
Knowledge Base Reuse Through Constraint Relaxation
Tomas Eric Nordlander*
Cork Constraint Computation
Centre, Department of Com-

puter Science, University
College Cork, Ireland
tnordlan@4c.ucc.ie

Derek Sleeman
Department of Computing

Science, University of
Aberdeen, Scotland, UK

sleeman@csd.abdn.ac.uk

Ken N Brown
Cork Constraint Computation
Centre, Department of Com-

puter Science, University
College Cork, Ireland
k.brown@cs.ucc.ie

ABSTRACT
Effective reuse of Knowledge Bases (KBs) often entails the
expensive task of identifying plausible KB-PS (Problem
Solver) combinations. We propose a novel technique based
on Constraint Satisfaction to enable more rapid identifica-
tion of incompatible KBs, leaving fewer combinations on
which to conduct a thorough investigation. In this paper,
we describe our investigation process, its tools, and the
latest empirical results applied to non-binary problems that
demonstrate our relaxation approach is an effective method
for plausibility testing.

Categories and Subject Descriptors
I.2.1 Applications and Expert Systems—Industrial automa-
tion. I.2.8 Problem Solving, Control Methods, and
Search—Graph and tree search strategies.

Keywords
Knowledge Base Reuse, Constraint Satisfaction Problem,
Relaxation Techniques, Scheduling.

INTRODUCTION
Knowledge Engineering is often a time-consuming and
expensive process, particularly if it involves acquiring new
knowledge and constructing new problem solving systems
from scratch [6, 8, 25]. Knowledge Reuse addresses this
issue by building new systems partly from existing compo-
nents. The difficulty then becomes one of identifying
which components can be reused to address the new task;
this is still a demanding problem. One approach to dealing
with the problem is to create toolboxes and advisory sys-
tems such as the MUSKRAT (Multistrategy Knowledge
Refinement and Acquisition Toolbox) framework which
aims to unify problem solving, knowledge acquisition and
machine learning in a single computational framework
[35]. Its main component is the Advisor, which if given a
set of Knowledge Bases (KBs) and Problem Solvers (PSs),
investigates whether combinations of the available KBs
fulfil the requirements of the selected PS for a given task.

White proposed a Meta-PS [35], that conducts a tractable
plausibility test which identifies and removes incompatible
KB-PS combinations. However, its major shortcoming is
that it can not guarantee that successful KB-PS combina-
tions are not falsely discarded. The work described in this
paper develops White's proposal, by considering how to
generate a plausibility test using constraint satisfaction
techniques which guarantees that no successful KB-PS
combinations are falsely discarded. We have used a con-
straint solver as the PS and have represented existing
scheduling KBs as Constraint Satisfaction Problems (CSPs)
which can be combined to create a composite CSP. If the
composite CSP is unsolvable, then that KBs-PS combina-
tion could not be reused to solve the given problem. Identi-
fying plausible combinations thus requires examining a
series of CSPs, and rejecting unsolvable ones. Proving a
CSP inconsistent can be a lengthy process, so the method
we propose to speed up this inconsistency detection is to
relax the CSP by removing constraints, and if the relaxed
version is demonstrated inconsistent then the original CSP
will not have a solution either.1Naively, we might assume
that relaxing an unsolvable CSP will produce an easier
problem. In fact, removing constraints randomly typically
creates problems that are several times harder—as con-
straints become looser, or the connectivity of the problems
becomes sparser, the time to demonstrate inconsistency for
random problems increases [21]. To test our relaxation
approach, we investigate different relaxation strategies on a
variety of problem with scheduling characteristics.

BACKGROUND
Knowledge Base Systems (KBSs) have been developed for
a variety of reasons, including: the archiving of rare skills,
preserving the knowledge of retiring personnel, support in
decision making, and to aggregate all of the available
knowledge in a specific domain from several experts and/or
machines. KBS is one of the Artificial Intelligence para-
digms that have been easiest for companies to embrace and
consequently there are numerous examples of successful
KBSs in business [15, 18]. KBS appear most frequent in
production, marketing, and customer service [16] and some
of the most successful ones are in the scheduling domain
[23, 26, 28].

