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Abstract. Service oriented computing o�ers a new approach to pro-
gramming. To be useful for large and diverse sets of problems, e�ective
service selection and composition is crucial. While current frameworks of-
fer tools and methods for selecting services based on various user-de�ned
criteria, little attention has been paid to how such services act and inter-
act. Similarly, the patterns of interaction might be important at a level
other than that of the user-programmer. Semantic agreement between
services, and the patterns of interaction between them, will be an im-
portant factor in the usability and success of service composition. We
argue that this cannot be guaranteed by logic-based description of in-
dividual services. We have developed a simple but apparently e�ective
technique for selecting agents and interactions based on evidence of their
prior performance.

1 Introduction

Service oriented computing is already a key part of e-Science, business, and gov-
ernment computing. Web services in particular o�er a compelling vehicle for
distributing software functionality, o�ering a common platform for traditional
remote procedure call, developing Grid services, and nascent agent technologies.
They enable access to distributed resources such as databases, compute servers,
and physical objects like telescopes; obviate the di�culties of distributing, in-
stalling, and ensuring currency of software that must otherwise be deployed on
users' machines; and allow contracts and virtual organisations to be constructed
between organisationally distinct domains.

Tools like Taverna [1] make it straightforward for users to construct work-
�ows and select services to perform them. However, the available services are
generally either hard-coded into the tools, or manually acquired from web pages
or uddi registries. The problem of discovering suitable services for a task is
known as the connection problem, and one that the multi-agent community long
ago automated by introducing middle-agents [2], which provide a meeting point
for service providers and clients. Doing this for systems as open as web ser-
vices, however, is a challenge that is somewhat greater than that faced by those
working with typically closed, laboratory-bound multi-agent systems.

Web, Grid, and agent services are currently treated as fungible black boxes,
when there is justi�cation to believe they are not. In this paper, we present a
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technique which allows matchmakers to construct an e�ective interaction pattern
and populate it with an optimal set of services, in a manner that makes minimal
demands on the user.

2 The Madness of Crowds

Middle-agents [2] connect clients, as service requesters, with service providers,
by providing some mechanism for matching providers' capability advertisements
with clients' requests for service. One of the most common types of such middle-
agents is the matchmaker, on which we focus. A matchmaker is privy to both
advertisements and requests, as opposed to say a yellow-pages like directory
where clients can inspect adverts in privacy. Almost all matchmaking research
to date has focused on the mechanisms for describing services and requirements,
such as capability description languages [3]. This is also the favoured approach
for the semantic web, which uses owl-s [4] descriptions of the service. Using
taxonomies of services, descriptions of inputs and outputs, and planning-like
descriptions of pre-conditions and e�ects, the idea is that a matchmaker can
reason about the relative merits of advertising services and select those that
best suit the client.

Despite the obvious utility of logic based approaches, it is far from clear that
they can in practice capture all the pertinent system features in a complex world.
Where many individuals, companies, and organisations o�er ostensibly similar
services, it is unlikely that many services will fully match their speci�cation,
or perform their task equally well [5]. In open systems, one cannot rely on the
intelligence and familiarity of the expert, the insight of the designers and im-
plementers, nor goodwill between investigators. Some particular reasons for the
insu�ciency of logic-based descriptions are:

� The capability description language lacks expressiveness. This does not imply
a criticism of the language: it is unreasonable to expect any general purpose
capability description language to allow the communication of arbitrarily
complex capabilities and restrictions in every imaginable domain. However,
it would frequently be possible for matchmakers, especially domain-speci�c
ones, to discover such constraints.

� User ignorance of ability of the language to express a characteristic, or of
the e�ect of declaring it. As expressible features or limitations become more
complex, and services more common, it becomes increasingly likely that a
user would be unaware of her ability to aid the matchmaker.

� User expectation that the information will not be used by clients or match-
makers. In an negative example of `early-adopter syndrome', it is not unrea-
sonable to expect service providers will refrain from supplying this kind of
data until they observe a signi�cant portion of the agent ecosystem using it.

� Not wanting to express particular information. In some instances, there is
an incentive for service providers to keep the description of their services as
general as possible, though not to the extent of attracting clients they has
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no possibility of pleasing. Alternatively, the provider may not wish to be
terribly honest or open about her service's foibles.

