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ABSTRACT 
Effective reuse of Knowledge Bases (KBs) often entails the 
expensive task of identifying plausible KB-PS (Problem 
Solver) combinations. We propose a novel technique based 
on Constraint Satisfaction to enable more rapid identifica-
tion of incompatible KBs, leaving fewer combinations on 
which to conduct a thorough investigation. In this paper, 
we describe our investigation process, its tools, and the 
latest empirical results applied to non-binary problems that 
demonstrate our relaxation approach is an effective method 
for plausibility testing. 

Categories and Subject Descriptors 
I.2.1 Applications and Expert Systems—Industrial automa-
tion. I.2.8 Problem Solving, Control Methods, and 
Search—Graph and tree search strategies. 

Keywords 
Knowledge Base Reuse, Constraint Satisfaction Problem, 
Relaxation Techniques, Scheduling. 

INTRODUCTION 
Knowledge Engineering is often a time-consuming and 
expensive process, particularly if it involves acquiring new 
knowledge and constructing new problem solving systems 
from scratch [6, 8, 25]. Knowledge Reuse addresses this 
issue by building new systems partly from existing compo-
nents. The difficulty then becomes one of identifying 
which components can be reused to address the new task; 
this is still a demanding problem. One approach to dealing 
with the problem is to create toolboxes and advisory sys-
tems such as the MUSKRAT (Multistrategy Knowledge 
Refinement and Acquisition Toolbox) framework which 
aims to unify problem solving, knowledge acquisition and 
machine learning in a single computational framework 
[35]. Its main component is the Advisor, which if given a 
set of Knowledge Bases (KBs) and Problem Solvers (PSs), 
investigates whether combinations of the available KBs 
fulfil the requirements of the selected PS for a given task. 

White proposed a Meta-PS [35], that conducts a tractable 
plausibility test which identifies and removes incompatible 
KB-PS combinations. However, its major shortcoming is 
that it can not guarantee that successful KB-PS combina-
tions are not falsely discarded. The work described in this 
paper develops White's proposal, by considering how to 
generate a plausibility test using constraint satisfaction 
techniques which guarantees that no successful KB-PS 
combinations are falsely discarded. We have used a con-
straint solver as the PS and have represented existing 
scheduling KBs as Constraint Satisfaction Problems (CSPs) 
which can be combined to create a composite CSP. If the 
composite CSP is unsolvable, then that KBs-PS combina-
tion could not be reused to solve the given problem. Identi-
fying plausible combinations thus requires examining a 
series of CSPs, and rejecting unsolvable ones. Proving a 
CSP inconsistent can be a lengthy process, so the method 
we propose to speed up this inconsistency detection is to 
relax the CSP by removing constraints, and if the relaxed 
version is demonstrated inconsistent then the original CSP 
will not have a solution either.1Naively, we might assume 
that relaxing an unsolvable CSP will produce an easier 
problem. In fact, removing constraints randomly typically 
creates problems that are several times harder—as con-
straints become looser, or the connectivity of the problems 
becomes sparser, the time to demonstrate inconsistency for 
random problems increases [21]. To test our relaxation 
approach, we investigate different relaxation strategies on a 
variety of problem with scheduling characteristics. 

BACKGROUND  
Knowledge Base Systems (KBSs) have been developed for 
a variety of reasons, including: the archiving of rare skills, 
preserving the knowledge of retiring personnel, support in 
decision making, and to aggregate all of the available 
knowledge in a specific domain from several experts and/or 
machines. KBS is one of the Artificial Intelligence para-
digms that have been easiest for companies to embrace and 
consequently there are numerous examples of successful 
KBSs in business [15, 18]. KBS appear  most frequent in 
production, marketing, and customer service [16] and some 
of the most successful ones are in the scheduling domain 
[23, 26, 28].  
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Most KBSs are developed from scratch and the required 
knowledge acquisition is time consuming and therefore 
expensive [6, 8, 25]. If new systems could be built by reus-
ing existing components, it might be done more quickly 
and hence money could be saved. Consequently one of the 
main goals of the KBS community has been to reuse KBS 
components [1], and several different components have 
been suggested for reuse. At an early stage researchers in 
the Knowledge Engineering sub-area identified a range of 
Problem Solving Methods (PSMs), which they argued cov-
ered the whole range of problem solving, and included 
methods for Classification and Diagnosis through to Plan-
ning (so-called Synthesis tasks) [10]. An early but powerful 
example of reuse of a PSM was the EMYCIN 
(Empty/Essential-MYCIN) [3] shell with a variety of do-
main-specific KBs in infectious diseases, analysis of build-
ing structures etc. Current work in reuse has resulted in 
systems where a number of components have been reused, 
including PS/PSM [12], ontologies [5, 12, 32] and KBs [1, 
22, 24, 25, 28]. The use of cases in Case Based Reasoning 
is also a related activity [13].  