* Work conducted when based at University of Aberdeen

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP’05, October 2-5, 2005, Banff, Canada.
Copyright 2005 ACM 1-58113-000-0/00/0000…$5.00

Most KBSs are developed from scratch and the required
knowledge acquisition is time consuming and therefore
expensive [6, 8, 25]. If new systems could be built by reus-
ing existing components, it might be done more quickly
and hence money could be saved. Consequently one of the
main goals of the KBS community has been to reuse KBS
components [1], and several different components have
been suggested for reuse. At an early stage researchers in
the Knowledge Engineering sub-area identified a range of
Problem Solving Methods (PSMs), which they argued cov-
ered the whole range of problem solving, and included
methods for Classification and Diagnosis through to Plan-
ning (so-called Synthesis tasks) [10]. An early but powerful
example of reuse of a PSM was the EMYCIN
(Empty/Essential-MYCIN) [3] shell with a variety of do-
main-specific KBs in infectious diseases, analysis of build-
ing structures etc. Current work in reuse has resulted in
systems where a number of components have been reused,
including PS/PSM [12], ontologies [5, 12, 32] and KBs [1,
22, 24, 25, 28]. The use of cases in Case Based Reasoning
is also a related activity [13].

Reusing KBs
There are several processes to assist in the hard task of re-
using non-standardised KBs, such as searching, translation,
comprehension, comparing, slicing, reformulation and
merging [6]. Ontologies play an important role here [5, 22]
by facilitating the search for structural and lexical similari-
ties between the PS’s knowledge requirement and existing
knowledge in KBs which in turn increases the chances for
mapping, merging and ultimate reuse of KBs. PROTÉGÉ
now provides an option to write KBs in a standardised for-
mat like OKBC (Open Knowledge Base Connectivity) and
OWL (Web Ontology Language) [9], which facilitates the
necessary merging/mapping of KBs. Our research makes
the strong assumption that the KBs to be investigated are
standardised: written in the same language and use a com-
mon ontology. This might not always be the case for real-
world problem.

Constraint Programming
Constraint programming has been successfully applied to
many real-world problems because these problems can
easily be modelled in terms of constraints, such as schedul-
ing, planning, configuration, layout, resource allocation,
and decision support [33]. Constraint Satisfaction tech-
niques attempt to find solutions to CSPs. There are a num-
ber of efficient toolkits available (e.g. [11, 29]), especially
designed to handle these problems. A CSP is defined by:

• a set of variables X={X1,..., Xn},
• for each variable Xi, a finite set Di of possible values

(its domain), and
• a set of constraints C<j> ⊆ Dj1 × Dj2 × …× Djt, restrict-

ing the values that subsets of the variables can take
simultaneously.

A solution to a CSP is the assignment of values to every
variable, in such a way that all constraints are satisfied si-
multaneously.
The arity of a constraint is the number of variables that the
constraint is connected to; for example, a ‘binary con-
straint’ constrains two variables. Even though all con-
straints of an arity greater than two can be reformulated and
represented with binary constraints [2], we have reserva-
tions about the practice of using solely binary constraints in
CSPs and [21] argues against this practice. Problem classes
of random binary CSPs are normally described by a 4-tuple
<n,m,c,t> [14], where n is the number of variables and m is
the number of values in each domain, c is the number of
constraints, and t is the number of forbidden tuples in each
constraint (the tightness).
A standard measure of effort for a CSP search algorithm is
the number of constraint checks performed but other prop-
erties such as backtracking and resumption are also used.
The search effort is dependent on the structure of the prob-
lem (how the constraints interact to rule out assignments);
the individual constraints (some constraints are cheap to
test/propagate, while others are expensive); and the number
of solutions produced in a best-solution search or in an all-
solution search. The main CSP search technique interleaves
various forms of backtracking search with consistency en-
forcement, in which unfeasible values are removed from
the problem through reasoning about the constraints. The
use of higher order consistency algorithms also serves to
identify unsolvable problems, but in [21] several reasons
why this approach is unsuitable for identifying inconsistent
KB-PS combinations are discussed. Finally, the concept of
relaxing CSPs has received considerable attention [27], but
in contrast to our relaxation approach this earlier research
has focused on changing the CSP to introduce solutions.

OUR RELAXATION APPROACH
Our relaxation approach assists the MUSKRAT-Advisor
by quickly identifying impossible KB-PS combinations.
These impossible combinations can then be discarded,
leaving a smaller number for the Advisor to evaluate. We
have used a constraint solver as the PS and represented the
existing scheduling KBs as CSPs which can be combined
to create a composite CSP. If the composite CSP is found
to be inconsistent, the KB-PS combination will not fulfil
the PS requirements and can be discarded (note that if the
relaxed CSP has a solution, then the original CSP repre-
sents a plausible combination and should be retained for
further investigation). Proving a CSP inconsistent can be a
lengthy process, so we propose a constraint relaxation ap-
proach to quickly identify inconsistent CSPs. Our approach
relaxes the CSP by removing constraints and if the relaxed
version is unsolvable then the original CSP will not have a
solution either. This approach can only be profitable if the
relaxed CSP is easier to solve than the original. It is rea-
sonable to assume that if there is a problem and some of the
constraints are removed from it, the new problem should be

