
Graph-Based Ontology Checking ∗

Sik Chun (Joey) Lam
Department of Computing

Science
University of Aberdeen

Aberdeen, Scotland, UK

slam@csd.abdn.ac.uk

Derek Sleeman
Department of Computing

Science
University of Aberdeen

Aberdeen, Scotland, UK

sleeman@csd.abdn.ac.uk

Wamberto Vasconcelos
Department of Computing

Science
University of Aberdeen

Aberdeen, Scotland, UK

wvasconc@csd.abdn.ac.uk

ABSTRACT
Despite the growing availability of ontologies, the reuse
of existing ontologies is often not possible without con-
siderable effort. When one wants to reuse an ontol-
ogy by importing it into ontology editors, the import
process is not always successful due to an ill-formed
content. Many existing ontology editors provide consis-
tency detection by connecting to a reasoner, and high-
lighting the inconsistencies. However, no explanation
nor functionalities are provided for users to correct the
problems. In this paper we introduce a graph-based
approach to checking ontology inconsistencies, imple-
mented in our tool, ReTAX++. The system not only
highlights the inconsistencies in an ontology by inter-
acting with a reasoner, but also provides facilities for
users to resolve the problems. By formalising an on-
tology as a graph, we check which relationships of the
inconsistent concepts may cause the contradiction, and
a number of options to resolve the problems are pro-
vided. Currently, we only focus on disjointedness and
complement contradictions.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and
Methods]: representation language

General Terms
Knowledge Management

Keywords
Ontology Consistency

1. INTRODUCTION
∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. K-CAP’05,
October 2-5, 2005, Banff, Canada. Copyright 2005 ACM
1-58113-000-0/00/0000 . . . $5.00

Reusing an ontology is far from an automated process,
instead it requires a significant effort from the knowl-
edge engineer [4]. Published ontologies do not have
guaranteed error-free content, that is, the concept defi-
nitions, relationships and formal axioms may contain
errors. McGuinness et al. [10] found extensive need
for ontological reorganisation. It is crucial to evaluate
imported ontologies before re-using them in Semantic
Web applications. There are many ontology tools ca-
pable of importing existing ontologies, that can work
with ontologies in different formalisms [9]. However,
they only indicate the inconsistent concepts, and no ex-
planation nor functionalities are provided for engineers
to correct the problems. Therefore, there is a growing
need for tools that can validate ontological consistency
and provide guidance as to how to correct the detected
errors [2].

In this paper we propose a graph-based approach imple-
mented in our tool, ReTAX++, to help knowledge engi-
neers resolve inconsistencies in ontologies. The system
highlights the inconsistent concepts by connecting to an
external reasoner, which detects the inconsistencies in
an ontology. We then check which relationships among
concepts cause the problems using graph-based algo-
rithms. An ontology is first mapped onto a graph whose
nodes correspond to “units” of information and arcs to
inferential dependencies between these units. The con-
tradictions of concepts are then identified by analysing
the paths of a graph. After identifying the relationships
among concepts which cause the contradiction, we then
provide a number of options for the user to resolve the
problems. Once the user selects an option, the changes
on the ontology are carried out automatically. Inconsis-
tencies in an ontology may be caused by cardinalities,
relation restrictions, concept axioms, etc.; in this paper,
we only focus on the disjointedness and complement of
concepts.

This paper is structured as follows. The preliminary
definitions are presented in section 2. Section 3 de-
scribes the process of detecting and resolving the dis-
joint and complement contradictions. The system im-
plementation is described in section 4. Section 5 is a

brief overview and a comparison of related work. Fi-
nally, we conclude in Section 6, discussing our proposal
and future work.

2. PRELIMINARY DEFINITIONS
We shall formally represent an ontology as a directed
graph with a finite set of nodes and edges. There are
three types of nodes, viz. the concepts and relations
of an ontology are represented as nodes in the graph;
the intersection, union, complement and disjointedness
operations between concepts are represented as u , t
, ¬ and ⊗ nodes respectively. The nodes are linked by
edges.