� Comprehensive descriptions too expensive to generate or use. Even if none
of the above hold, it would often simply not be worthwhile for the service
provider to analyse and encode the information. Further, in the case of web,
semantic web and Grid services, it is reasonable to expect that users are
discouraged by standards �ux from investing much time in this endeavour.

We claim that even with the best will, it will often simply be too expensive
in time, money, computation, or human brainpower, to fully describe services.
Even then, as is shown in [6], it is not unreasonable to expect the reasoners (and
hence any matchmakers using them) to di�er in their interpretation in some
cases.

Compounding this di�culty of correctly describing individual services is the
one of �nding agents that work well together. Our aim is to enable interactions
between two or more agents, where one or more services must be found to sat-
isfy the interaction's initiator. Why might this happen, and what can we do
to overcome this obstacle to widespread use of multiple-service interactions in
real-world operation?

� `Social' reasons. For instance, di�erent social communities, or communities
of practice, may each cluster around particular service providers for no par-
ticular reason, yet this would result in improved performance on some tasks
if agents were selected from the same social pool.

� Strategic (or otherwise) inter-business partnerships. For example, an airline
may have a special deal with other airlines or car-hire companies that would
lead to a more satis�ed customer.

� Components designed by same group. Organisations that seem to have noth-
ing in common may well be using software created by a single group. Such
software would be more likely to inter-operate well than software from others.

� Di�erent groups of engineers held di�ering views of a problem, even though
the speci�cation is the same. Thus, the implementations are subtly incom-
patible, or at least do not function together seamlessly.

� Particular resources or constraints shared between providers. For example,
in a Grid environment, a computation server and a �le store might share a
very high bandwidth connection, leading to improved service.

� The inter-relationship is not known to the service provider. Some of the
dependencies may be extremely subtle, or simply not obvious.

� Ontology mapping
Sometimes ontology mapping will work perfectly, in other cases, it would be
better to select those services that share a native ontology.

� Gatewaying issues It is quite likely that many services will be provided
via gateways, and that these will make semantic interaction possible and
a�ordable, but more error prone than systems designed explicitly to interact.

� Malice It is hardly unknown for software vendors to ensure lock in by mak-
ing their software deliberately fail to interact correctly with that of other
vendors.
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And, of course, we have the ever-present problem of bugs, which will often
manifest themselves in such a way that some collaborating services will exercise
them, and others will not.

The interaction is normally seen as secondary. If, instead, we treat it as a
�rst-class object, neither emergent from agent behaviour, nor �xed by the client
or server's interaction model, we can begin to examine some of its properties.
Some such techniques include model checking [7], and ontology matching [8].

If, however, we made the interaction pattern known, and used a matchmaker
to select our services, as well as, we could share empirical data about perfor-
mance. This is our approach. It is made possible by our choice of interaction
language, lcc. While conventional agent matchmaking is done by reference to
the client's service request and the advertised capabilities of the providers, we
make the protocol that drives the interaction the centrepiece. This implies:

� The purpose of the interaction is captured.
� Multi-agent dialogues, far from being impossible, are the norm.
� All agents can reason about the dialogue they are in, not just the initiator

or broker.

What if, instead of simply choosing an agent and using its interaction model,
we chose the interaction model, too? We can then apply our agent selection
technique [9] to the question of how to construct the interaction.

In addressing all these problems we can use the evidence provided by clients
on the e�ectiveness of services, discovering the actual performance of agents in
the roles they claim to perform. Gathering enough data on any given service or
interaction is hard work, and likely to be beyond the ability of any single agent.
It is, however, a task for which a middle agent is ideally suited.

3 Framework

3.1 Lightweight Coördination Calculus

To describe the interactions, we use a language called the Lightweight Coördina-
tion Calculus (lcc) [10]. lcc is based on the Calculus of Communicating Systems
(ccs) [11], and provides a simple language featuring message passing (denoted
⇒ for sending, and ⇐ for receiving) with the operators then (sequence), or
(choice), and ← (if). An lcc protocol is interpreted in a logic-programming
style, using uni�cation of variables which are gradually instantiated as the con-
versation progresses. The rules governing execution of a protocol are in �gure 2.