Constraint Satisfier
Present all possible solutions

 Constraints

Relaxation Rules

Supplier
China

Factory
Canada

Shipping
America

 Problem
 Specifications

Specified by

the user

Background
Knowledge

Factory Canada:
Human Resources = 20,…,40 days
Machine Resources = 25,…,45 days
Total Weight ≥ 100 gram
Factory Canada = ISO 9001

Supplier China:
Screen = 4096, 512, 128, colour
Supplier China ≠ ISO 9001

Requirements for the
Constraint Satisfier:
ISO 9001 = Yes
CE = Yes
Screen = 4096 colour
Weight ≤ 100 gram
Market = American
Time ≤ 180 days

Constraint Relaxation rules
Constraints= 4096 colour,
CE, ISO 9001, 100 gram,
American market, Time,…

Background Knowledge:
Product is ISO 9001
 If Factory = ISO 9001
 Supplier = ISO 9001
Product is CE
 If Factory = CE

Shipping America:
Supplier China -Factory Canada =
30,31,…,45 days

Factory Canada-American market
= 20,21,…,30 days

Relaxation
Module

Solver
Module

1. 2.

3.

CSP

Relaxed
CSP

Problem
Specification

Consistent Inconsistent

Harvest
the

necessary
knowledge
from the

KBs

KB

KB

KB

KB

easier to solve than the original. However, it is not certain
that a relaxed CSP will pose an easier problem. In fact,
phase transition research (e.g. [7]) seems to indicate the
opposite when the original CSP is inconsistent; as con-
straints become looser, or the connectivity of the problems
becomes sparser, the time required to demonstrate inconsis-
tency for random problems increases. Moreover, part of our
previous research [19] has shown that when random con-
straints are removed from an inconsistent binary CSP, the
new relaxed CSP can be up to 10 times harder to solve. To
statistically verify our relaxation idea we have developed
the CSP-Suite, a Prolog test suite to assist in creating and
evaluating relaxation strategies on a wide range of non-
binary problem based on real-world scheduling problems.

Scheduling KBS
We created a prototype [21] of a Scheduling KBS in the
mobile-phone manufacturing domain, and our reasons for
exemplifying our relaxation approach on scheduling prob-
lems were threefold. Firstly, industry is currently using
Scheduling KBSs, and has shown an increasing interest in
the use of AI techniques to assist production scheduling
problems [23, 25, 26]. Secondly, scheduling KBS in indus-
try are already reusing standardised knowledge components
successfully [26, 28]. Thirdly, scheduling problems are not
only rich in detail and features, but are relatively easy to
specify, commonly using a style that is very close to CSPs,
hence it would be relatively easy to transform the necessary
KBs. The decision to use the mobile phone manufacturing
domain was made to highlight the benefit of reusing KBs
from different stages in a global production chain; namely,
factories, suppliers, shipping companies etc. Further, we
believe the production chain in manufacturing mobile
phones effectively illustrates the complexity of production
scheduling, on a task that can be understood by non-
domain experts.
In the prototype example, the manufacturer has a variety of
existing standardised KBs at his/her disposal: four KBs
concerned with factories, four with suppliers, and two with
shipping companies used to transport phones to wholesal-
ers around the world. Along with these slices of domain-
specific KBs, the system also consists of background
knowledge (e.g., ISO 9001, Safety Standards), and con-
straint relaxation rules that identify constraints which the
system is or is not allowed to remove.
If the manufacturer would like to combine and reuse exist-
ing knowledge to answer a question such as ‘Can we
manufacture, within the guidelines of the ISO 9001 and
European safety standards (CE), a mobile phone with a
4096 colour screen, not heavier than 100g and have it de-
livered to the American market within 6 months?’ The
manufacturer has 5 PSs (constraint satisfier, schedule etc.)
and 12 KBs to combine and to determine if they can be
used to answer the questions. The system then systemati-
cally investigates all possible KB-PS combinations. How-
ever there are some constraints; namely a KB-PS combina-

tion can only consist of 1 PS (out of 5), 1 supplier (out of
4), 1 factory (out of 4), 1 shipping company (out of 2), 1
background knowledge (out of 1) and 1 constraint relaxa-
tion rules (out of 1). This gives the manufacturer 160
(5×4×4×2×1×1) possible combinations to investigate;
Figure 1 illustrates one possible combination.

Figure 1. One of 160 possible KB-Combinations.

The Reuse Investigation Process
The process of inspecting KB-PS combinations for plausi-
bility is done in three steps (Figure 2). Firstly, the KBs-PS
combinations described in the previous section, are trans-
formed by the constraint solver into composite CSPs. This
transformation can only be done automatically if standard-
ised KBs are used. Secondly, the CSP-Suite’s Relaxing
module then relaxes these CSPs by carefully removing
specified constraints according to its relaxation strategies to
create a relaxed version of the problem. Thirdly, the Solv-
ing module with the task specification (find one, all, or the
best solution) will then be used to solve the relaxed CSPs;
if some of these relaxed CSPs are inconsistent then one can
demonstrate that the original KBs-PS combinations are
incompatible and can be discarded.