Reusing KBs 
There are several processes to assist in the hard task of re-
using non-standardised KBs, such as searching, translation, 
comprehension, comparing, slicing, reformulation and 
merging [6]. Ontologies play an important role here [5, 22] 
by facilitating the search for structural and lexical similari-
ties between the PS’s knowledge requirement and existing 
knowledge in KBs which in turn increases the chances for 
mapping, merging and ultimate reuse of KBs. PROTÉGÉ 
now provides an option to write KBs in a standardised for-
mat like OKBC (Open Knowledge Base Connectivity) and 
OWL (Web Ontology Language) [9], which facilitates the 
necessary merging/mapping of KBs. Our research makes 
the strong assumption that the KBs to be investigated are 
standardised: written in the same language and use a com-
mon ontology. This might not always be the case for real-
world problem. 

Constraint Programming 
Constraint programming has been successfully applied to 
many real-world problems because these problems can 
easily be modelled in terms of constraints, such as schedul-
ing, planning, configuration, layout, resource allocation, 
and decision support [33]. Constraint Satisfaction tech-
niques attempt to find solutions to CSPs. There are a num-
ber of efficient toolkits available (e.g. [11, 29]), especially 
designed to handle these problems. A CSP is defined by: 

• a set of variables X={X1,..., Xn}, 
• for each variable Xi, a finite set Di of possible values 

(its domain), and 
• a set of constraints C<j> ⊆ Dj1 × Dj2 × …× Djt, restrict-

ing the values that subsets of the variables can take 
simultaneously.  

A solution to a CSP is the assignment of values to every 
variable, in such a way that all constraints are satisfied si-
multaneously.  
The arity of a constraint is the number of variables that the 
constraint is connected to; for example, a ‘binary con-
straint’ constrains two variables. Even though all con-
straints of an arity greater than two can be reformulated and 
represented with binary constraints [2], we have reserva-
tions about the practice of using solely binary constraints in 
CSPs and [21] argues against this practice. Problem classes 
of random binary CSPs are normally described by a 4-tuple 
<n,m,c,t> [14], where n is the number of variables and m is 
the number of values in each domain, c is the number of 
constraints, and t is the number of forbidden tuples in each 
constraint (the tightness). 
A standard measure of effort for a CSP search algorithm is 
the number of constraint checks performed but other prop-
erties such as backtracking and resumption are also used. 
The search effort is dependent on the structure of the prob-
lem (how the constraints interact to rule out assignments); 
the individual constraints (some constraints are cheap to 
test/propagate, while others are expensive); and the number 
of solutions produced in a best-solution search or in an all-
solution search. The main CSP search technique interleaves 
various forms of backtracking search with consistency en-
forcement, in which unfeasible values are removed from 
the problem through reasoning about the constraints. The 
use of higher order consistency algorithms also serves to 
identify unsolvable problems, but in [21] several reasons 
why this approach is unsuitable for identifying inconsistent 
KB-PS combinations are discussed. Finally, the concept of 
relaxing CSPs has received considerable attention [27], but 
in contrast to our relaxation approach this earlier research 
has focused on changing the CSP to introduce solutions.  

