detect and resolvé sumonsistencies.

6. Related work

Alice [15] is another declarative language for gxpression of complex logic
based constraints, closely related to CoLan. In esispn with Alice, CoLan
has better readability and expressive power. Gdtaket and Wikramanayake

[16] propose a framework for the management of \@mgl constraints in a

computerized engineering design environment. Betrethis no mention of

capturing the contexts/application conditions asded with the constraints.

Enabling a domain expert to maintain his own knogéeth a knowledge-based
system has long been an ideal for the knowledgaeadng community. Burge

and Brown [17] investigate the use of design raties by building InfoRat, a

system that makes inferences over a design’'s e&d@enin order to detect
inconsistencies in the decisions made and to askesgmpact of proposed

changes. ConEditor’s objective is to develop a mneaiaice tool to help domain
experts directly implement the required changahénsystem without repeated,
time consuming and error prone interactions witnawledge engineer. Regli,
et al. [18] provide a survey on recent researcthénarea of design rationales;
this paper reviews a number of recent design rakorsystems, including

JANUS, COMET, ADD, REMAP, HOS, PHIDIAS, DRIVE and IBIS.

7. Summary and future work

In this paper, we describe a methodology to endbfeain experts to capture
and maintain constraints in an engineering desmgtirenment. The context is a
system known as Designers’ Workbench that has bedeweloped to

automatically check if all the constraints haverbeatisfied and if not, enable
the designers to resolve them. Designers’ Workbeésndcaced with the task of
accumulating all the constraints associated with ttomain. This needs a
knowledge engineer to study the design rule bopkéensult the design
engineer (domain expert) and encode all the cdnstrénto the Designers’
Workbench. We describe the tool ConEditor that hesnbdeveloped to help
domain experts themselves capture and maintaimeaghg design constraints
for use in systems such as Designers’ Workbench.

We hypothesize that in order to apply constraipigrapriately, it is necessary
to capture the context, the application conditi@ssociated with the constraints
and that these would be beneficial for maintenaAcease study on a sample
kite design domain has been performed. A numbecooistraints and their

associated application conditions were elicited iapdt into ConEditor.

As part of the future work, it is planned to extebaonEditor to enable detection
and resolution of inconsistencies among constrantk application conditions.
A query facility using RDQL [6] to retrieve the ajpriate constraints and
application conditions according to specified ciités planned. We then plan
to further apply our ideas of application condigdn aspects of Rolls-Royce’s
design work.

8. Acknowledgements

This work is supported by the EPSRC Sponsored Advhreowledge
Technologies project, GR/NI5764, which is an Inteciilinary Research
Collaboration involving the University of Aberdeerthe University of

Edinburgh, the Open University, the University ofeS8ield and the University
of Southampton. We would like to acknowledge th&stiance of engineers and
designers in the Transmissions and Structures divisif Rolls-Royce pilc,
Derby, UK.

References

1. Ajit S., Sleeman D., Fowler D. W. and Knott BgnEditor: Tool to Input and
Maintain Constraints, Proceedings of EKAW 2004, ®etdb-8, Whittlebury
Hall, Northampton, UK, 2004, pp. 466 - 468.

2. Fowler D., Sleeman D., Wills G., Lyon T. and Kinb., Designers'
Workbench, Proceedings of the Twenty-fourth SGAétnational Conference
on Innovative Techniques and Applications of Acii Intelligence,
Cambridge, UK, 2004.

3. Rolls-Royce, Derby, UK, [WWW], Available fronhttp://www.rolls-
royce.com/[Accessed)].

4. AKT, Advanced Knowledge Technologies (AKT Pra)efNVWW], Available
from: http://www.aktors.org/akt[Accessed].

5. Chandrasekaran B., Josephson J. R. and BenjamisWhat are ontologies
and why do we need them? IEEE Intelligent SysteaméEb 1999; 14:20-26

6. Jena, A semantic web framework for Java, [WWXWilable from:
http://jena.sourceforge.net/index.htrfAccessed].

7. Prolog S. Version 3.10.0, Swedish Institute ofmPater Science 2001.

8. Bassiliades N. and Gray P. CoLan: a Functional €ains Language and Its
Implementation Data and Knowledge Engineering 1994203-249

9. Gray P., Hui K. and Preece A., An Expressive @aitg¢ Language for
Semantic Web Applications, E-Business and the igesit Web: Papers from
the 1JCAI-01 Workshop, 2001, pp. 46-53.

10. OWL, OWL Web Ontology Language, [WWW], Availaldrom:
http://www.w3.org/TR/owl-features[Accessed].

11. Noy N. F., Fergerson R. W. and Musen M. A., Khewledge model of
Protege-2000: Combining interoperability and fleliyj International
Conference on Knowledge Engineering and Knowledgedgament (EKAW'
2000), Juan-les-Pins, France, 2000.

12. Barker V. E. and O'Connor D. E. Expert System£finfiguration at Digital:
XCON and Beyond Communications of the ACM 1989; 32:398-

13. Soloway E., Bachant J. and Jensen K., Asse®nglaintainability of
XCON-in-RIME: Coping with Problems of a Very Large Rilase,
Proceedings of AAAI-87, 1987, pp. 824-829.

14.

15.

16.

17.

18.

Coenen F. P., A Methodology for the Maintenasfdénowledge based
Systems, In Niku-Lari, A. (Ed), EXPERSYS-92 (Prodegd), IITT-
International, Gournay sur Marne, France, 1992 1(1-176.

Urban S., ALICE: an Assertion Language for IntggConstraint Expression,
Conference on Computer Software Applications, 1989.

Goonetillake J. S. and Wikramanayake G. N., &g@ament of Evolving
Constraints in a Computerised Engineering DesignrBnmient, Proceedings
of the 23rd National IT Conference, Colombo, Sri L&nk004.

Burge J. E. and Brown D. C., Reasoning with DeRigtionale, in Artificial
Intelligence in Design '00, J. Gero, Ed. Nethertaruwer Academic
Publishers, 2000, pp. 611-629.

Regli W. C., Hu X., Atwood M. and Sun W. A Sun@yDesign Rationale
Systems: Approaches, Representation, Capture an@®RetEngineering with
Computers: An Int'l Journal for Simulation-Based Ewegiring, special issue
on Computer Aided Engineering in Honor of ProfesStaven J. Fenves, 2000
2000; 16:209-235.