An lcc protocol consists of dialogue framework, expanded clauses, and com-
mon knowledge. The framework de�nes the roles necessary to conduct an in-
teraction, along with the allowable messages and the conditions under which
they can be sent. For our astronomy work�ow (�gure 3), the roles include
astronomer , astronomy-database, and black -hole-finder . The expanded clauses
note where each service has reached in the dialogue. The common knowledge
records conversation-speci�c state agreed between the services.
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Fig. 1. Grammar for the lcc dialogue framework

Framework ::= Clause∗

Clause ::= Agent :: Def
Agent ::= a(Role, Id)
Def ::= Agent|Message|Def then Def |Def or Def |Def par Def

Message ::= M ⇒ Agent|M ⇒ Agent← C|M ⇐ Agent|C ←M ⇐ Agent
C ::= Term|C ∧ C|C ∨ C

Id,M, Type ::= Term
Term ::= V ariable|Atom|Number|Atom(Term+)
Atom ::= lowercase-char alphanumeric∗

V ariable ::= uppercase-char alphanumeric∗

Fig. 2. Rewrite rules governing matchmaking for an LCC protocol
These rewrite rules constitute an extension to those described in [10]. A rewrite rule

α
Mi,Mo,P,O,C,C′−−−−−−−−−−−→ β

holds if α can be rewritten to β where: Mi are the available messages before rewriting;
Mo are the messages available after the rewrite; P is the protocol; O is the message
produced by the rewrite (if any); C is set of collaborators before the rewrite; and C′ (if
present) is the�possibly extended�set of collaborators after the rewrite. C is a set of
pairs of role and service name, e.g. col(black -hole-finder , ucsd-sdsc)}. The same rewrite
rules hold regardless of the implementation of the matchmaking function recruit . This
enables us to apply other lcc tools, such as model-checkers and the interpreter itself,
without alteration while allowing us to change recruit , and means clients can use their
own choice of matchmaker and matchmaking scheme.

A :: B
Mi,Mo,P,C,O
−−−−−−−−−−→ A :: E if B

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 or A2
Mi,Mo,P,C,O
−−−−−−−−−−→ E if ¬closed(A2) ∧ A1

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 or A2
Mi,Mo,P,C,O
−−−−−−−−−−→ E if ¬closed(A1) ∧ A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 then A2
Mi,Mo,P,C,O
−−−−−−−−−−→ E then A2 if A1

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 then A2
Mi,Mo,P,C,O
−−−−−−−−−−→ A1 then E if closed(A1) ∧ A2

Mi,Mo,P,C′,O
−−−−−−−−−−−→ E

∧collaborators(A1) = C′

C ←M ⇐ A
Mi,Mi\{M⇐A},P,C,∅
−−−−−−−−−−−−−−−−→ c(M ⇐ A, C) if (M ⇐ A) ∈Mi ∧ satisfied(C)

M ⇒ A← C
Mi,Mi,P,C,C′,{M⇒A}
−−−−−−−−−−−−−−−−−→ c(M ⇒ A, C′) if satisfied(C)∧

C′ = recruit(P, C, role(A))

null← C
Mi,Mi,P,C,∅
−−−−−−−−−→ c(null, C) if satisfied(C)

a(R, I)← C
Mi,Mo,P,C,∅
−−−−−−−−−−→ a(R, I) :: B if clause(P, C, a(R, I) :: B)

∧satisfied(C)

collaborators(c(Term, C)) = C
collaborators(A1 then A2) = collaborators(A1) ∪ collaborators(A2)
collaborators(A :: B) = collaborators(A) ∪ collaborators(B)
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While we use lcc as our framework, this paper's contribution regarding
service selection does not require it. For our purpose, lcc's key provisions are
support for multi-party dialogues, and for enabling the matchmaker and client
to identify an ongoing interaction and determine the agents engaged in it. These
requirements could be met by many other coördination approaches or simple
extensions thereof, whether in Grid or web services domains.

