Capture and Maintenance of Engineering
Design Constraints

Suraj Ajit', Derek SleemanDavid W. Fowlet, David Knotfand Kit Hut

'Department of Computing Science, University of Alseml, Scotland, UK
{sajit, sleenman, dfow er, khui}@sd. abdn. ac. uk
2Rolls Royce plc, Derby, UK
davi d. knott @ol | s-royce. com

Abstract. The Designers’ Workbench is a system, developethéyAdvanced
Knowledge Technologies (AKT) consortium to suppdesigners in large or-
ganizations, such as Rolls Royce, by making surethtigatiesign is consistent
with the specification for the particular designvesll as with the company’s
design rule book(s). Currently, to capture the gairst information, a domain
expert (design engineer) has to work with a knogéedngineer to identify the
constraints, and it is then the task of the knog#edngineer to encode these
into the workbench’s knowledge base (KB). This isearor prone and time-
consuming task. It is highly desirable to reliekie knowledge engineer of this
task, and so we have developed a tool, ConEditdrethables domain experts
themselves to capture and maintain these congralihe tool allows the user
to combine selected entities from the domain omgiplwith keywords and op-
erators of a constraint language to form a constrpression. However we
hypothesize that to apply constraints appropriaiélg necessary to understand
the context in which each constraint is applicalfée. refer to this as “applica-
tion conditions”. We plan to make these applicati@mditions machine inter-
pretable and investigate how they, together witloanain ontology, can be
used to support the verification and maintenanaeastraints.

1 Introduction

The context for the system reported here, ConEdlto?[3] is the Designers’ Work-
bench [9] that we have developed to enable a gobulesigners to produce coopera-
tively a component that conforms to the overallcHpmtions and the company’s
design rule book(s). An introduction to Designatgrkbench is given in the follow-
ing section.

1.1 Introduction to the Designers’ Workbench
Designers in Rolls-Royce [15], as in many largeaoigations, work in teams. Thus it

is important when a group of designers are workingspects of a common project,
that the subcomponent designed by one engineensistent with the overall speci-

fication, and with those designed by other memlmérthe team. Additionally, all
designs have to be consistent with the companysgyderule book(s). Making sure
that these various constraints are complied with ¢®@mplicated process, and so the
AKT [4] consortium has developed a Designers’ Worldle which seeks to support
these activities.

The Designers’ Workbench (Figure 1) uses an ogio[7] to describe elements in
a configuration task. The system supports humangdess by checking that their
configurations satisfy both physical and organ@el constraints. Configurations are
composed of features, which can be geometric orgemmetric, physical or abstract.
A graphical display enables the designer to easlly new features, set property val-
ues, and perform constraint checks. If a constiainiblated, the affected features are
highlighted and a report is generated. The repoagihe designer a short description
of the constraint that is violated, the featurdeaéd by that violation, and a link that
can be clicked on, to read the source document.dés@gner can resolve the viola-
tions by adjusting the property values of the aéiddeatures. On selecting a feature,
a table is listed with the corresponding propertied their values. These property
values can then be adjusted to resolve the constrialations.

& Designers' Workbench [test]

Fle View Tools

lalo/@] o] [a]e]

nnnnnnnnnnnnnnn

nnnnnnnnn

uuuuuu

eeeeeeeeee

prov || Newt |

Fig. 1. Screenshot of the Designers’ Workbench

1.1.1 What is the problem?

As noted above, the Designers’ Workbench needssadeethe various constraints,
including those inherent in the company’s desige hook(s). Currently, to capture

this information, a design engineer (domain exp&adks with a knowledge engineer
to identify the constraints, and it is then thektakthe knowledge engineer to encode
these into the Workbench’s KB. This is an error pramd time consuming task. As
constraints are explained very briefly in desigle tbook(s), a non-expert in the field
can find it very difficult to understand the cortexd formulate constraints directly
from the design rule book(s), and so a design emgitmas to help the knowledge
engineer in the process. Adding a new constraiiot Designers’ Workbench’'s KB
currently requires coding a query in RDQL (RDF Queayguage) [12], and a predi-
cate in Sicstus Prolog.