OUR RELAXATION APPROACH 
Our relaxation approach assists the MUSKRAT-Advisor 
by quickly identifying impossible KB-PS combinations. 
These impossible combinations can then be discarded, 
leaving a smaller number for the Advisor to evaluate. We 
have used a constraint solver as the PS and represented the 
existing scheduling KBs as CSPs which can be combined 
to create a composite CSP. If the composite CSP is found 
to be inconsistent, the KB-PS combination will not fulfil 
the PS requirements and can be discarded (note that if the 
relaxed CSP has a solution, then the original CSP repre-
sents a plausible combination and should be retained for 
further investigation). Proving a CSP inconsistent can be a 
lengthy process, so we propose a constraint relaxation ap-
proach to quickly identify inconsistent CSPs. Our approach 
relaxes the CSP by removing constraints and if the relaxed 
version is unsolvable then the original CSP will not have a 
solution either. This approach can only be profitable if the 
relaxed CSP is easier to solve than the original. It is rea-
sonable to assume that if there is a problem and some of the 
constraints are removed from it, the new problem should be 
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easier to solve than the original. However, it is not certain 
that a relaxed CSP will pose an easier problem. In fact, 
phase transition research (e.g. [7]) seems to indicate the 
opposite when the original CSP is inconsistent; as con-
straints become looser, or the connectivity of the problems 
becomes sparser, the time required to demonstrate inconsis-
tency for random problems increases. Moreover, part of our 
previous research [19] has shown that when random con-
straints are removed from an inconsistent binary CSP, the 
new relaxed CSP can be up to 10 times harder to solve. To 
statistically verify our relaxation idea we have developed 
the CSP-Suite, a Prolog test suite to assist in creating and 
evaluating relaxation strategies on a wide range of non-
binary problem based on real-world scheduling problems.  

Scheduling KBS 
We created a prototype [21] of a Scheduling KBS in the 
mobile-phone manufacturing domain, and our reasons for 
exemplifying our relaxation approach on scheduling prob-
lems were threefold. Firstly, industry is currently using 
Scheduling KBSs, and has shown an increasing interest in 
the use of AI techniques to assist production scheduling 
problems [23, 25, 26]. Secondly, scheduling KBS in indus-
try are already reusing standardised knowledge components 
successfully [26, 28]. Thirdly, scheduling problems are not 
only rich in detail and features, but are relatively easy to 
specify, commonly using a style that is very close to CSPs, 
hence it would be relatively easy to transform the necessary 
KBs. The decision to use the mobile phone manufacturing 
domain was made to highlight the benefit of reusing KBs 
from different stages in a global production chain; namely, 
factories, suppliers, shipping companies etc. Further, we 
believe the production chain in manufacturing mobile 
phones effectively illustrates the complexity of production 
scheduling, on a task that can be understood by non-
domain experts.  
In the prototype example, the manufacturer has a variety of 
existing standardised KBs at his/her disposal: four KBs 
concerned with factories, four with suppliers, and two with 
shipping companies used to transport phones to wholesal-
ers around the world. Along with these slices of domain-
specific KBs, the system also consists of background 
knowledge (e.g., ISO 9001, Safety Standards), and con-
straint relaxation rules that identify constraints which the 
system is or is not allowed to remove. 
If the manufacturer would like to combine and reuse exist-
ing knowledge to answer a question such as ‘Can we 
manufacture, within the guidelines of the ISO 9001 and 
European safety standards (CE), a mobile phone with a 
4096 colour screen, not heavier than 100g and have it de-
livered to the American market within 6 months?’ The 
manufacturer has 5 PSs (constraint satisfier, schedule etc.) 
and 12 KBs to combine and to determine if they can be 
used to answer the questions. The system then systemati-
cally investigates all possible KB-PS combinations. How-
ever there are some constraints; namely a KB-PS combina-

tion can only consist of 1 PS (out of 5), 1 supplier (out of 
4), 1 factory (out of 4), 1 shipping company (out of 2), 1 
background knowledge (out of 1) and 1 constraint relaxa-
tion rules (out of 1). This gives the manufacturer 160 
(5×4×4×2×1×1) possible combinations to investigate; 
Figure 1 illustrates one possible combination. 
 
 
 
 
 
 
 
 
 

Figure 1. One of 160 possible KB-Combinations. 