Definition 1. An ontology is a pair O = 〈N,E〉
where

• N is a finite and non-empty set of nodes, con-
sisting of concepts, relations and the concept op-
erators. We differentiate subsets of N, that is
N = C ∪R ∪ A ∪ I ∪P, where

– C is a finite and non-empty set of concepts, C
= {C1, C2, . . . Cn}, each Ci is defined below;

– R is a finite or possibly empty set of binary
quantified relations between concepts, that is
each R ∈ R expresses relationships between
concepts with quantified restriction;

– A is a finite or possibly empty set of attributes
which are the characteristic features describ-
ing concepts, A = {A1, A2, . . . An}, each Ai

is defined below;

– I is a set of individuals, that is, its elements
represent actual objects of the world;

– P ={ 〈l1, u 〉, 〈l2, t 〉, 〈l3, ¬ 〉, 〈l4,⊗〉} repre-
sents the intersection, union, complement and
disjointedness of concepts, and l1, l2, l3, l4 are
the node labels.

• E : N × L ×N is a finite and possibly empty set
of labeled edges, L is a set of labels.

Definition 2. A concept C is a triple C = 〈c,A, I〉,
C ∈ C, where

• c is the concept name, which is written in a sans
serif font like this;

• A is a possibly empty or finite set of attributes,
A = {A1, A2, . . . , An} ⊆ A, Ai is defined below;

• I is a possibly empty or finite set of individuals,
I = {i1, i2, . . . , in} ⊆ I.

Definition 3. An attribute is a pair A = 〈a,V〉
where a is the attribute name, V={v1, . . . , vn} is a non-
empty and possibly infinite set of attribute values.

Definition 4. A relation R : r × N × N × Q for-
mally establishes a quantified binary relation between
two nodes, such that R = 〈r,N, N ′, Q〉, where

• r is the relation name, which is written in a sans
serif font like this;

• N is the node participating in the relation;

• N ′ is the node linked by the relation;

• Q ∈ Q = {∃, ∀,3,≤,≥,=} is the quantifier to re-
strict the number of individuals that belong to the
concept C, they refer to existential, universal, has-
Value, minimum cardinality, maximum cardinality
and exact cardinality restrictions, respectively.

An edge is an element of N×L×N, that is any ordered
pair of nodes with a label, which is possibly nil. A label
edge e = 〈n0, α, n1〉 is said to be incident with nodes n0

and n1, where α is the label of the edge, n0, n1 ∈ N,
e ∈ E. The label of an edge α indicates the predefined
relationships between nodes. The relationships are de-
fined as follows:

• v : C×C formally represents the concept-subconcept
relationships for the taxonomy, such that if C ′ v
C, then C ′ is a subconcept of C;

• ≡ : C × C formally represents equality between
concepts, such that if C ′ ≡ C then C ′ is equivalent
to C;

• Domain: (A ∪ R) → 2C gives a set of domain
concepts C for all relations or attributes X ∈ (A∪
R);

• Range: R → 2C gives a set of range concepts C
for all relations R ∈ R.

Paths in a graph, represented as Π, are alternating se-
quences of nodes and edges such that each edge in the
sequence is preceded by its source node. More than one
edge cannot exist between two nodes, therefore, an edge
in a graph can always be determined by its source and
target nodes, for brevity, a path is abbreviated by just
enumerating the nodes 〈n0, n1, . . . , nm〉. The concate-
nation of paths is denoted by “·”. For example, 〈n〉 ·
〈m〉 = 〈n, m〉. The length of a path, |Π|, is the number
of nodes in the sequence.

Definition 5. A path Π can be defined recursively
as:

• 〈〉 is a path, called the empty path;

• 〈n〉 is a path if and only if n ∈ N;

• Π · 〈n,m〉 is a path if and only if 〈n, α, m〉 ∈ E and
Π · 〈n〉.

Definition 6. Π′ is called the common-subpath of
Π1 and Π2 if and only if Π1 = Π′ ·Π3 and Π2 = Π′ ·Π4,
that is two paths are decomposed into two parts, and
their first parts have the maximum common subpath,
where |Π′| > 0, |Π3| > 0, |Π4| > 0 and Π′ is the maxi-
mum length path that satisfies this.

