
Abstract

Many existing ontology tools provide an
integrated environment to browse and edit
ontologies as well as inconsistency checking
facilities. However, their visualization facilities
are limited and guidance on how to correct the
detected errors is not usually provided. We
present our ontology editor, ReTAX++, a tool
that facilitates browsing and revision of
ontologies.

1 Introduction

Many exiting ontology tools such as Protégé
1
, WedODE

2
,

Oiled
3
and OntoEdit

4
 provide list-based representations

for selection of classes or pop-up windows for
manipulating classes. However, users usually find it
difficult to browse the logical structure of ontologies
graphically, and only OWLViz

5
, the plugin of Protégé,

provides graphical visualization facilities which are
static. These tools are also able to check for errors and
inconsistencies by connecting with an external reasoner.
However, only Protégé-OWL

1
, OWLDebugger

6
 is able to

help users track down the reasons for OWL classes being
inconsistent; SWOOP

7
 presents errors in ontologies to

users in simple natural language. Other tools provide no
explanation and functionalities for users to correct the
detected defects and errors [Lam et. al. 2004].

We propose a graph-based approach implemented in
ReTAX++ (see Figure 1) to help knowledge engineers
browse ontologies and resolve the inconsistencies. When
one wants to reuse an ontology by importing it onto the
system, the ontology is displayed in a graphical format.
With the help of a reasoner, the system detects and

1 http://protege.stanford.edu/
2 http://delicias.dia.fi.upm.es/webODE/
3 http://oiled.man.ac.uk/
4 http://www.ontoprise.de/home
5 http://www.co-ode.org/downloads/owlviz/
6 http://protege.stanford.edu/conference/

2005/submissions/posters/poster-drummond.pdf
7 http://www.mindswap.org/2004/SWOOP/

highlights the inconsistent concepts. We propose graph-
based algorithms to detect which relationships among
concepts cause the inconsistencies, and provide options
for the user to correct them. If an incomplete or
inconsistent ontology is imported, a number of
ontological fragments may still be formed. In this case,
we aim to suggest to the user with the best concept
candidate to integrate the fragments.

2 Contradiction Checking

We formally represent an ontology as a directed graph
with a finite set of nodes and edges. There are three types
of nodes, viz. the concepts and relations of an ontology
are represented as nodes in the graph; the intersection,
union and complement operations between concepts are
represented as , , ¬ nodes respectively. The edges
represent the relationships among the nodes. In this paper
we only illustrate how a complement contradiction is
checked and resolved, therefore, instances, enumerated
concepts and cardinality restrictions etc. are not
considered. Paths in a graph, represented as Π, are
alternating sequences of nodes and edges such that each
edge in the sequence is preceded by its source node. We
assume that there is at most one edge between any two
nodes, therefore, an edge in a graph can always be
determined by its source and target nodes. Hence, a path
can be abbreviated by just enumerating the nodes 〈n0, n1,
…, nm〉. For brevity, the nodes are written as the concept
names, relation names and the concept operation
symbols.

ReTAX++: a Tool for Browsing and Revising Ontologies

Sik Chun (Joey) Lam, Derek H. Sleeman, Wamberto Vasconcelos
Dept. of Computing Science

University of Aberdeen
Aberdeen, Scotland, UK

{slam, sleeman, wvasconc}@csd.abdn.ac.uk

user Reuse/Integration

Figure 1. The structure of ReTAX++

Racer

Checking

Racer

Complement contradiction occurs if a concept is defined
to have a relationship with a concept but the concept
must not have a relationship with that concept
simultaneously. Given an ontology and a concept, we can
find a set of concept paths Φ={Π1, Π2, …, Πn}, the first
node of the paths is always the concept. Each path Πi
with a ¬ node is compared to each path Πj without ¬
node. By comparing these paths, and converting them to
negated normal form, if necessary, to make the relation
nodes with the same restriction, we can infer which
relationships among concepts may cause the
contradiction. The two paths Πj, Πi are complement
contradictory if the following conditions hold:
1. No node exists in both paths Πj and Πi, otherwise,

they may be alternative.
2. The relation nodes preceding the ¬ node in Πi must

have the same name but different restrictions with the
corresponding nodes in Πj.