The Reuse Investigation Process 
The process of inspecting KB-PS combinations for plausi-
bility is done in three steps (Figure 2). Firstly, the KBs-PS 
combinations described in the previous section, are trans-
formed by the constraint solver into composite CSPs. This 
transformation can only be done automatically if standard-
ised KBs are used. Secondly, the CSP-Suite’s Relaxing 
module then relaxes these CSPs by carefully removing 
specified constraints according to its relaxation strategies to 
create a relaxed version of the problem. Thirdly, the Solv-
ing module with the task specification (find one, all, or the 
best solution) will then be used to solve the relaxed CSPs; 
if some of these relaxed CSPs are inconsistent then one can 
demonstrate that the original KBs-PS combinations are 
incompatible and can be discarded. 
 
 
  
 
 
 
 
 

Figure 2. Our Process of Analysing Standardised KB-
Combinations for reuse 

The CSP-Suite 
The CSP-Suite was designed to generate test-beds of CSPs. 
The suite is written in SICStus Prolog [29] and consists of 
modules to generate, relax and solve CSPs. In the test proc-
ess, the user first specifies a problem class and relaxation 
strategies. The Generating module then randomly generates 
a set of CSPs, based on real world scheduling problems. 
The Relaxing module then creates relaxed versions of this 



 

original CSP using pre-selected strategies to remove a spe-
cific number of constraints. Finally, the Solving module 
solves the original CSPs and their relaxed counterparts and 
records primarily the search effort.  
Figure 3 shows the successful relaxation experiment for the 
Greedy Search strategy applied on problem class 
30<20,10,133,65> along with the hardness curve for this 
problem class 30<20,10,Stepped,65>, represented by the 
Random Removal strategy. The visual comparison between 
the two curves shows that while Random Removal fails to 
generate relaxed inconsistent CSPs that are easier to search, 
the greedy strategy manages not only to avoid the hardness 
peak (Random Removal hardness peak) but also creates 
relaxed CSPs that are ~70% easier to search compared to 
the original problem, after a small number of constraints 
are removed. 
 
 
 
 
 
 
 
 
 
 

Figure 3. Relaxation Results for Greedy Search 
 

The Generating Step 
The Generating module produces a large number of CSPs 
with real-world scheduling properties. To help characterise 
real-world problems in terms of the entities and their rela-
tionships we have investigated the characteristics and on-
tologies [30] of scheduling problems as well as their con-
straint graphs’ properties (e.g. [34]). This investigation was 
vital in our effort to close the gap between the properties of 
real-world scheduling problems and those our Generating 
module creates. There are several practical reasons for 
choosing to implement non-binary constraints into the 
CSP-Suite. Firstly, using non-binary, and particularly 
global constraints (i.e. constraints which can act on an arbi-
trary number of variables), in SICStus using its built-in 
propagation and search facilities, can give a more natural 
representation of real-world problems. Some of these avail-
able non-binary and global scheduling constraints are spe-
cially created to help formulate scheduling problems, so 
using these directly without having to perform a non-binary 
to binary transformation will reduce the formulation work 
done by the knowledge engineer. Secondly, translating 
from non-binary to binary can cause the problem size to 
explode. Thirdly, research has shown [31] that non-binary 
and global constraints can have much faster propagation 
than their binary equivalents, and therefore could speed up 