Definition 7. The predicate matched-tail(Π1, Π2)
is true if and only if Π1 = Π′ ·Π2, |Π′| > 0.

We now explain how a set of concept paths is obtained
with a given concept and an ontology. In the concept-
path function (Figure 1), the concept C, ontology O and
a empty set of paths Φ are initialised. For each relation
R of C, a path Π containing C and R is created (cf.
line 5). The node N linked by R, the path Π, Φ and O
are input into the function create-path (cf. line 6).

In the function create-path (Figure 2), the path Π is
appended with node N (cf. line 2). Three cases are
checked: (1) if N is a concept, Π is added to Φ and the
function ends (cf. line 4). (2) if N is an intersection,
union or complement operation node, every node which
is linked by N is input to create-path recursively (cf.
line 5-8) (Note that an intersection or union node can
link to more than one concept). (3) if N is a relation,
the node linked by N is input to create-path recursively
(cf. line 9-10).

As the relations of a concept could be inherited from
its superconcepts or equivalent concepts, paths are also
included from these concepts. That is, a path is created
for each relation of its superconcepts or equivalent con-
cepts (cf. line 8-11 in Figure 1). Similarly, the function
disjoint-path (Figure 3) returns a set of disjoint paths
with a given disjointedness node N . All nodes linked
by N are input to create-path (cf. line 4-6 in Figure 3).

For example, in Figure 4, the concept Lion is defined so
that its individuals have an eats relationship linked to at
least an individual which is both a member of Cow and
Sheep. This is represented as a graph with five nodes,
which are C, R, C1, C2, N respectively, and four edges.
The set of paths Φ is {〈C, R,N,C1〉, 〈C, R, N, C2〉}.

¿From the concept-path function, we notice that a con-
cept path always ends with a concept node. As the
axioms of a concept are inherited by its subconcepts,
the concept node at the end of a path Π must be sub-
stituted by its superconcepts in order to include the

1. Function concept-path(C, Φ, O)
2. C = 〈c,A, I〉; O = 〈N,E〉 ;
3. Φ := {};
4. for each R = 〈r, C,N, Q〉 ∈ N
5. Π := 〈C, R〉;
6. create-path(N, Π,Φ, O);
7. end for
8. for each 〈C, v ,C ′〉, 〈C, ≡ , C ′〉 ∈ E
9. for each R = 〈r, C ′, N ′, Q〉 ∈ N
10. Π := 〈C, C ′, R〉;
11. create-path(N ′, Π,Φ, O);
12. end for
13. end for
14. End function

Figure 1: The concept-path function

1. Function create-path(N, Π, Φ, O)
2. Π := Π · 〈N〉; O = 〈N,E〉 ;
3. if N = 〈c,A, I〉 ∈ N then
4. Φ := Φ ∪ {Π};
5. else if N ∈ {〈l1, u 〉,〈l2, t 〉,〈l3, ¬ 〉} then
6. for each 〈N, α,N ′〉 ∈ E
7. create-path(N ′, Π,Φ, O);
8. end for
9. else if N = 〈r,N ′, N ′′, Q〉 ∈ N then
10. create-path(N ′′, Π, Φ, O);
11.end if
12.End function

Figure 2: The create-path function

1. Function disjoint-path(N, Φ, O)
2. Π := 〈〉; Φ := {}; O = 〈N,E〉 ;
3. if N = 〈l,⊗〉 ∈ N then
4. for each 〈N, α,N ′〉 ∈ E
5. create-path(N ′, Π,Φ, O);
6. end for
7. end if
8. End function

Figure 3: The disjoint-path function

N = {C = 〈Lion, ∅, ∅〉,
C1 = 〈Cow, ∅, ∅〉,
C2 = 〈Sheep, ∅, ∅〉,
R = 〈eats, C,N, ∃〉,
N = 〈n1, u 〉}
E ={〈C, v , R〉, 〈R, nil, N〉, 〈N, nil, C1〉, 〈N,nil, C2〉}

Figure 4: lion concept

1. Function substitute(Π, C, Π′)
2. Π = Π1 · 〈C ′〉;
3. if ∃〈C ′,v , C〉, 〈C ′, ≡ , C〉 ∈ E
4. Π′ := Π1 · 〈C〉;
5. end if
6. End function

Figure 5: The substitute function

axioms from its superconcepts. This is implemented by
the function substitute which returns another path Π′.
If Π′ is contradictory with other paths, then Π will be
also.