3.2 Incidence Calculus

We use the incidence calculus [12] for our probabilistic calculations, It is a truth-
functional probabilistic calculus in which the probabilities of composite formulae
are computed from intersections and unions of the sets of worlds for which the
atomic formulae hold true, rather than from the numerical values of the proba-
bilities of their components. The probabilities are then derived from these inci-
dences. Crucially, in general P (φ∧ψ) 6= P (φ) ·P (ψ). This �delity is not possible
in normal probabilistic logics, where probabilities of composite formulae are de-
rived only from the probabilities of their component formulae. In the incidence
calculus, we return to the underlying sets of incidences, giving us more accurate
values for compound probabilities.

i(>) = worlds i(⊥) = {}
i(α ∧ β) = i(α) ∩ i(β) i(α ∨ β) = i(α) ∪ i(β)
i(¬α) = i(>)\i(α) i(α→ β) = i(¬α ∨ β) = (worlds\i(α)) ∪ i(β)

P (φ) = |i(φ)|
|i(>)| P (φ|ψ) = |i(φ∧ψ)|

|i(ψ)|

The incidence calculus is not frequently applied, since one requires exact
incident records to use it. Fortunately, that's exactly what the matchmaker has
on hand.

4 The Matchmaker

First, we will explain the overall process of executing an lcc protocol, and
the matchmaker's place in it. A client has a task or goal it wishes to achieve:
using either a pre-agreed look-up mechanism, or by reasoning about the pro-
tocols available, the client will select a protocol, with possibly more than one
being suitable. This done, it can begin interpreting the protocol, dispatching
messages to other agents as the protocol directs. When the protocol requires a
message to be sent to an agent that is not yet identi�ed, the sender queries a
matchmaker to discover services capable of �lling the role. These new agents
we term `collaborators'. The matchmaker selects the service that maximises the
probability of a successful outcome given the current protocol type and role in-
stantiations. The protocol is then updated to re�ect the agent's selection, and
the term col(Role,Agent), instantiated to the requested role and newly chosen
agent, is stored in the protocol's common knowledge where it is visible to the
participants and the matchmaker.
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The success of a protocol and the particular team of collaborators is de-
cided by the client: on completion or failure of a protocol, the client informs
the matchmaker whether the outcome was satisfactory to the client. Each com-
pleted brokering session is recorded as an incident, represented by an integer.
Our propositions are ground predicate calculus expressions. Each proposition
has an associated list of worlds (incidents) for which it is true. Initially, the in-
cident database is empty, and the broker selects services at random. As more
data is collected, a threshold is reached, at which point the matchmaker begins
to use the probabilities.

4.1 Selecting Agents

The traditional issue is selecting agents, so we will address this �rst. In our
scenario, an astronomer is using the Grid to examine a black hole. Having ob-
tained the lcc protocol in �gure 3, she instantiates the File variable to the �le
she wants to work with, and runs the protocol. The protocol is sent �rst to a
black -hole-finder service. This service, in turn, requires an astronomy-database
to provide the �le. If a black hole is found the black -hole-finder service will pass
the data to a visualisation service. Finally, the client will receive a visualisation
or noti�cation of failure. Where is the inter-service variation? Consider that the
astronomical data �le is very large, and thus network bandwidth between sites
will be a crucial factor in determining user satisfaction. Thus, some pairs of
database and computation centre will outperform other pairs, even though the
individuals in each pairing might be equally capable. Indeed, the `best' database
and compute centre may have a dreadful combined score because their network
interconnection is weak.

If we imagine how the matchmaker's incidence database would look after
several executions of this work�ow (most likely by di�erent clients), we might
see something like this:

i(protocol(black-hole-search), [1, 2, . . . , 25])
i(outcome(good), [1, 2, 3, 4, 6, 10, 11, 12, 16, 22, 23, 24])
i(col(astronomy-database, greenwich), [18, 19, 20, 21, 22, 23, 24, 25])
i(col(astronomy-database, herschel), [10, 11, 12, 13, 14, 15, 16, 17])
i(col(astronomy-database, keck), [1, 2, 3, 4, 5, 6, 7, 8, 9])
i(col(black-hole-finder , barcelona-sc), [8, 9, 16, 17, 24, 25])
i(col(black-hole-finder , ucsd-sdsc), [1, 2, 3, 4, 10, 11, 12, 13, 18, 19, 20])
i(col(black-hole-finder , uk-hpcx), [5, 6, 7, 14, 15, 21, 22, 23])
i(col(visualiser , ncsa), [1, 2, . . . , 25])