the search process. Fourthly, non-binary constraints and 
global constraints may have different behaviour in con-
straint-solving toolkits so the characteristics of problems 
might change drastically in the transformation from binary 
to non-binary. Lastly, it is likely that standardised KBs will 
contain non-binary constraints, and to minimise the trans-
formations required, the relaxation strategies should be 
applied directly to those constraints.  
Because the Generating module creates a CSP with real-
world properties; such as different statistical distributions 
on tightness (uniform, normal, and exponential distribu-
tion), as well as the mix of constraint type and arity, we use 
a somewhat different notation than that used earlier in the 
literature. We describe our problem class of CSPs as a tu-
ple δ<n,m,c(cNB,Amax),D>, where δ denotes the number of 
CSPs from the class2. c is the number of constraints, cNB 
denotes the number of non-binary constraints, and Amax is 
their maximum arity (i.e. the maximum number of vari-
ables constrained by a single constraint). The arity of the 
constraints is uniformly distributed in the range [3, Amax]. 
D denotes the distribution of the constraint tightness. For 
uniform distributions, D is of the form U[tµ,r], where the 
number of forbidden tuples in a constraint is uniformly 
distributed in the range [tµ-r, tµ+r], with the average tµ. For 
normal distributions, D is of the form N[tµ,sd,r], where sd 
is the standard deviation of the bell curve over the range 
[tµ-r, tµ+r]. For exponential distributions, D is of the form 
E[tm,stp,r], where the range is [tm-r, tm+r], and stp measures 
the steepness of the probability curve3.  
The module generates the problems in the following steps. 
First, a skeleton CSP is created using only binary con-
straints, to ensure that the underlying graph is connected. 
Then the module adds random binary constraints until the 
specified number (c-cNB) is reached. Finally, the number of 
non-binary constraints is added (cNB), selected randomly 
from the range (Amax), and the constraint is selected uni-
formly, normally, or exponentially from a predefined con-
straint table, ensuring that the tightness distribution is 
obeyed.  

The Relaxing Step 
The Relaxing module generates relaxed CSPs from the 
original CSPs by removing a specified number of con-
straints according to different strategies. For the relaxation 
approach to be successful, the relaxation strategies should 
not only be easy to implement but should also create a re-
laxed CSP that is easier to solve without introducing any 
early solutions. At this moment, eleven different strategies 
are implemented in the relaxation module: Random Re-
moval simply chooses the constraints randomly. Greedy 
Search considers each constraint in turn, removing it, solv-
ing the relaxed CSP, and restoring the constraint. It then 
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selects the constraint whose removal gave the best per-
formance improvement, removes it, and repeats the whole 
process on the resulting CSP. Greedy Ordering uses the 
first iteration of Greedy Search to generate an ordering list 
for all constraints then removes constraints in the order 
suggested. Node Degree selects constraints in ascending or 
descending order of the degree of their associated variables 
in the constraint graph. Isolate Node selects high or low 
degree nodes and removes a series of constraints incident 
on those nodes (i.e. it tries to remove variables from the 
problem). Tightness removes constraints in ascending or 
descending order of their tightness. Arity removes con-
straints in ascending or descending order of their arity. 
Note that the two Greedy strategies would not be applica-
ble in our eventual framework, since they must solve many 
CSPs to create the relaxed CSP. They are useful here as 
reference points showing what might be achievable. See 
[21] for a more  detailed description of the eleven strategies 
as well as the rationale for their creation.  

The Solving Step 
The Solving module solves the original CSP and its relaxed 
counterpart; when one solution is found the search is 
stopped and different search statistics are recorded, using 
the SICStus finite domain constraint library [4]. The library 
does not report constraint checks, so instead we use the 
resumption statistic to measure the search effort. We have 
confirmed that resumptions correlate well with cpu time 
required to solve a task [21]. 

EMPIRICAL TESTS 
There are a vast number of problem classes which can be 
investigated. Our previous work [20, 19] has shown that 
relaxing a binary CSP can speed up the detection of incon-
sistency, and in particular that removing constraints of low-
tightness is an effective strategy. However, that work con-
sidered only binary CSP, while this paper shows the results 
when our strategies are applied on more realistic problems, 
based on scheduling properties and including non-binary 
constraints.  
Figure 4, shows the strategies’ relaxation findings when up 
to 60 constraints are removed from the non-binary problem 
class 30<20,10,133(66,6),U[65,15]>. The Y-axis represents 
search effort spent on the relaxed CSP expressed as a per-
centage of that used on the original CSP; a positive value 
shows that the relaxed CSP is easer to solve than the origi-
nal CSP, while a negative value indicates that the relaxed 
CSP is harder than the original CSP. The X-axis shows the 
number of constraints in the CSPs. These results illustrate 
that many of the relaxing strategies that were successful on 
the binary problem classes also perform well on non-binary 
CSPs. In addition, High Node Degree is a strategy that did 
not perform well on binary problem classes but produces 
good results along with High Arity on non-binary problem 
classes. Overall, Low Tightness is clearly the most profit-
able of the applicable strategies; it can identify the original 

CSPs as inconsistent using ~30% less search effort than the 
original needs.  

