
CHANGE MANAGEMENT: THE CORE TASK OF ONTOLOGY VERSIONING AND
EVOLUTION

Y Liang, H Alani, N R Shadbolt
Intelligence, Agents and Multimedia Group, School of Electronics and Computer Science, University of Southampton
Highfield, Southampton SO17 1BJ
{yl504r | ha | nrs}@ecs.soton.ac.uk

Key words to describe the work: Ontology change, Ontology versioning, Ontology evolution, Ontology
management

Key Results: The key issue in the support of evolving ontologies is to distinguish and recognize the changes
during the process of ontology evolution. We are proposing an approach to get the evidences of ontology changes,
keep track of them, and manage them in an engineering fashion.

How does the work advance the state-of-the-art?: Most of the current popular work on ontology versioning do not
keep a record of the changes in the ontology, thus preventing the user from tracking those changes back and
forward, or to at least understand the rational behind those changes. Our approach will “force” ontology changes
to be fully recorded for future ontology management tasks.

Motivation (problems addressed): Change management as a key issue in ontology versioning and evolution is still
not fully addressed, which to some extent forms a barrier against the smooth process of ontology evolution.

Introduction
Ontology in computer science is a borrowed word
from philosophy. An ontology defines a common
vocabulary of terms, some specification of the
meaning of the terms, and a shared understanding for
people and machines. Figure 1 shows an example of
an ontology.

Figure 1 An example of an ontology from EcoCyc1

Multiple versions of the same ontology are bound to
exist and must be supported appropriately. Some
applications keep their ontologies up-to-date, while
others may continue to use the old version ontologies
and upgrade them at their own pace. These situations
may exist because developers can not normally get a

whole view of how the ontologies have changed and
what were the impacts of those chances. Therefore,
ontology change management becomes the key issue
in the support of evolving ontologies.

1 http://ecocyc.org/

In current stages most of the works in the ontology
versioning and ontology evolution borrowed their
ideas from the schema versioning (provide access to
both old and new data through different interfaces)
[1] and schema evolution (provide access to both old
and new data through the new schema) [1] in
database. However, the usage and content of
ontologies are more complicated than database
schemas. For example, ontologies incorporate much
more semantics than database schema’s which might
help to solve some integration problems. And
ontologies are often reused and distributed to a much
greater extent than database schema. Also the data
models of ontologies are much richer than those of
database schemas. [2] The characteristics of
ontologies decided that the concepts of versioning
and evolution in database schema cannot be applied
directly in ontologies.
The approach we are proposing in this paper is to
assist the developers not only to ease the
management process of the different versions of an
ontology, but also to get the evidences of the changes
and keep track of them in order to make the ontology
versioning and evolution process go more smoothly.

Incompatibility: direct consequence of changes
Versioning support in ontology management is
necessary because changes during the process of
versioning may cause incompatibilities between
ontologies, where old version of an ontology could
not be replaced by the changed version without
causing some side effects. What constitutes
compatibility between the different versions of the
same ontology? This question could be answered by
looking at the side effects caused by the changes to
the ontology during ontology versioning. The side
effects can be divided into three main types from the
ontology point of view:
 Incompatibility of instance data: The changed

version of the ontology could not conform to the
meaning of data which the old version depicts.

 Incompatibility of related ontologies: If an ontology
(Onto A) is used to build the other ontology (Onto B),
then the changes to the source ontology (Onto A)
could bring effects to the meaning of the result
ontology (Onto B).

 Incompatibility of the related applications:
Applications use the ontology to specify the
conceptual knowledge that is necessary for the
required tasks. The changed version of the ontology
used within the application may hamper the usage of
the application due to this incompatibility.

Not knowing what caused the changes and how they
happened on the ontology hinders reusing those
ontologies and causes difficulties for applications to
switch to a new version of that ontology. We think
that, in an ideal scenario, the developers of the
ontology should not only manage and maintain the
different versions of their ontology, but also keep
track of the detail and rational on how the various
versions differ and whether or not it is compatible to
switch from an old version to this version. In practice,
it is still not very easy for the developers or any
ontology management system to achieve those goals
simultaneously. Most ontology management systems,
for example PROMPT [4] and OntoView [5], have
the ability to identify the changes (strictly, identify
the differences), and manage the different versions of
an ontology, but they can not trace or keep record of
the changes made on the ontologies from the
beginning, i.e. the changes are untraceable. For the
good of our research work, the ontology versioning
mechanism and the solution to the issue of
compatibility in SHOE [3] have to be mentioned and
analysed. To our knowledge, SHOE is currently the
only ontology specification language supporting
ontology versioning, although it cannot keep track of
the evidence of changes from one version to another
version.

Some initial ideas on change management and
next steps
The efforts of trying to solve the compatibility issue
caused by the ontology changes appeared in SHOE.
But it was not enough to help tracking or explaining
the changes during ontology versioning and
evolution processes. In our approach, we propose to
keep track of, and record, ontology changes within
the ontology itself, i.e. we will add the extra
functions to the ontology specification language to
enable them to record and keep track of the ontology
changes.
We think that a tracable change is composed of a
series of the operations acted on the targeted
ontologies, for example, add or delete a class, attach
a slot to a class, change restriction to a slot, move a
class (divided into add and delete actions
respectively). To get the evidence of the changes is
transferred to getting the evidence of a series of
operations performed on the ontology. But it is
important to get those evidences depending on
getting rid of any incompatibility issues stated above.
Networks are very good for representing and
expressing the relationships among the different
objects. Our initial idea was enlightened from the
family tree which is a kind of simple network.
Because it can represent what happened, how
happened and what will happen, we hope to put the
ontology changes into this kind of evolving network,
make a series of changes between the different
versions of the same ontology connected with one
another which is easy to keep track of. This initial
idea is still at the abstract level. More investigation
and research is needed to study this approach and test
its feasibility.

References
[1] RODDICK, J.F., A Survey of Schema Versioning
Issues for Database Systems. Information and Software
Technology, 37(7): pp383-393
[2] NOY, N.F., KLEIN, M., Ontology Evolution: Not the
Same as Schema Evolution. Knowledge and Information
Systems, 5, 2003
[3] HEFLIN, J., HENDLER, J., Dynamic Ontologies on
the Web, In: Proceedings of American Association for
Artificial Intelligence Conference (AAAI-2000), 2000
[4] NOY, N.F., MUSEN, M.A. Ontology Versioning in an
Ontology Management Framework. IEEE Intelligent
Systems, July-August 2004, 19 (4) pp.6-13
[5] KLEIN, M., et.al, Finding and characterizing changes
in ontologies, The 21st International Conference on
Conceptual Modeling, Tampere, Finland, October, 2002