Each i(proposition, incidents) records the incidents (that is, protocol inter-
actions or executions) in which the proposition is true. We can see that the
black-hole-search protocol has been invoked 25 times, and that it has been
successful in those incidents where outcome(good) is true. Further, by intersect-
ing various incidences, we can compute the success of di�erent teams of agents,
and obtain predictions for future behaviour. Let us examine the performance of
the Barcelona supercomputer:

i(col(black -hole-finder , barcelona-sc) ∧ outcome(good)) = {16}
P (outcome(good)|col(black -hole-finder , barcelona-sc)) = |{16}|

|{8,9,16,17,24,25}|
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This performance is substantially worse than that of the other supercom-
puters on this task not because barcelona-sc is a worse supercomputer than
ucsd -sdsc or uk -hpcx , but because its network connections to the databases re-
quired for this task present a bottleneck, reducing client satisfaction.

From this database, the matchmaker can then determine, for a requester,
which services are most likely to lead to a successful outcome, given the current
protocol and services already selected. That is, the matchmaker tries to optimise

argmaxsP (outcome(good)|P, col(r, s) ∪ C)

Where P is the protocol, C is the current set of collaborators, r is the role
requiring a new service selection, and s is the service we are to select.

Fig. 3. LCC dialogue framework for astronomy work�ow scenario

a(astronomer(File),Astronomer) ::
search(File)⇒ a(black -hole-finder ,BHF ) then„
success⇐ a(black -hole-finder ,BHF ) then
receive-visualisation(Thing ,V )← visualising(Thing)⇐ a(visualiser , V )

«
or

failed⇐ a(black -hole-finder ,BHF )

a(black -hole-finder ,BHF ) ::
search(File)⇐ a(astronomer(File), Astronomer) then
grid-ftp-get(File)⇒ a(astronomy-database,AD) then0BB@

grid-ftp-sent(File)⇐ a(astronomy-database,AD) then
success⇒ a(astronomer,Astronomer)

← black -hole-present(File,Black -hole) then
visualise(Black -hole,Astronomer)⇒ a(visualiser ,V )

1CCA or

failed⇒ a(astronomer(File), Astronomer)

a(astronomy-database,AD) ::
grid-ftp-get(File)⇐ a(black -hole-finder ,BHF )
grid-ftp-sent(File)⇒ a(black -hole-finder ,BHF )← grid-ftp-completed(File,AD)

a(visualiser , V ) ::
visualise(Thing, Client)⇐ a(_, Requester) then
visualising(Thing)⇒ a(_, Client)← serve-visualisation(Thing ,Client)

Note that lcc is being used only to coördinate the interaction: where appropriate,
individual agents may use domain-speci�c protocols, such as Grid ftp, to perform the
heavy lifting or invoke speci�c services outside of the lcc formalism and communication
channel.
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We have developed two algorithms for choosing services, although others are
possible. The �rst, called recruit-joint, �lls all the vacancies in a protocol at
the outset. It works by computing the joint distribution for all possible permuta-
tions of services in their respective roles, selecting the grouping with the largest
probability of a good outcome.

The second approach, recruit-incremental, is to select only one service
at a time, as required by the executing protocol. The various services already
engaged in the protocol, on needing to send a message to an as-yet-unidenti�ed
service, will ask the matchmaker to �nd an service to ful�l the role at hand.
recruit-incremental computes the probability of a successful outcome for
each service available for role R given C (C being the collaborators chosen so far),
and selects the most successful service. To illustrate recruit-incremental,
imagine the work�ow scenario. At �rst, the astronomer must ask the matchmaker
to �ll the black -hole-finder role. The BHF service's �rst action is to request
the data �le from an astronomy database. It therefore returns the protocol to
the matchmaker, which selects the astronomy-database most likely to produce
success, given that the black -hole-finder is already instantiated to BHF .