It would be useful if a new constraint can berfulated in an intuitive way, by
selecting classes and properties from the ontolagg, somehow combining them
using a predefined set of operators. This would leglgineers to input all the con-
straints themselves and relieve the programmehatf task. The programmer could
then certainly avoid having to go through all tresidn rule book(s), formulate the
constraints and input them into Designers’ Workién&B. This would also enable
designers to have control over the definition agfihement of constraints, and pre-
sumably, to have greater trust in the results ofstraint checks. This led to the de-
velopment of a system, known as ConEditor, whichhksaa domain expert to input
and maintain constraints. ConEditor is explainethirin the next séon.

2 ConEditor

ConEditor [1, 2, 3] is a tool to enable domain expénemselves to input and main-
tain constraints. ConEditor’s graphical user irgeef (GUI)is shown in Figure 2. A
constraint expression can be created by selectitiies from a taxonomy (domain
ontology) and combining them with a pre-definedafdteywords and operators from
the high level constraint language, CoLan [11].

We shall now consider an example of a constraidtsa® how it can be input us-
ing ConEditor's GUI. (Figure 2). One of the congitaistates that for every instance
of the class Concrete Feature, the value of tharmar operating temperature of its
material must be greater than or equal to the enmiental operating temperature.
This constraint can be expressed in ColLan as follows:

Constrain each f in Concrete Feature
to have max_operating tenp(has_material (f)) >= operat-
i ng_tenp(f)

ConEditor's GUI essentially consists of five compatse namely, keywords panel,
taxonomy panel, central panel, tool bar and resaitel. These panels provide the
user with the various entities required to formaastraint expression. A brief de-
scription of each panel is given below. The ordebetpw corresponds to the labels
in Figure 2.

A. Keywords panel

This panel consists of a list of keywords from tbestraint language ColLan. A key-
word can be selected from this panel to form a aomept of a constraint expression.
Clicking the “Add” button appends the selected kegavto the constraint expression
being formed in the result panel. In the examplesadered, the keywords “Constrain
each”, “in” and “to have” are selected from this list of keydsr

B. Taxonomy panel

This panel displays a taxonomy of classes, subdamsé properties in a tree struc-
ture, extracted from the domain ontology (i.e. ¢héology used by Designers’ Work-
bench). A node (icon) representing the root of tiee is initially displayed on the
panel. Double-clicking on this node expands the,tdisplaying more nodes of the
tree.Nodes represented by letter ‘P’ denote properties cass. A node can be se-
lected from this tree and clicking the “Add” butt@ppends it to the constraint
expression being formed in the result panel. Ingkample considered, the entities
“Concrete Feature”, “max_operating_temp”, “has_makk and “operating_temp”
are selected from this panel.

[z lEER
iy = =]
KEYWORDS TAXONOMY

at least [® CFeature

at most i name

(it drawing_marker

exactly

o owner

exists source_doc

for all © [Concreta Feature

in o I el

isin

ot i alpha_cade

of max_operating_temp

’— Add chnsnam eath Add Inas_matenal || Export

CONSTANTS
Real

Integer

TOOL BAR-

FUNCTIONS
| ERASE H UPDATE ‘
| REFRESH H CREATE TABLE ‘

() & =%/ == > = = pol and or

Constrain each fin Concrels Fealure

to have max_operafing temp (has material ()) == operafing_temp ()

Edit ¥ Undo addition
Style ¥ Redo deletion

cut-to-clipboard
capy-to-cliphoard
paste-from-cliphoard

Fig. 2. Screenshot of ConEditor’'s GUI

select-all

C. Central panel

This panel has two sections. One is the constatibeeavhere two text fields are
provided for inputting real and integer constaticking the “update” button ap-
pends the constant to the constraint expressiamglfermed. The other is the func-
tions section, where function buttons are provifledediting the constraint expres-
sion, adding a constant, refreshing the panel azating a table.

D. Tool bar

The Tool Bar displays the arithmetic, relational égical operators and delimiters.
Clicking on any of the operators appends the opetatthe result panel. The opera-
tor *>=" and the delimiters ‘(,)’ in the examplare chosen from the tool bar.

E. Result panel

This is situated at the bottom of the main screecortains a large text area, display-
ing the evolving expression specified by the uEelit/Style menus are provided, on
right-clicking the mouse in the result panel, whallow the user to undo/redo ac-
tions, cut, copy and paste text and specify thédod size of the text.