 

Figure 4. Resumptions Profit in % when Relaxation Strategies 
when Removing up to 60 Constraints 

Figure 5 presents the most successful strategies on two new 
problem classes 30<20,10,133 (66,6),U[65,30]> and 
30<20,10,133(66,6),U[45,15]>. The graphs illustrate the 
effect the strategies have on the non-binary problem 
classes, which differ in average tightness and the width or 
the tightness range. The lower graph, presents a very strong 
positive trend for Low Tightness, which achieves a re-
sumption profit value of ~43%. Thereafter comes the Iso-
late Low Nodes strategy with ~12%, High Nodes, High 
Node Degree, and High Arity strategies produce a zero 
trend. The straight zero resumption trend for High Arity 
and High Node Degree strategies can be explained by the 
CSP representation; the solver checks the constraints from 
top to bottom, and the binary are formulated first while the 
random chosen non-binary are last. This means that the 
zero trend experiment on the non-binary constraint does 
not influence the problem hardness. Namely, the hardness 
of the problem is decided by the binary constraints, so re-
moving the non-binary constraints would have no affect on 
the resumption value; a different problem representation is 
suggested as a future research direction. The top graph 
shows that the High Node Degree strategy has overtaken 
Low Tightness, and manages to reach a resumption profit 
value of ~20% before it dips to 5%. After this typical dip, 
which indicates the hardness curve has been crossed and 
solutions have been introduced, the strategy returns to pro-
duce a positive trend. The graph shows High Arity man-
ages to relax the CSP with ~10% gains, a negative trend 
starts after ~55 constraints are removed, and the negative 
curve culminates in creating a relaxed CSP that is ~25% 
harder to solve than the original. The other two strategies, 
Isolate Low Nodes and Low Tightness, report negative 
trends.  



 

For our relaxation approach to have a good chance of 
working on real-world scheduling problems, it is vital that 
they give good results over a wide spectrum of problem 
classes. Therefore, extended experiments have been con-
ducted on non-binary problem classes where the propor-
tions of binary/non-binary are varied [21]. The findings 
indicate that Low Tightness is unaffected by the variation 
in the proportion of binary/non-binary constraints while the 
High Node Degree strategy improves as the proportion of 
non-binary constraints increase. The other strategies do not 
show any performance changes depending on the non-
binary/binary ratio. Although Isolate High Nodes has 
shown surprisingly good results, Low Tightness still is 
overall the most profitable of the strategies. 

 

Figure 5. The Most Promising Relaxation Strategies’ Resumption 
Profit on New Non-binary CSPs  

The experiment shown in Figure 6 (upper graphs) was con-
ducted to examine whether Low Tightness can avoid creat-
ing relaxed CSPs that are harder to solve than the original. 
The graphs show the search effort for Low Tightness and 
Random Removal on two problem classes, when all 133 
constraints are removed. Starting with the two particular 
problem classes on the right-hand side of the curve, con-
straints are removed according to each strategy, and the 
new problems are solved after each removal. In both cases, 
the Low Tightness strategy avoids creating relaxed CSPs 
that are harder than the original. A closer investigation of 
30<20,10,133(66,6),U[tu,30]> reveals Low Tightness 
curve’s resumption level is always lower than that of the 
original problem class. The solution transition phase por-
trayed in Figure 6 (lower graphs) highlights the fact that 

Low Tightness does not introduce any solutions earlier 
than the density curve (represented by Random Removal). 
Note that if the relaxed CSP has a solution, then the origi-
nal CSP represents a plausible combination and should be 
retained for further investigation. The delayed solution 
transition phase gives us some confidence that we can use 
our relaxation strategy reliably without introducing new 
solutions.  