3. DISJOINT AND COMPLEMENT CON-
TRADICTIONS

Inconsistencies may easily occur in ontologies [12], car-
dinality, relation restrictions and concept axioms etc
can result in problems. In this paper, we analyse the
relationships of concepts and concept axioms based on
graph theory, and only focus on disjointedness and com-
plement of concepts.

Table 1 shows some common contradictions existing in
ontologies.
(a) a concept has two or more superconcepts which are
disjoint with or complement of each other.
(b) a concept is disjoint with or complement of its su-
perconcepts.
(c) a concept has both an existential and universal re-
striction acting on the same relation, while the relation
fillers are disjoint with or complement of each other.
(d) a concept has an existential restriction acting on
a relation, while the relation filler is an intersection of
concepts which are disjoint with or complement of each
other.
(e) a concept has an existential restriction acting on
a relation, while the domain of the relation is disjoint
with or complement of the concept.
(f) a concept has an existential restriction acting on a
relation, while the range of the relation is disjoint with
or complement of the relation filler.
In the next subsection, we illustrate how paths are used
to check the contradiction in example (c) and (d). Other
examples are checked analogously.

3.1 Disjoint Contradiction
Given an ontology O, a concept C and a disjoint node
N , a disjoint contradiction may occur if the concept C
has relationships with other concepts which are linked
by the disjoint node N ; informally, two of concept paths
starting with C must link to disjoint paths from node
N .

We first find a set of concept paths Φ = {Π1, Π2, . . . , Πn}
by applying the function concept-path(C,Φ, O). A set of

Table 1: Six contradiction examples

(a) (b)

(c) (d)

(e) (f)

disjoint paths Φd = {Πd1, Πd2, . . . , Πdn} is found by the
function disjoint-path(N, Φd, O). Each concept path Πi

is compared to each disjoint path: if there exist two
concept paths Πi and Πj , such that i 6= j, and there
exist two disjoint paths Πdk and Πdl such that k 6= l,
and matched-tail(Πi, Πdk) and matched-tail(Πj , Πdl)
are both true (Definition 7), that means the concept
paths Πi and Πj may be involved in the contradiction.

For example, Figure 6 shows are a number of nodes N
and edges E. Lion has an eats relation with ∃ restriction,
and the relation filler is the intersection of Cow and
Sheep; Cattle and Sheep are defined to be disjoint; Cow
is a subconcept of Cattle. The set of concept paths from
C is Φ = {Π1, Π2,Π3}, where

Π1 = 〈C, R1, C1〉
Π2 = 〈C, R2, N1, C1〉
Π3 = 〈C, R2, N1, C2〉

The set of disjoint paths derived from the disjoint node
N is Φd = {Πd1, Πd2}, where

Πd1 = 〈C2〉
Πd2 = 〈C3〉

As Cow is a subconcept of Cattle, the concept node C1

in Π1 and Π2 must be substituted by C3, therefore,

substitute(Π1, C3,Π′1), Π
′
1 = 〈C,R1, C3〉

substitute(Π2, C3,Π′2), Π
′
2 = 〈C,R2, N1, C3〉

By comparing the concept and disjoint paths, we found
that Π′1 and Π′2 are matched with Πd1, as their com-
mon node is C3; Π3 is matched with Πd2, as their com-
mon node is C2. For the matched concept paths, their
matched-tail and common-subpath are obtained. Fig-
ure 7 illustrates the common-subpath and matched-tail
parts of Π′2 and Π3.