ConEditor is implemented in the Java programniamguage; the ontology (devel-
oped in OWL [13]) is read using Jena [12], and tmetdyé tool is used to de-
velop/view the ontology. The constraints expresse@alLan using ConEditor, can
be converted into a XML encoded standard format,s@aimt Interchange Format
(CIF) [11], making them portable. Constraint sofver systems such as Designers
Workbench can then process these constraints.

3 Evaluation

A demonstration of the system was given to sewd#algn engineers at Rolls-Royce
plc, Derby, UK. The focus of the demonstrativas one of the constraints found in
the design rule book(s). This demonstration invol8etistinct phases:

Phase 1: Presenting the constraint as in the ndk(b)

The description of the constraint, as found in thle book(s), is shown in Figure 3.
The design rule book(s) gives the description ofst@ints, in the form of tables and
figures in most cases and very little explanat®priovided. Clearly, it is very hard
for a non-expert to understand the context andtmdilate a constraint from the rule
book(s). The English rendering of a part of the aast in Figure 3 is:

Constraint: Bolted joints must conform to the formula

Nmin= PCD + 2*M + Max. Nut Width

where Ny, = trap diameter of the flange, PCD = pitch circlendeter of flange and
150.0<PCD<=180.0, M = gap in the flange = 0.5.

Phase 2: Expressing the constraint in CoLan

This constraint can be expressed in CoLan as:

Constrain each j in Bolted Joint

such that has_nut(j) in Captive Nut

and di mensi on(pcd(has_flange(j))) > 150.0
and di mensi on(pcd(has_flange(j))) <= 180.0
and not is_external (has_flange(j))

to have gap(has_flange(j))= 0.5

and trap_di aneter(has_flange(j))

= di nensi on(pcd(has_flange(j))

+ 2 * gap(has_flange(j))

+di mensi on(captive_nut_w dt h(has_nut(j))
+t ol erance(captive_nut_w dth(has_nut(j)))

Phase 3: Representing the expression in CoLan @ingditor

In the final stage of the demonstration, the CoLgression was input to ConEditor
by its developer (Suraj Ajit).

3.1 Overview

* The GUI seems to be simple, user friendly and faiyitive to use.

e The designers were able to folldive steps where we mapped a constraint
written in English to one expressed in ColLan; furtthery were able to un-
derstand how the ColLan expression was input to theEGitor system.
However, they felt they would need training to diiver of these stages un-
supported.

¢ Controlled Acquisition Scenario: The tool restrittte user to choose from a
limited number of pre-defined keywords of the coaist language ColLan.
Even though the constraint language is expressideuaar-friendly, the en-
gineers said they were not as comfortable abouwgusias with expressing
the constraint directly in English.

* They also made the general point that in this comjitais the Design Stan-
dards group that has the responsibility for crgatind maintaining the com-
pany-wide rule book(s), and so they would expeetdtandards group to in-
put such constraints into a system like ConEditoe @asigners would sub-
sequently use the information either in the curfentn or in a Designers’
Workbench-like environment.

It is planned to conduct more trials of ConEditothné wide range of engineers
shortly.

9.3.2 Internally trapped nuts (see Fig 4 Table 4) | {
TABLE 4 Z
N

|
|
//X :
aaove 0 | o \

|r
m wm | m | \

50180 | L0 | \ —T
1‘ -an- _5?3 | I.'.5._1 _ ‘| gN-
| 300 [0,60 | /! /
g’y MIN,= PCD (NOM) + 2M + MAX, NUT WIOTH ,{i 'TQE;HANFE “PED NUM
RRRSE A GRADE 178
FIGURE 4

Fig. 3. Constraint as expressed in the rule book (s)

5 Maintenance of constraints in engineering desig

The issues faced in KB maintenance were first ramedhe XCON configuration
system at Digital Equipment Corporation [5, 16]tildly it was assumed that knowl-
edge-based systems could be maintained by simplipgehew elements or replacing
existing elements. However this “simplicity” provealbe illusory as indicated by the
experience of R1/XCON [8].