3. The relation nodes after the ¬ node in Πi must have the
same name and restriction with the corresponding
nodes in Πj.

The following example shows how we check which
relationships cause the concept mad_cow to be
inconsistent. The eat relationship of mad_cow specifies
that at least an individual eats a part of animal and of
brain. vegetarian specifies that all of its individuals do
not eat the parts of animal. Further, mad_cow is defined
as a vegetarian. There is an inconsistency. We now
illustrate how the contradiction is checked using graph-
based algorithms.

Firstly, a set of paths is found in the graph,
Π1 = 〈mad_cow, animal〉
Π2 = 〈mad_cow, vegetarian, ∀eats, ¬, animal〉
Π3 = 〈mad_cow, vegetarian, ∀eats, ¬, ∃part_of, animal〉
Π4 = 〈mad_cow, ∃eats, ∃part_of, , sheep〉
Π5 = 〈mad_cow, ∃eats, , brain〉

A relation node in a path can be converted to normalized
form in order to make the restriction of relation nodes to
be the same, Π3′ = 〈mad_cow, vegetarian, ¬, ∃eats,

∃part_of, animal〉. As sheep is a subconcept of animal, it
is substituted by animal in Π4, therefore, Π4′ =
〈mad_cow, ∃eats, ∃part_of, , animal〉. This identifies a

complement contradiction located in paths Π3′ and Π4′,
and the three conditions are held by them.

To facilitate editing the ontology, the user clicks the
nodes in the graphical browser, the operations of nodes
will pop up. The system provides the following options
to resolve the complement contradiction:
1. Remove the complement axiom by eliminating the ¬

node in the graph.
2. Change the restriction of any relation node in one of

paths. In this example, either the restriction of eat
relation of mad_cow can be changed to ∀, or the
restriction of eat relation of vegetarian can be changed
to ∃.

3. Change the node to , the path is then alternative.
4. Remove one of the relations of the concept. The eat

relation of either mad_cow or vegetarian can be
removed.

3 Reuse & Integration

If only portions of the ontology can be read by the system
(or some concepts cannot be linked by any of the existing
relations), then fragments of the ontology may be formed
using the relationships which have been detected. We
will conduct an empirical study with a view to capturing
the heuristics used by ontology engineers when facing ill-
formed ontologies which were broken into a number of
fragments. We then incorporate the heuristics into the
system which provides facilities and suggests the best
concept candidate to integrate the fragments via concept-
subconcept relationships, or merging two similar
concepts. The resulting ontology could be either a single
consistent ontology or a number of consistent fragments.

4 Discussion & Future Work

This paper outlines our system ReTAX++, a graph-based
ontology browsing and revision tool, which is still being
developed. The user is provided with options to resolve
the inconsistencies in the ontology; however, some of the
proposed solutions require a more efficient
implementation. For example, an ontology may contain
numerous inconsistencies which are propagated from an
inconsistent concept, and hence we require a more
efficient strategy to discover the root causes of
inconsistency. Future work will involve performing an
empirical study to evaluate the suggestions offered by the
system with respect to resolving inconsistencies. The
functionalities of integrating fragments will also be
implemented.

References

[Lam et al., 2004] Sik Chun Lam, Derek Sleeman and
Wamberto Vasconcelos. ReTAX+: A Cooperative
Taxonomy Revision Tool. In Proceedings of AI-2004
Conference, Cambridge, UK, December 2004. Publisher:
Springer, p 64-77.

animal

brain

vegetarian

sheep

∃part_of ∀eat

mad_cow

¬

¬

∃eat

∀eat

∃part_of

Figure 2. mad_cow example

vegetarian ∀eat.(¬animal) ∀eat(¬∃part_of.animal)

mad_cow ∃eat.(brain ∃part_of. sheep)
mad_cow vegetarian