Figure 2. Our Process of Analysing Standardised KB-
Combinations for reuse

The CSP-Suite
The CSP-Suite was designed to generate test-beds of CSPs.
The suite is written in SICStus Prolog [29] and consists of
modules to generate, relax and solve CSPs. In the test proc-
ess, the user first specifies a problem class and relaxation
strategies. The Generating module then randomly generates
a set of CSPs, based on real world scheduling problems.
The Relaxing module then creates relaxed versions of this

original CSP using pre-selected strategies to remove a spe-
cific number of constraints. Finally, the Solving module
solves the original CSPs and their relaxed counterparts and
records primarily the search effort.
Figure 3 shows the successful relaxation experiment for the
Greedy Search strategy applied on problem class
30<20,10,133,65> along with the hardness curve for this
problem class 30<20,10,Stepped,65>, represented by the
Random Removal strategy. The visual comparison between
the two curves shows that while Random Removal fails to
generate relaxed inconsistent CSPs that are easier to search,
the greedy strategy manages not only to avoid the hardness
peak (Random Removal hardness peak) but also creates
relaxed CSPs that are ~70% easier to search compared to
the original problem, after a small number of constraints
are removed.

Figure 3. Relaxation Results for Greedy Search

The Generating Step
The Generating module produces a large number of CSPs
with real-world scheduling properties. To help characterise
real-world problems in terms of the entities and their rela-
tionships we have investigated the characteristics and on-
tologies [30] of scheduling problems as well as their con-
straint graphs’ properties (e.g. [34]). This investigation was
vital in our effort to close the gap between the properties of
real-world scheduling problems and those our Generating
module creates. There are several practical reasons for
choosing to implement non-binary constraints into the
CSP-Suite. Firstly, using non-binary, and particularly
global constraints (i.e. constraints which can act on an arbi-
trary number of variables), in SICStus using its built-in
propagation and search facilities, can give a more natural
representation of real-world problems. Some of these avail-
able non-binary and global scheduling constraints are spe-
cially created to help formulate scheduling problems, so
using these directly without having to perform a non-binary
to binary transformation will reduce the formulation work
done by the knowledge engineer. Secondly, translating
from non-binary to binary can cause the problem size to
explode. Thirdly, research has shown [31] that non-binary
and global constraints can have much faster propagation
than their binary equivalents, and therefore could speed up

the search process. Fourthly, non-binary constraints and
global constraints may have different behaviour in con-
straint-solving toolkits so the characteristics of problems
might change drastically in the transformation from binary
to non-binary. Lastly, it is likely that standardised KBs will
contain non-binary constraints, and to minimise the trans-
formations required, the relaxation strategies should be
applied directly to those constraints.
Because the Generating module creates a CSP with real-
world properties; such as different statistical distributions
on tightness (uniform, normal, and exponential distribu-
tion), as well as the mix of constraint type and arity, we use
a somewhat different notation than that used earlier in the
literature. We describe our problem class of CSPs as a tu-
ple δ<n,m,c(cNB,Amax),D>, where δ denotes the number of
CSPs from the class2. c is the number of constraints, cNB
denotes the number of non-binary constraints, and Amax is
their maximum arity (i.e. the maximum number of vari-
ables constrained by a single constraint). The arity of the
constraints is uniformly distributed in the range [3, Amax].
D denotes the distribution of the constraint tightness. For
uniform distributions, D is of the form U[tµ,r], where the
number of forbidden tuples in a constraint is uniformly
distributed in the range [tµ-r, tµ+r], with the average tµ. For
normal distributions, D is of the form N[tµ,sd,r], where sd
is the standard deviation of the bell curve over the range
[tµ-r, tµ+r]. For exponential distributions, D is of the form
E[tm,stp,r], where the range is [tm-r, tm+r], and stp measures
the steepness of the probability curve3.
The module generates the problems in the following steps.
First, a skeleton CSP is created using only binary con-
straints, to ensure that the underlying graph is connected.
Then the module adds random binary constraints until the
specified number (c-cNB) is reached. Finally, the number of
non-binary constraints is added (cNB), selected randomly
from the range (Amax), and the constraint is selected uni-
formly, normally, or exponentially from a predefined con-
straint table, ensuring that the tightness distribution is
obeyed.