N = {C = 〈Lion, ∅, ∅〉,
C1 = 〈Cow, ∅, ∅〉,
C2 = 〈Sheep, ∅, ∅〉,
C3 = 〈Cattle, ∅, ∅〉,
R1 = 〈eats, C, C1, ∃〉,
R2 = 〈eats, C,N1,∃〉,
N1 = 〈n1, u 〉, N2 = 〈n1,⊗〉 }
E ={〈C1,v , C3〉, 〈N2, ∅, C3〉, 〈N2, ∅, C1〉, · · · }

Figure 6: lion example with a disjoint axiom

matched-tail(Π′1, Πd2), Πd2 = 〈C3〉
matched-tail(Π′2, Πd2), Πd2 = 〈C3〉
matched-tail(Π3, Πd1), Πd1 = 〈C2〉
common-subpath(Π′1, Π

′
2) = 〈C〉

common-subpath(Π′1, Π3) = 〈C〉
common-subpath(Π′2, Π3) = 〈C, R2, N1〉

3.1.1 Detecting disjoint contradictory concept paths
Though the concept paths Π′1,Π

′
2, Π3 are matched with

the disjoint paths, not every matched path is relevant
to the contradiction. If two concept paths Πi, Πj are
matched with disjoint paths Πdl, Πdk based on the con-
ditions mentioned in Section 3.1, i.e. matched-tail(Πi,
Πdk) and matched-tail(Πj , Πdl) are both true; they are
disjoint contradictory, if the following four conditions
hold:

1. No t node exists in the paths Πi, Πj , excluding
their matched-tail parts, which are not considered
because the matched-tail parts are the same as the
disjoint paths. If a t node exists, that means the
path may be alternative.

2. All relation nodes in Πi must have the same name
with the corresponding nodes in Πj , excluding their
matched-tail parts for the same reason as (1) above.
If the relation nodes in Πi have different names
with those in Πj , that means they participate in
different relationships, hence they may not have a
contradiction.

3. If there exist relation nodes in common-subpath(Πi,
Πj), the restriction of the relation nodes must be
∃. If the restriction of the relation node is ∀, that
means the concept may contain individuals that
have this relationship without linking to any other
individuals.

4. Excluding the matched-tail and common-subpath
parts, the relation nodes of path Πi must have
the same restriction as each other (that is, the re-
lation nodes of Πi must be either all ∃ or all ∀
restrictions); likewise, the relation nodes of path

Figure 7: The matched-tail and common-
subpath part of two paths

Πj must have the same restriction as each other;
finally, the restriction used in Πi must be differ-
ent to the one used in Πj (for example, Πi could
use all ∃, while Πj could use all ∀). If the rela-
tion nodes of the concept path Πi contain both ∃
and ∀ restrictions, or if the two concept paths have
the exactly same restriction of relation nodes, that
means the concept may contain individuals which
have the relationships without linking to any other
individuals.

Therefore, Π′1 and Π3 are not contradictory, as the re-
striction of the relation node eats in Π′1 is the same as
the relation node eats of Π3 (condition 4). Π′2 and Π′1
are not contradictory for the same reason. Π′2 and Π3

are contradictory, common-subpath(Π′2, Π3) = 〈C,R2, N1〉.
There is no t node in the paths excluding the matched-
tail (condition 1); both paths have the same relation
nodes (condition 2); the relation eats in the common-
subpath is ∃ restriction(condition 3).

3.1.2 Options to resolve the disjoint contradiction
After getting two contradictory paths, a number of op-
tions are provided to resolve the contradiction:

1. Modify the common-subpath of the contradictory
paths

• if there exists a relation node with ∃ restric-
tion in the common-subpath, change its re-
striction to ∀. Referring to the example, if the
restriction of the relation node in common-
subpath(Π′2, Π3) is changed to ∀, then R′2 =
〈eats, C,N1,∀〉.

• if there exists a u node in the paths exclud-
ing the matched-tail, change it to a t node.
If the u node in common-subpath(Π′2, Π3) is
changed to a t node, then R′2 = 〈eats, C, N ′

1, ∀〉,
where N ′

1 = 〈n1, t 〉.
2. Modify the matched-tail part to make it differ-

ent from the disjoint paths. In this example, the
matched tail parts of Π′2 and Π3 are C3 and C2

respectively, the concept nodes in Π′2 and Π3 can
be changed to other concepts which are not C3,
C2, or their subconcepts.