 
Figure 6. Search Effort & Transition Phase for Random Removal 
vs. Low Tightness 
 

The above experiments shows that certain focused relaxa-
tion strategies do produce simpler problems, and thus re-
laxation is an effective method for plausibility testing. In 
particular, the relaxation strategies are effective on ran-
domly generated scheduling problems. Low Tightness 
strategy can in some cases detect inconsistency using only 
60% of the search effort of the original problem. Moreover, 
for the only problem class that the Low Tightness does not 
produce a positive resumption profit, the High Arity and 
High Node Degree strategies perform well. 

SUMMARY 
This paper has described a novel constraint relaxation ap-
proach that contributes to the challenging problem of KB-
reuse as it helps answer the question whether combinations 
of standardised KBs can be reused to solve a new task. We 
proposed a cheaper plausibility-test, based on constraint 
relaxation techniques that identify inconsistent KBs-PS 
combinations, which leaves fewer plausible combinations 
for the MUSKRAT-Advisor to examine in detail. If a re-
laxed CSP is demonstrated to be inconsistent then the origi-
nal problem will be inconsistent as well and can be dis-
carded without an expensive search. Note that for our re-
laxation strategy to be successful the relaxed problem must 
be easier to solve than the original. However, relaxing a 
CSP to produce an easier problem is not that simple; previ-



 

ous phase transition research on random binary CSPs (of 
the same size and tightness) has shown that inconsistent 
CSPs with fewer constraints are harder to solve than those 
with more constraints. Our task then was to create a relaxa-
tion algorithm that cheaply produced relaxed CSPs without 
introducing any early solution(s). We created a Prolog test 
Suite designed to generate test-beds of CSPs with real-
world scheduling properties, which have helped identify 
beneficial relaxation strategies. The experimental results 
presented in this paper have shown not only that some re-
laxation strategies quickly identify incompatible CSPs 
without introducing any early solutions but also that the 
simple strategy of removing constraints of Low Tightness 
has in most cases been very effective in reducing the time 
required to detect inconsistencies; in some cases identifying 
inconsistent CSPs using only 60% of search effort for the 
original problem. We believe the reason why removing 
low-tightness constraints gives good results is that con-
straints with low tightness rule out very few combinations 
and are therefore more likely to be redundant than tight 
constraints on inconsistent CSPs, but they require repeated 
propagation checks for no benefit. 

FUTURE WORK 
The profitability of our relaxation approach is dependent 
on the proportion of consistent and inconsistent KB-PS 
combinations. When a relaxed CSP is found to be consis-
tent this does NOT mean that the original CSP is consis-
tent, it means it is plausible and needs to be investigated. 
The higher the proportion of inconsistent combinations the 
more beneficial our approach will be and subsequently the 
higher the proportion of consistent KB-PS combinations 
the less profitable it will become. To make our approach 
more profitable, we suggest reusing the search effort spent 
on the relaxed CSP (when demonstrated consistent) when 
investigating the original CSP. All variable instantiations 
(except the instantiation that introduced the solution) on the 
relaxed CSP can be ignored when searching for a solution 
on the original CSP. This means that the search space of 
the relaxed CSP can be deducted from the original prob-
lems search space. This ability to reuse the search would 
allow our approach to be more profitable for the 
MUSKRAT-Advisor reuse investigation. 
Moreover, we believe that the implemented strategies are 
not optimal and that combining the existing strategies could 
produce even better results. For example, some strategies 
appear to be natural combinations such as Low Tightness 
and High Arity. Both have performed well individually, in 
particular the results in the empirical section have shown 
that they complement each other; where High Arity excels, 
Low Tightness normally performs badly and vice versa. 
This combination is worth investigating further.  
Furthermore, we appreciate that in general KB to CSP 
transformation is a very hard task. It can be argued that we 
simplified the KB-CSP transformation task in our approach 
by working with standardised scheduling KBs that can eas-

ily be transformed to CSPs by the constraint solver. We 
suggest the next step in the MUSKRAT framework would 
be to facilitate KB to CSP transformations. 
Finally, when we determine that a particular KBs-PS com-
bination is not viable, it will be useful to investigate 
whether that is caused by a particular KB(s). In which case 
that KB(s) would be “black listed” so as to further reduce 
the number of combinations to be considered (c.f. effective 
strategies applied to explore search spaces [17]). 
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