The engineering design process has an evolutionadyiterative nature as de-
signed artifacts develop through a series of changefore a final solution is
achieved. A common problem encountered during #wga process is that of con-
straint evolution, which may involve the identifitan of new constraints and the
modification or deletion of existing constraints.eTieasons for such changes include
changes in the technology, changes to improve padoce, changes to reduce de-
velopment costs, time, changes in application caste

In order to reduce/overcome the various maintenastes/problems, systems that
capture and represent the rationales associatdd design knowledge have been
developed. Design rationales [6, 14] capture thieviing types of information:

a) the reasons behind the design decisions takepgwlecision was taken).
b) the design alternatives considered with reafamacceptance/rejection.
¢) how certain design actions are performed.

However, design rationale systems have not beeturiag information about
when a particular section of the design knowledg@pplicable. It is important to
know the context in which a particular constrainagule can be applied. We refer to
this as thepplication conditions associated with a constraint. Consider the folhmvi
constraint in the domain of kite design along viishassociated rationale and applica-
tion condition:

Constraint — “The strength of the kite line of aekiteeds to be greater than 90
daN units”

Associated rationale — This provides the requiratibty for the kite to fly.

Application condition — This is applicable for stukites (of standard size) in
strong winds only.

The difference between a rationale and an applicatimdition is evident from the
constraint considered above; the rationale stdtesr¢ason for a constraint (why),
whereas the application condition states the coiexhich it is applicable (when).

6 Our planned approach

In order to tackle the various maintenance issuelklpms, our proposed solution can
be summarized as follows:

e Capture the “context” of a constraint as an appbcacondition
« Represent the application conditidnsa machine interpretable form
« Use application conditions together with constigiatsupport maintenance

We intend to capture the “context” of each constrae. the information pertain-
ing to when a constraint is applicable referre@gdts application conditions. Often,
such information is implicit to the person who farates the constraint. It is impor-
tant to make the application conditions explicittisat it can be used for both mainte-
nance and reuse. The assumptions/conditions on veha@nstraint is based may no
longer be true/applicable; in such cases, it besameeessary to deactivate or remove
those constraints. Further an application conditi@my not be satisfied by a particular
design task.

We plan to capture both the constraint and theiegtfdn conditions in the same
language, which is CoLan. Both the constraints dedapplication conditions will
then be converted into a standard machine interpletformat known as CIF [11].
The system can then detect inconsistencies amongahgtraints and application
conditions, against the domain ontology, in whiase; it could notify the user and
suggest the constraint(s) be removed or modified.

1 symbol for deca Newton, a common metric unit etéo

7 Related work

Alice [17] is another declarative language for éxgression of complex logic based
constraints, closely related to ColLan. In comparisgth Alice, CoLan has better
readability and expressive power. Goonetillake Wildramanayake [10] propose a
framework for the management of evolving constgainta computerized engineering
design environment. But there is no mention of wapy the contexts/application
conditions associated with the constraints. Enaldirdpmain expert to maintain his
own knowledge in a knowledge-based system has bbeleg an ideal for the knowl-
edge engineering community. Burge and Brown [6lestigate the use of design
rationales by building InfoRat, a system that makésrences over a design’s ration-
ales in order to detect inconsistencies in thesimts made and to assess the impact
of proposed changes. ConEditor’'s objective is toettgya maintenance tool to help
domain experts directly implement the required ¢esnin the system without re-
peated, time consuming and error prone interactisits a knowledge engineer.
Regli, et al. [14] provide a survey on recent resean the area of design rationales;
this paper reviews a number of recent design ralosystems, including JANUS,
COMET, ADD, REMAP, HOS, PHIDIAS, DRIVE and IBIS.

8 Summary and future work

In this paper, we describe a methodology to endbleain experts to capture and
maintain constraints in an engineering design emwirent. The context is a system
known as Designers’ Workbench that has been desdlép automatically check if
all the constraints have been satisfied and if eéble the designers to resolve them.
Designers’ Workbench is faced with the task of awalating all the constraints asso-
ciated with the domain. This needs a knowledge emgito study the design rule
book(s), consult the design engineer (domain ex@erd encode all the constraints
into the Designers’ Workbench. We describe the @mhEditor that has been devel-
oped to help domain experts themselves capturenaaidtain engineering design
constraints for use in systems such as Designeoskiénch.