3. Remove the disjoint node ⊗.

4. Remove the relationships of the concept. If R1 is
removed, the path Π1 is removed; if R2 is removed,
then paths Π2 and Π3 are removed.

3.2 Complement Contradiction
This kind of contradiction occurs when a concept is de-
fined to have a relationship with some concept and must
not have a relationship with that concept, simultane-
ously. Given an ontology O, a concept C, we can find
a set of concept paths Φ = {Π1, Π2, · · · , Πn} starting
from a concept C using the function concept-path(C, Φ,O),
in which every concept path Πi with a ¬ node is com-
pared with every concept path Πj without a ¬ node.
By comparing the two concept paths, and converting to
negation normal form [3], if necessary, we infer which
relationships of the concepts result in the contradiction
based on the conditions described below.

N = {C = 〈Lion, ∅, ∅〉,
C1 = 〈Cow, ∅, ∅〉,
C2 = 〈Sheep, ∅, ∅〉,
C3 = 〈Cattle, ∅, ∅〉,
R1 = 〈eat, C,N1,∀〉,
R2 = 〈eat, C,N2,∃〉,
N1 = 〈n1,¬〉, N2 = 〈n2, u 〉}
E ={〈C1, v , C3〉, 〈C, v , R1〉, 〈C, v , R2〉, · · · }

Figure 8: lion example with a complement ax-
iom

For example in Figure 8, Lion is defined to have at least
one eat relationship with an individual which is both a
member of Cow and Sheep, and it is also defined that
its individuals only have the eat relationship to other
individuals which are not members of Cattle. Also Cow
is a subconcept of Cattle. These statements are contra-
dictory. The set of concept paths are Φ = {Π1, Π2, Π3},
where
Π1 = 〈C, R1, N1, C3〉
Π2 = 〈C, R2, N2, C1〉
Π3 = 〈C, R2, N2, C2〉

As Cow is a subconcept of Cattle, the concept node
C1 in Π2 must be substituted by C3, therefore, substi-
tute(Π2, C3, Π′2), Π′2 = 〈C, R2, C3〉. For the convenience
of comparison, R1 is converted to negation normal form,
i.e. R′1 = 〈eat, N1, C3,∃〉, Π′1 = 〈C, N1, R

′
1, C3〉 (see Fig-

ure 9).
It is obvious that Π′1 and Π′2 are contradictory, as Lion
is defined not to have individuals which have at least

Figure 9: lion example converted to negated
normal form

one eat relationship to an individual which is a member
of the concept Cattle; Lion is also defined to have indi-
viduals that have at least one eat relationship with an
individual that is a member of the concept Cattle.

For the convenience of comparison, the relation nodes
in a path, which have different restrictions with another
path, are converted to the same restriction by negation
normal form. The two concepts paths Πi and Πj are
complement contradictory if the following four condi-
tions hold:

1. No t node exists in the paths. If a t node exists,
then the paths may be alternative.

2. All relation nodes in path Πi must have the same
name as the corresponding nodes in Πj . If they
have different relation names, this means the indi-
viduals of the concept in the paths participate in
different relationships.

3. The relation nodes which are preceding the ¬ node
in path Πi must have the same name but different
restrictions with the corresponding nodes in Πj . If
those relation nodes preceding the ¬ node in the
two paths have the same restriction, this means
the concept may contain the individuals that have
relationships without linking to any other individ-
uals.

4. The relation nodes which exist after the ¬ node in
path Πi must have the same name and restriction
with the corresponding nodes in Πj . If the relation
nodes after the ¬ node have different restrictions,
this means the individuals of the concept in the
two paths can participate in different relationships.