The Relaxing Step
The Relaxing module generates relaxed CSPs from the
original CSPs by removing a specified number of con-
straints according to different strategies. For the relaxation
approach to be successful, the relaxation strategies should
not only be easy to implement but should also create a re-
laxed CSP that is easier to solve without introducing any
early solutions. At this moment, eleven different strategies
are implemented in the relaxation module: Random Re-
moval simply chooses the constraints randomly. Greedy
Search considers each constraint in turn, removing it, solv-
ing the relaxed CSP, and restoring the constraint. It then

2 δ denotes the number of CSPs and are actually not part of the notation of

the problem class.
3 Note that tm is not the average of the exponential distribution

selects the constraint whose removal gave the best per-
formance improvement, removes it, and repeats the whole
process on the resulting CSP. Greedy Ordering uses the
first iteration of Greedy Search to generate an ordering list
for all constraints then removes constraints in the order
suggested. Node Degree selects constraints in ascending or
descending order of the degree of their associated variables
in the constraint graph. Isolate Node selects high or low
degree nodes and removes a series of constraints incident
on those nodes (i.e. it tries to remove variables from the
problem). Tightness removes constraints in ascending or
descending order of their tightness. Arity removes con-
straints in ascending or descending order of their arity.
Note that the two Greedy strategies would not be applica-
ble in our eventual framework, since they must solve many
CSPs to create the relaxed CSP. They are useful here as
reference points showing what might be achievable. See
[21] for a more detailed description of the eleven strategies
as well as the rationale for their creation.

The Solving Step
The Solving module solves the original CSP and its relaxed
counterpart; when one solution is found the search is
stopped and different search statistics are recorded, using
the SICStus finite domain constraint library [4]. The library
does not report constraint checks, so instead we use the
resumption statistic to measure the search effort. We have
confirmed that resumptions correlate well with cpu time
required to solve a task [21].

EMPIRICAL TESTS
There are a vast number of problem classes which can be
investigated. Our previous work [20, 19] has shown that
relaxing a binary CSP can speed up the detection of incon-
sistency, and in particular that removing constraints of low-
tightness is an effective strategy. However, that work con-
sidered only binary CSP, while this paper shows the results
when our strategies are applied on more realistic problems,
based on scheduling properties and including non-binary
constraints.
Figure 4, shows the strategies’ relaxation findings when up
to 60 constraints are removed from the non-binary problem
class 30<20,10,133(66,6),U[65,15]>. The Y-axis represents
search effort spent on the relaxed CSP expressed as a per-
centage of that used on the original CSP; a positive value
shows that the relaxed CSP is easer to solve than the origi-
nal CSP, while a negative value indicates that the relaxed
CSP is harder than the original CSP. The X-axis shows the
number of constraints in the CSPs. These results illustrate
that many of the relaxing strategies that were successful on
the binary problem classes also perform well on non-binary
CSPs. In addition, High Node Degree is a strategy that did
not perform well on binary problem classes but produces
good results along with High Arity on non-binary problem
classes. Overall, Low Tightness is clearly the most profit-
able of the applicable strategies; it can identify the original

CSPs as inconsistent using ~30% less search effort than the
original needs.

Figure 4. Resumptions Profit in % when Relaxation Strategies
when Removing up to 60 Constraints

Figure 5 presents the most successful strategies on two new
problem classes 30<20,10,133 (66,6),U[65,30]> and
30<20,10,133(66,6),U[45,15]>. The graphs illustrate the
effect the strategies have on the non-binary problem
classes, which differ in average tightness and the width or
the tightness range. The lower graph, presents a very strong
positive trend for Low Tightness, which achieves a re-
sumption profit value of ~43%. Thereafter comes the Iso-
late Low Nodes strategy with ~12%, High Nodes, High
Node Degree, and High Arity strategies produce a zero
trend. The straight zero resumption trend for High Arity
and High Node Degree strategies can be explained by the
CSP representation; the solver checks the constraints from
top to bottom, and the binary are formulated first while the
random chosen non-binary are last. This means that the
zero trend experiment on the non-binary constraint does
not influence the problem hardness. Namely, the hardness
of the problem is decided by the binary constraints, so re-
moving the non-binary constraints would have no affect on
the resumption value; a different problem representation is
suggested as a future research direction. The top graph
shows that the High Node Degree strategy has overtaken
Low Tightness, and manages to reach a resumption profit
value of ~20% before it dips to 5%. After this typical dip,
which indicates the hardness curve has been crossed and
solutions have been introduced, the strategy returns to pro-
duce a positive trend. The graph shows High Arity man-
ages to relax the CSP with ~10% gains, a negative trend
starts after ~55 constraints are removed, and the negative
curve culminates in creating a relaxed CSP that is ~25%
harder to solve than the original. The other two strategies,
Isolate Low Nodes and Low Tightness, report negative
trends.