We hypothesize that in order to apply constraipisrapriately, it is necessary to
capture the context, the application conditionsoaemted with the constraints and
that these would be beneficial for maintenanceagecstudy on a sample kite design
domain has been performed. A number of constraimtstheir associated application
conditions were elicited and input into ConEditor.

As part of the future work, it is planned to exteBdnEditor to enable detection
and resolution of inconsistencies among constraants application conditions. A
query facility using RDQL [12] to retrieve the appriate constraints and application
conditions according to specified criteria is pladnWe then plan to further apply
our ideas of application conditions to aspects @fsRRoyce’s design work.

References

10.

11.

12.

13.

14.

15.

16.

17.

Ajit, S, Sleeman, D, Fowler, DW and Knott, D: Ealitor: Tool to Input and Main-
tain Constraints, 14th International Conference, @&dmngs of EKAW 2004, Whit-
tlebury Hall, Northampton, UK (2004) 466 - 468.

Ajit, S, Sleeman, D, Fowler, DW, Knott, D andiHK: Acquisition and Maintenance
of Constraints in Engineering Design (Poster/Shapd?), Third International Con-
ference on Knowledge Capture (KCAP 05), Banff, Can20ay).

Ajit, S, Sleeman, D, Fowler, DW, Knott, D andiHK: Capture and Maintenance of
Engineering Design Constraints (Poster), The Twéiftty SGAI International Con-
ference on Innovative Techniques and ApplicatidnArtficial Intelligence (Al 05),
Cambridge, UK (2005) (to appear).

AKT, Advanced Knowledge Technologies, [WWW], Aleble from:
http://www.aktors.org/akfAccessed 9 August 2005]

Barker, VE and O'Connor, DE: 1989, Expert SystEm€onfiguration at Digital:
XCON and Beyond, Communications of the ACB2, 298-318.

Burge, JE and Brown, DC: Reasoning with Design Ralgonn J. Gero (Ed.), Arti-
ficial Intelligence in Design '00 (Netherlands: Kler Academic Publishers.(2000)
611-629

Chandrasekaran, B, Josephson, JR and BenjaminsaWReb 1999, What are on-
tologies and why do we need them?, IEEE Intellig®rdtems14, 20-26.

Coenen, FP: A Methodology for the MaintenancKmfwledge based Systems, In
Niku-Lari, A. (Ed), EXPERSYS-92 (Proceedings), |ITiternational, Gournay sur
Marne, France (1992) 171-176.

Fowler, DW, Sleeman, D, Wills, G, Lyon, T anddfip D: Designers' Workbench,
Proceedings of the Twenty-fourth SGAI InternatioGahference on Innovative
Techniques and Applications of Atrtificial Intelligee, Cambridge, UK (2004).
Goonetillake, JS and Wikramanayake, GN: Managemf Evolving Constraints in a
Computerised Engineering Design Environment, Praogsdf the 23rd National IT
Conference, Colombo, Sri Lanka (2004).

Gray, P, Hui, K and Preece, A: An Expressivesfraint Language for Semantic
Web Applications, E-Business and the intelligent Wrépers from the IJCAI-01
Workshop, AAAI Press, (2001) 46-53.

Jena, A semantic web framework for Java, [WWAWVhilable from:
http://jena.sourceforge.net/index.htpAlkccessed 9 August 2005]

OWL, Web Ontology Language, [WWW], Availablefn:
http://www.w3.org/TR/owl-featuregAccessed 9 August 2005]

Regli, WC, Hu, X, Atwood, M and Sun, W: 2000, A&y of Design Rationale
Systems: Approaches, Representation, Capture ane®efriEngineering with
Computers: An Int'l Journal for Simulation-Based Ewegiring, special issue on
Computer Aided Engineering in Honor of Professov&tel. Fenvewol.16, 209-
235.

Rolls-Royce, Derby, UK, [WWW], Available frorhttp://www.rolls-royce.com/
[Accessed 9 August 2005]

Soloway, E, Bachant, J and Jensen, K: Assetisiniglaintainability of XCON-in-
RIME: Coping with Problems of a Very Large Rule-Baseceedings of AAAI-87,
Seattle, USA (1987) 824-829.

Urban, S: ALICE: an Assertion Language for IntggConstraint Expression, Con-
ference on Computer Software Applications, (1989).