After getting two contradictory paths, a number of op-
tions are provided to resolve the contradiction:

1. If there exists a u node in the paths, change it to
be t node, the path then becomes alternative. In
the above example, if the u node is changed to be
t , then R2 = 〈eat, C, N ′

2, ∃〉, where N ′
2 = 〈n2, t 〉.

2. Change the restriction of one of the relation nodes
in either one of the paths. If the restriction of

Inconsistent

concept is

highlighted.

A panel shows the

list of options.

Figure 10: Screen Shot of ReTAX++

the eat relation is changed to be ∀, then R′2 =
〈eat, C,N2,∀〉. Therefore, the concept Lion may
contain individuals that do not have any eat rela-
tionship to any other individuals.

3. Remove the complement axiom by eliminating the
¬ node in a path. If the ¬ node in path Π1 is
removed, then R′1 = 〈eat, C, C3,∀〉

4. Remove one of the relationships of the concept C.
In this case, either R1 or R2 can be removed.

4. IMPLEMENTATION
A screenshot of the ReTAX++ is shown in Figure 10.
The ontology is displayed in a graphical format using
TouchGraph1. By interacting with an external rea-
soner, Racer2, the system detects and highlights in-
consistent concepts. When the user clicks the incon-
sistent item, a list of options to resolve the problem is
shown. The changes in the ontology are implemented
automatically. Though a number of options to resolve
inconsistencies are provided, we are not sure how use-
ful the suggestions are to the ontologists. An empirical
study will be conducted to evaluate the usability and ef-
ficiency of the system, so that the facilities of resolving
inconsistencies can be further improved.

5. RELATED WORK
The evaluation and maintenance of ontologies has been
discussed extensively in the literature. The approach of
minimising common errors in ontology development is
presented by Rector et al. [1] in the CO-ODE project.
They then presented a heuristic approach for debugging
OWL ontologies called OWLDebugger, which alleviates
the user from troubleshooting the inconsistent classes.
It helps users to track down the reasons for inconsis-
tencies in OWL classes [7], descriptions that explain
1http://www.touchgraph.com/
2http://www.racer-systems.com

the reasons for inconsistent OWL classes are also gener-
ated [5]. However, it cannot determine the root causes
of unsatisfiability in every case, as they use heuristic
approaches and pattern matching. Further, the system
lists all unsatisfiable concepts without identifying the
root and derived unsatisfiable concepts, the user has
to debug one by one and run the reasoner frequently
to check the consistency. In the contrast, the graph-
based approach shows the relationships among concepts
graphically, users finds it easy to understand the prob-
lem even without reading the natural language explana-
tions. The suggestions of solving inconsistency further
alleviates the user from debugging the ontology.

Schlobach [11] proposed a strategy for automatically
identifying and fixing the incoherence by pinpointing.
In pinpointing they identify minimal sets of axioms which
need to be removed or ignored to make an ontology
coherent. In the case of numerous inconsistent con-
cepts, it chooses (and eliminates) axioms that most fre-
quently participate in the underlying logical contradic-
tions. Their case studies showed this strategy is useful
for dealing with the incoherence due to the merging of
two or more ontologies.

Haase et al. [6] introduced two resolution strategies to
ensure that consistency is maintained as the ontology
evolves. The first strategy is to start out with an in-
consistent ontology and iteratively remove axioms until
a consistent ontology is obtained. The second approach
is to find a minimal inconsistent ontology and present
it to the user. The user can then decide how to re-
solve the inconsistency. Its main feature is to preserve
consistency in the case that consistency conditions are
violated in the presence of ontology changes.

Schlobach and Haase proposed mechanisms to detect
inconsistencies and remove the axioms which are the
root causes of inconsistencies. Though they can get a
consistent ontology, some information may be lost due
to removing or ignoring axioms. The second approach
by Haase is to present the inconsistencies to the user,
but it still cannot alleviate the user from troubleshoot-
ing the problem. To compensate for this, our strategies
can point out which relationships of the inconsistent
concepts lead to contradictions, and help the user to
correct the content, where the relation restrictions, the
conjunction axioms and complement axioms etc., can
be modified or removed.