For our relaxation approach to have a good chance of
working on real-world scheduling problems, it is vital that
they give good results over a wide spectrum of problem
classes. Therefore, extended experiments have been con-
ducted on non-binary problem classes where the propor-
tions of binary/non-binary are varied [21]. The findings
indicate that Low Tightness is unaffected by the variation
in the proportion of binary/non-binary constraints while the
High Node Degree strategy improves as the proportion of
non-binary constraints increase. The other strategies do not
show any performance changes depending on the non-
binary/binary ratio. Although Isolate High Nodes has
shown surprisingly good results, Low Tightness still is
overall the most profitable of the strategies.

Figure 5. The Most Promising Relaxation Strategies’ Resumption
Profit on New Non-binary CSPs

The experiment shown in Figure 6 (upper graphs) was con-
ducted to examine whether Low Tightness can avoid creat-
ing relaxed CSPs that are harder to solve than the original.
The graphs show the search effort for Low Tightness and
Random Removal on two problem classes, when all 133
constraints are removed. Starting with the two particular
problem classes on the right-hand side of the curve, con-
straints are removed according to each strategy, and the
new problems are solved after each removal. In both cases,
the Low Tightness strategy avoids creating relaxed CSPs
that are harder than the original. A closer investigation of
30<20,10,133(66,6),U[tu,30]> reveals Low Tightness
curve’s resumption level is always lower than that of the
original problem class. The solution transition phase por-
trayed in Figure 6 (lower graphs) highlights the fact that

Low Tightness does not introduce any solutions earlier
than the density curve (represented by Random Removal).
Note that if the relaxed CSP has a solution, then the origi-
nal CSP represents a plausible combination and should be
retained for further investigation. The delayed solution
transition phase gives us some confidence that we can use
our relaxation strategy reliably without introducing new
solutions.

Figure 6. Search Effort & Transition Phase for Random Removal
vs. Low Tightness

The above experiments shows that certain focused relaxa-
tion strategies do produce simpler problems, and thus re-
laxation is an effective method for plausibility testing. In
particular, the relaxation strategies are effective on ran-
domly generated scheduling problems. Low Tightness
strategy can in some cases detect inconsistency using only
60% of the search effort of the original problem. Moreover,
for the only problem class that the Low Tightness does not
produce a positive resumption profit, the High Arity and
High Node Degree strategies perform well.

SUMMARY
This paper has described a novel constraint relaxation ap-
proach that contributes to the challenging problem of KB-
reuse as it helps answer the question whether combinations
of standardised KBs can be reused to solve a new task. We
proposed a cheaper plausibility-test, based on constraint
relaxation techniques that identify inconsistent KBs-PS
combinations, which leaves fewer plausible combinations
for the MUSKRAT-Advisor to examine in detail. If a re-
laxed CSP is demonstrated to be inconsistent then the origi-
nal problem will be inconsistent as well and can be dis-
carded without an expensive search. Note that for our re-
laxation strategy to be successful the relaxed problem must
be easier to solve than the original. However, relaxing a
CSP to produce an easier problem is not that simple; previ-

ous phase transition research on random binary CSPs (of
the same size and tightness) has shown that inconsistent
CSPs with fewer constraints are harder to solve than those
with more constraints. Our task then was to create a relaxa-
tion algorithm that cheaply produced relaxed CSPs without
introducing any early solution(s). We created a Prolog test
Suite designed to generate test-beds of CSPs with real-
world scheduling properties, which have helped identify
beneficial relaxation strategies. The experimental results
presented in this paper have shown not only that some re-
laxation strategies quickly identify incompatible CSPs
without introducing any early solutions but also that the
simple strategy of removing constraints of Low Tightness
has in most cases been very effective in reducing the time
required to detect inconsistencies; in some cases identifying
inconsistent CSPs using only 60% of search effort for the
original problem. We believe the reason why removing
low-tightness constraints gives good results is that con-
straints with low tightness rule out very few combinations
and are therefore more likely to be redundant than tight
constraints on inconsistent CSPs, but they require repeated
propagation checks for no benefit.