Both algorithms support the pre-selection of services for particular roles. An
example of this might be a client booking a holiday: if it were accumulating
frequent �ier miles with a particular airline, it could specify that airline be
used, and the matchmaker would work around this choice, selecting the best
agents given that the airline is �xed. This mechanism also allows us to direct the
matchmaker's search: selecting a particular service can suggest that the client
wants similar services, from the same social pool, for the other roles, e.g. in
a peer-to-peer search, by selecting an service you suspect will be helpful in a
particular enquiry, the broker can �nd further services that are closely `socially'
related to that �rst one.

We can see from �gure 5(a) that using this technique can substantially im-
prove performance over random selection of agents which can individual meet the
requirements. Which algorithm should one choose? In protocols where most roles
are eventually �lled, recruit-joint will outperform recruit-incremental,
since it is not limited by the possibly suboptimal decisions made earlier. recruit-
joint is also preferable when one wishes to avoid multiple calls to the match-
maker, either because of privacy concerns, or for reasons of communication ef-
�ciency. However, in protocols which rarely have all their roles instantiated,
recruit-joint can end up unfairly penalising those services which have not ac-
tually participated in the protocols they are allocated to. recruit-incremental
is therefore more suitable in protocols where many roles go un�lled: total work
on the broker would be reduced, and the results would probably be at least as
good as for brokering all services.

4.2 Selecting Roles

So far, we have considered the case where the protocol is de�ned, and we simply
need to select agents to �ll the roles. What if the roles themselves are unde�ned,
if the protocol is incompletely speci�ed? What if we allowed agents to begin
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Fig. 4. Algorithms

Recruit-Joint(protocol , database)

1 roles ← roles-required(protocol)
2 collaborations ← all-collaborations(protocol , database, roles)
3 for c ∈ collaborations
4 do quality [c]← probability-good-outcome(protocol , database, c)
5 return argmax(collaborations, quality)

Recruit-Incremental(protocol , database, role)

1 for r ∈ active-roles(protocol)
2 do collaborators[r]← collaborator-for-role(protocol , r)
3 candidates ← capable-agents(database, role)
4 for c ∈ candidates
5 do collaborators[role]← c

6 quality [a]← probability-good-outcome(database, collaborators)
7 return argmax(candidates, quality)

Embellish-Incremental(protocol , database, role)

1 for r ∈ role-definitions(protocol)
2 do role-definition[r]← definition-for-role(protocol , r)
3 candidates ← available-role-definitions(protocol ,database,role) role)
4 for c ∈ candidates
5 do role-definition[role]← c

6 quality [c]← probability-good-outcome(database, role-definitions)
7 return argmax(role-definitions, quality)

argmax as used here does not always select the highest value. To improve the explo-
ration of options, those entries that have low numbers of data points (i.e. have not
often been selected previously) are preferentially chosen, and in other cases a random
selection is sometimes made.

executing incomplete protocols? If the matchmaker could elaborate protocols at
run time, selecting the elaboration based on prior experience? We will show one
way to do this using the incidence calculus, in a very similar fashion to how we
selected agents.

Roles consist of an ordering of messages, together with constraints, and moves
to other roles. It might be the case that just changing the ordering might make
a large di�erence. For instance, if one is arranging to travel to a concert, it is
preferable to obtain event tickets �rst, then organise transport. In our example,
we take to problem of booking a trip involving a �ight and hotel room. The
lcc protocol is shown in �gure 6. If we suppose that it is a preferable course of
action to book the �ight then the hotel room, since hotel room costs are more
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Fig. 5. Simulation results
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In (a), we see the improvement in task achievement using agent selection obtained using
recruit-joint versus random selection. Using the same scenario, but �xing the �le
size at 5 Gigabytes, (b) shows the relative performance of recruit-joint, recruit-
incremental, and random selection. We can see similar gains for selection of roles
in (c), using the travel agent scenario. Performance of the underlying set calculus
intersection operation is shown in (d).