6. CONCLUSION AND DISCUSSION
This paper highlights a formalism used to represent on-
tologies graphically. The system detects the inconsis-
tent concepts by interacting with a reasoner, and pro-
vides options to resolve the problems. By adopting
a graph-based approach to representing ontologies, we
can identify the relationships of the concepts which re-
sult in inconsistencies by analysing paths of the graph.

The user is provided with facilities to rectify the rela-
tionships or axioms of concepts to eliminate the inco-
herence.

There are other points for future investigations. We be-
lieve our algorithms work efficiently in dealing with on-
tologies with a small number of inconsistent concepts.
However, an ontology may contain a large number of
inconsistent concepts due to inconsistencies propagated
from another source. For example, the unsatisfiability
of a concept C is propagated to all of its subconcepts.
It is not practical to check inconsistent concepts one
by one, this is because the unsatisfiable concept C is
resolved, it is not necessary to debug all of its subcon-
cepts. Therefore, a strategy to discover the root causes
of inconsistent concepts is important to increase the ef-
ficiency. Besides, when a concept with numerous rela-
tionships (such as C v (C1 t C2) u . . . u (Cn t Cm))
is inconsistent, the optimization of comparing paths
has to be investigated to guarantee the efficiency. An-
other problem is how to guarantee the consistency after
changes. We will formally prove that the graph-based
algorithms indeed capture semantic problems within the
ontology and prove that the semantics of the ontology
will hold after the corrections are made. Also, if the
user ignores the suggested options and makes his own
changes, it may induce other inconsistencies; therefore
the propagated changes are presented to the user. To
avoid performing undesired changes, before the system
applies a change to the ontology, it will generate and
present the user with a list of all the implications of the
proposed change(s).

7. REFERENCES
[1] M. Rogers J. Knublauch H. Stevens R. Wang

A. L. Rector, N. Horridge and C. Wroe. Designing
user interfaces to minimise common errors in
ontology development: The co-ode and hyontuse
projects. In UK E-Science All Hands Meeting
2004(AHM04). ACM Press, August 2004.

[2] K. Baclawski, C. J. Matheus, M. M. Kokar,
J. Letkowski, and P. A. Kogut. Towards a
symptom ontology for semantic web applications.
In The Semantic Web - ISWC 2004: Third
International Semantic Web Conference, Lecture
Notes in Computer Science, pages 650–667.

Springer, 2004.

[3] F. Badder, D. Calvanese, D. L. McGuinness,
D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2003.

[4] Ó. Corcho, A. Gómez-Pérez, R. González-Cabero,
and M. C. Suárez-Figueroa. Odeval: A tool for
evaluating rdf(s), daml+oil, and owl concept
taxonomies. In First IFIP Conference on
Artificial Intelligence Applications and
Innovations. Toulouse, France, 2004.

[5] A. Rector N. Drummond H. Wang, M. Horridge
and J. Seidenberg. A heuristic approach to
explain the inconsistency in owl ontologies. In 8th
International Protégé Conference, 2005.

[6] Peter Haase and Ljiljana Stojanovic. Consistent
evolution of owl ontologies. In ESWC, pages
182–197, 2005.

[7] M. Horridge. A practical guide to building owl
ontologies using the protégé-owl plugin and
co-ode tools edition 1.0. Technical report,
University of Manchester, 2004.

[8] SC. Lam, D. Sleeman, and W. Vasconcelos.
Retax+: a cooperative taxonomy revision tool. In
The Twenty-fourth SGAI International
Conference on Innovative Techniques and
Applications of Artificial Intelligence, pages 64 –
77. Springer, 2004.

[9] D. L. McGuinness, R. Fikes, J. Rice, and
S. Wilder. An environment for merging and
testing large ontologies. In Proceedings of the
Seventh International Conference on Principles of
Knowledge Representation and Reasoning, 2000.

[10] Stefan Schlobach. Debugging and semantic
clarification by pinpointing. In ESWC, pages
226–240, 2005.

[11] F. van Harmelen Z. Huang and A. ten Teije.
Reasoning with inconsistent ontologies. In
Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI’05),
Edinburgh, Scotland, August 2005.