FUTURE WORK
The profitability of our relaxation approach is dependent
on the proportion of consistent and inconsistent KB-PS
combinations. When a relaxed CSP is found to be consis-
tent this does NOT mean that the original CSP is consis-
tent, it means it is plausible and needs to be investigated.
The higher the proportion of inconsistent combinations the
more beneficial our approach will be and subsequently the
higher the proportion of consistent KB-PS combinations
the less profitable it will become. To make our approach
more profitable, we suggest reusing the search effort spent
on the relaxed CSP (when demonstrated consistent) when
investigating the original CSP. All variable instantiations
(except the instantiation that introduced the solution) on the
relaxed CSP can be ignored when searching for a solution
on the original CSP. This means that the search space of
the relaxed CSP can be deducted from the original prob-
lems search space. This ability to reuse the search would
allow our approach to be more profitable for the
MUSKRAT-Advisor reuse investigation.
Moreover, we believe that the implemented strategies are
not optimal and that combining the existing strategies could
produce even better results. For example, some strategies
appear to be natural combinations such as Low Tightness
and High Arity. Both have performed well individually, in
particular the results in the empirical section have shown
that they complement each other; where High Arity excels,
Low Tightness normally performs badly and vice versa.
This combination is worth investigating further.
Furthermore, we appreciate that in general KB to CSP
transformation is a very hard task. It can be argued that we
simplified the KB-CSP transformation task in our approach
by working with standardised scheduling KBs that can eas-

ily be transformed to CSPs by the constraint solver. We
suggest the next step in the MUSKRAT framework would
be to facilitate KB to CSP transformations.
Finally, when we determine that a particular KBs-PS com-
bination is not viable, it will be useful to investigate
whether that is caused by a particular KB(s). In which case
that KB(s) would be “black listed” so as to further reduce
the number of combinations to be considered (c.f. effective
strategies applied to explore search spaces [17]).

ACKNOWLEDGMENTS
This work was supported under the EPSRC’s grant number
GR/N15764 and the Advanced Knowledge Technologies
Interdisciplinary Research Collaboration.

REFERENCES
[1] AKT, (2003) 'Reuse Knowledge', The Advanced

Knowledge Technologies project (AKT) [WWW]
Available from: http://www.aktors.org/publications/
reuse/ [Accessed 10 June 2004]

[2] Bacchus, F., X. Chen, P.v. Beek, and T. Walsh, (2002)
'Binary vs. non-binary constraints', Artificial Intelli-
gence, Volume 140, Issue 1-2. September, pp. 1-37

[3] Bennett, J. and R. Engelmore, (1983) 'Experience us-
ing EMYCIN. In Rule-Based Expert Systems', E.
Shortliffe, Addison-Wesley, London, pp. 314-328

[4] Carlsson, M., G. Ottosson, and B. Carlsson, (1997)
'An Open-Ended Finite Domain Constraint Solver' in
Programming Languages: Implementations, Logics,
and Programs., pp. 345-381

[5] Chandrasekaran, B., J.R. Josephson, and V.R. Benja-
mins, (1999) 'What Are Ontologies, and Why Do We
Need Them?' IEEE Intelligent Systems, Volume 14,
Issue 1. pp. 20-26

[6] Chaudhri, V.K., M.E. Stickel, J.F. Thomere, and R.J.
Waldinger, (2000) 'Using Prior Knowledge: Problems
and Solutions' in Seventeenth National Conference on
Artificial Intelligence and Twelfth Innovative Applica-
tions of Artificial Intelligence Conference, Austin,
Texas, USA: AAAI Press/MIT Press, pp. 437

[7] Cheeseman, P., B. Kanefsky, and W.M. Taylor, (1991)
'Where the really hard problems are' in Seventh Inter-
national Joint Conference on Artificial Intelligence,
Sydney, Australia, pp. 331-337

[8] Dieng, R., O. Corby, A. Giboin, and M. Ribière,
(1998) 'Methods and Tools for Corporate Knowledge
Management' in 11th Banff Workshop on Knowledge
Acquisition, Modelling and Management, pp. 42

[9] Gennari, J.H., M.A. Musen, R. Fergerson, and . (2003)
'The Evolution of Protégé: An Environment for
Knowledge-Based Systems Development.' Interna-
tional Journal of Human-Computer Studies, Volume
58, Issue 1. pp. 89-123

[10] Hayes-Roth, F., D.A. Waterman, and D.B. Lenat,
(1983) 'Building Expert Systems'. Teknowledge series
in knowledge engineering ; v. 1, Reading, Mass.: Ad-
dison-Wesley, pp. 444

[11] ILOG Solver, (2003) Version: 5.3, from ILOG Inc.,
[WWW]: http://www.ilog.com/

[12] Kalfoglou, Y., T. Menzies, E. Motta, and K.-D. Alt-
hoff, (2000) 'Metaknowledge in systems design: pana-
cea...or undelivered promise', The Knowledge Engi-
neering Review, Volume 15, Issue 4. pp. 381-404

[13] Kolodner, J.L., (1993) 'Case-Based Reasoning', San
Mateo, CA: Morgan Kaufmann Publishers, pp. 668

[14] MacIntyre, E., P. Prosser, B. Smith, and T. Walsh.,
(1998) 'Random Constraint Satisfaction: Theory
meets Practice' in Fourth International Conference
on Principles and Practice of Constraint Program-
ming, pp. 325-339