�exible that �ight ones, we can expect a better outcome using flight-then-hotel
rather than hotel -then-flight . Figure 5(c) shows the improvement in a simulation.
The algorithm used is embellish-incremental, shown in �gure 4. embellish-
incremental works similarly to recruit-incremental, adding role de�nitions
to the protocol as those roles are required at run-time. We have not provided
equivalent to recruit-joint, since this can in�ate protocols with many roles
that will remain unused.

5 Discussion

Performance seems quite reasonable for very large sets. The core operation of this
technique is set intersection, since for every collaboration or set of role de�nitions,
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Fig. 6. Booking a holiday with LCC

a(traveller , Traveller) ::
book-holiday(Src, Dst, Start, End, Money)⇒ a(travel-agent, Agent)
← travel-details(Src, Dst, Start, End, Money) then„

booking(Start, End, Cost)⇐ a(travel-agent, Agent) then
matchmaking(good)⇒ a(matchmaker , matchmaker)

«
or„

failure ⇐ a(travel-agent, Agent) then
matchmaking(bad)⇒ a(matchmaker , matchmaker)

«
Note that the travel-agent role is not speci�ed in the client's protocol! We leave it
to the matchmaker to �nd one. The matchmaker, let us say, has the following role
de�nitions available to it:

role(flight-then-hotel) ≡ a(travel-agent, Agent) ::
book-holiday(Src, Dst, Start, End, Money)⇐ a(client, Client) then
book-flight(Src, Dst, Start, End, Money)⇒ a(airline, Airline) then„

no-flights ⇐ a(airline, Airline) then
failure ⇒ a(client, Client)

«
or0BBBBBBBBBBB@

flight-booking(Flight-Cost)⇐ a(airline, Airline) then
flight-available(Src, Dst, Start, End, Money)⇐ a(airline, Airline) then
book-hotel(Location, Start, End, Money)⇒ a(hotel, Hotel)
← is(Money-Left, Money −Flight-Cost) then0@ hotel-booking(Hotel-Cost)⇐ a(hotel, Hotel) then

booking(Total-Cost)⇒ a(client, Client)
← is(Total-Cost, Flight-Cost +Hotel-Cost)

1A or„
no-vacancy ⇐ a(hotel, Hotel) then
failure ⇒ a(client, Client)

«

1CCCCCCCCCCCA
role(flight-then-hotel) ≡ a(travel-agent, Agent) ::

book-holiday(Src, Dst, Start, End, Money)⇐ a(client, Client) then
book-flight(Src, Dst, Start, End, Money)⇒ a(airline, Airline) then„

no-flights ⇐ a(airline, Airline) then
failure ⇒ a(client, Client)

«
or0BBBBBBBBBBB@

flight-booking(Flight-Cost)⇐ a(airline, Airline) then
flight-available(Src, Dst, Start, End, Money)⇐ a(airline, Airline) then
book-hotel(Location, Start, End, Money)⇒ a(hotel, Hotel)
← is(Money-Left, Money −Flight-Cost) then0@ hotel-booking(Hotel-Cost)⇐ a(hotel, Hotel) then

booking(Total-Cost)⇒ a(client, Client)
← is(Total-Cost, Flight-Cost +Hotel-Cost)

1A or„
no-vacancy ⇐ a(hotel, Hotel) then
failure ⇒ a(client, Client)

«

1CCCCCCCCCCCA
a(hotel, Hotel) ::

book-hotel(Location, Start, End, Money)⇐ a(Role, Agent) then
room-available(Location, Start, End, Money, Cost)⇒ a(Role, Agent)
← room-available(Location, Start, End, Money, Cost) or

no-vacancy ⇒ a(Role, Agent)

a(airline, Airline) ::
book-flight(Src, Dst, Start, End, Money)⇐ a(Role, Agent) then
flight-available(Src, Dst, Start, End, Money)⇒ a(Role, Agent)
← flight-available(Src, Dst, Start, End, Money) or

no-flights ⇒ a(Role, Agent)

a(matchmaker , matchmaker) ::
record-matchmaking-outcome(Outcome)
← matchmaking(Outcome)⇐ a(Role, Agent)
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the intersection of their incidences must be computed. By using a heap-sort like
intersection algorithm, this can be done in order O(n log n). Figure 5(d) shows
that we can quickly calculate intersections over large sets for reasonable numbers
of sizable sets.