[15] Newman, D.R., (1998) 'Advantages of KBS', [WWW]
Available from: http://www.qub.ac.uk/mgt/intsys/
kbsadvan.html [Accessed 12 Mars 2004]

[16] Newman, D.R., (1998) 'What are KBS used for',
[WWW] Available from: http://www.qub.ac.uk/mgt/
intsys/kbsused.html [Accessed 14 Mars 2004]

[17] Nilsson, N.J., (1971) 'Problem-solving methods in artifi-
cial intelligence', New York, McGraw-Hill, pp. 255

[18] Nordlander, T., (2001) 'AI Surveying: Artificial Intel-
ligence in Business', De Montfort University, Thesis

[19] Nordlander, T., K. Brown, and D. Sleeman, (2003)
'Identifying inconsistent CSPs by Relaxation' in
Ninth International Conference on Principles and
Practice of Constraint Programming, Cork, Ireland:
Springer Verlag, pp. 987

[20] Nordlander, T., K. Brown, and D. Sleeman, (2003)
'Constraint Relaxation Techniques to Aid the Reuse of
Knowledge Bases and Problem Solvers' in The Twenty-
third SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence,
Cambridge, UK: Springer Verlag, pp. 323-336

[21] Nordlander, T.E., (2004) 'Constraint Relaxation Tech-
niques & Knowledge Base Reuse', University of Ab-
erdeen, PhD Thesis, pp. 246

[22] Park, J.Y., J.H. Gennari, and M.A. Musen, (1998)
'Mappings for Reuse in Knowledge-based Systems' in
11 th Workshop on Knowledge Acquisition, Modelling
and Management, Canada: Springer, pp. 1-21

[23] Prosser, P. and I. Buchanan, (1994) 'Intelligent sched-
uling: past, present and future', Intelligent system en-
gineering, Volume 3, Issue 2. Summer, pp. 67-78

[24] Puppe, F., (1998) 'Knowledge Reuse among Diag-
nostic Problem Solving Methods in the Shell-Kit
D3', International Journal of Human-Computer
Studies, Volume 49, Issue 4. pp. 627-649

25] Sauer, J. and H.-J. Appelrath, (1997) 'Knowledge-
Based Design of Scheduling System' in World Manu-
facturing Congress, International Symposium on
Manufacturing Systems, Auckland: ICSC Academic
Press, pp. 247-252

[26] Sauer, J. and R. Bruns, (1997) 'Knowledge-Based
Scheduling Systems in Industry and Medicine', IEEE-
Expert, Volume 12, Issue 1. pp. 24-31

[27] Schiex, T., H. Fargier, and G. Verfaillie, (1995) 'Val-
ued Constraint Satisfaction Problems: hard and easy
problems' in International Joint Conferences on Artifi-
cial Intelligence, pp. 631-637

[28] Schreiber, G., H. Akkermans, A. Anjewierden, R.d.
Hoog, N. Shadbolt, W.V.d. Velde, and B. Wielinga,
(1999) 'KNOWLEDGE ENGINEERING AND
MANAGEMENT The CommonKADS Methodology',
MIT press, pp. 91

[29] SICStus Prolog, (2001) Version: 3.10.0, [WWW]:
http:// www.sics.se/sicstus/

[30] Smith, S.F. and M.A. Becker, (1997) 'An Ontology for
Constructing Scheduling Systems' in Fourteenth Na-
tional Conference on Artificial Intelligence:Spring Sym-
posium on Ontological Engineering (AAAI'97), Provi-
dence, Rhode Island, USA: AAAI Press, pp. 1-10

[31] Stergiou, K. and T. Walsh, (1999) 'The Difference All-
Difference Makes' in Fifteen International Joint Con-
ference on Artificial Intelligence, Montreal Quebec:
Morgan Kaufmann Publishers, Inc, pp. 414-419

[32] Uschold, M., P. Clark, M. Healy, K. Williamson, and
S. Woods, (1998) 'An Experiment in Ontology Reuse'
in 11th Banff Knowledge Acquisition Workshop, Cal-
gary Canada: SRDG Publications, pp. 33

[33] Wallace, M., (1996) 'Practical application of con-
straint programming', Constraints, Volume 1, Issue
1-2. pp. 139-168

[34] Walsh, T., (2001) 'Search on high degree graphs' in
Seventeenth International Joint Conference on Artifi-
cial Intelligence, Seattle, WA, pp. 266-274

[35] White, S. and D. Sleeman, (2000) 'A Constraint-Based
Approach to the Description & Detection of Fitness-
for-Purpose', Electronic Transactions on Artificial In-
telligence, Volume 4. pp. 155-183

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