We note here two signi�cant problems that seem to be inescapable issues in-
trinsic to the problem: trusting clients to evaluate protocol performance honestly
and in a conventional manner; and the problems of locating mutually coöperative
services in a large agent ecology. Since individual client services are responsible
for the assigning of success metrics to matchmakings, there is scope for services
with unusual criteria or malicious intent to corrupt the database. The second
question, largely unasked, is about the likely demographics of service provision.
For some types of service, like search, we have already seen that a very small
number of providers. For other tasks, a few hundred exist: think of airlines. For
some, though, we may millions of service providers. Further, we must ask how
many service types will be provided. Again, in each domain, we might have a
simple, monolithic interface, or an interface with such �ne granularity that few
engineers ever fully understand or exploit it. The answers to these will impact
the nature of our matchmaking infrastructure.

While our technique handles large numbers of incidences, it does not scale
for very large numbers of services or roles. For any protocol with a set of roles
R, and with each role having |providers(ri)| providers, the number of ways of
choosing a team is

∏
ri∈R |providers(ri)|, or O(mn). No matchmaking system

could possibly hope to discover all the various permutations of services in a rich
environment, although machine learning techniques might be helpful in directing
the search for groupings of services. How much of an issue this actually becomes
in any particular domain will be heavily in�uenced by the outcomes to the issues
discussed above.

6 Related Work

The connection problem arises in agent systems, semantic web, and grid en-
vironments. It is discussed in [2, 13, 14]. We consciously ignored methods like
those found in [15], though they would be crucial in any real-world deployment:
we believe our technique would usefully augment such systems. Similarly, several
groups have attacked the work�ow synthesis issue using automated planning [16]:
we again suggest our method as an adjunct to other techniques, not a replace-
ment.

Two studies have investigated the issue of using previous performance records.
In [5] we �rst see the use of records to improve selection. In [17] this technique is
combined with description logic concepts to improve matching of owl-s requests.

Most work has been restricted to the case of selecting a single agent for
a single role. Although current interactions are primarily client-server, we can
imagine a future where match-made agent interactions are more distributed,
involve many agents, and operate in a more peer-to-peer manner. It can be
expected that these newer forms of dialogue will make even greater use of, and
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demands upon, matchmaking services than do current modes of employment.
Our problem conception�matchmaking multiple roles for the same dialogue�is
anticipated by the self-serv system [18], though we believe our approach is
novel in detecting emergent properties that are not known to the operator, and
is more transparent, requiring less intervention (that is, speci�cation of service
parameters) from the client.

7 Conclusion

Distributed computing is becoming commonplace, and automated discovery of
these systems will become crucial, too. The current, dominant model of service
provision can be characterised by noting that: work�ow execution happens on
one machine dedicated to the purpose, whether the client's, a work�ow server,
or a middle agent, and other services are used as remote procedure calls; that
the work�ow is never exported beyond the machine; that services are selected
based only on their capability as advertised through logical descriptions; and
that information recorded about success or otherwise is, at best, held only by
the machine which discovered it.

In this paper we made four claims: that services may not be totally described
by their service advertisements; that services may interact in odd ways; that
interaction patterns may be as important as the interacting objects; and that a
simple, statistical matchmaker can be of help in solving all three problems.

We have shown that the successful completion of a task may depend not
only on the advertised abilities of services but on their collective suitability and
inter-operability. We also showed that the structure of the interaction can be
important. We presented a simple, but e�ective, technique for detecting suc-
cessful groupings of services, and choosing those interaction patterns that suit
them best. We highlighted the intractability of the problem in environments with
large numbers of available provider services and/or roles. We can sum up the
traditional model of matchmaking as static and action-oriented. Our approach is
dynamic and interaction-oriented, allowing us to respond to actual performance,
and better support agent selection and protocol synthesis.

Further work remains. Practical issues of managing a large database of inci-
dences must be resolved: can the task be distributed, either across clusters, like
current Internet search engines, or in a peer-to-peer way? What scope is there for
applying machine learning? Is our current description of services su�cient, and
if not, how do we integrate more sophisticated notions of service description?
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