An Approach to Cope with Ontology Changes
for Ontology-based Applications

Yaozhong LIANG, Harith ALANI, David DUPPLAW and Nigel SHADBOLT

Intelligence, Agents and Multimedia Group, School of Electronics and Computer
Science, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
{y.david.liang, h.alani, dpd, nrs}@ecs.soton.ac.uk

Abstract. Keeping track of ontology changes is becoming a critical issue
for ontology-based applications because updating an ontology that is in
use may result in inconsistencies between the ontology and the knowledge
base, dependent ontologies and dependent applications/services. Current
research concentrates on the creation of ontologies and how to manage
ontology changes in terms of the attempts to ease the communications
between ontology versions and keep consistent with the instances, and
there is little work available on controlling the impact to dependent appli-
cations/services which is the aims of the system presented in this paper.
The approach we propose in this paper is to manually capture and log
ontology changes, use this log to analyse incoming RDQL queries and
amend them as necessary. Revised queries can then be used to query the
knowledge base of the applications/services. We present the infrastruc-
ture of our approach based on the problems and scenarios identified
within ontology-based systems. We discuss the issues met during our de-
sign and implementation, and consider some problems whose solutions
will be beneficial to the development of our approach.

1 Introduction

Ontologies are quickly becoming indispensable parts of the Semantic Web. The
number of ontologies that are being developed and used by various applications
is continuously increasing. One of the major problems with ontologies is change!
Ontologies may change for a variety of reasons, such as when the domain itself or
our understanding of it changes, when applying modelling corrections, expanding
the domain representation, etc.

Ontology changes may cause serious problems to its data instantiations (the
knowledge base), the applications and services that might be dependent on the
ontology, as well as any ontologies that import that changed ontology [5]. This
becomes even more problematic if the applications are not built or controlled by
one single party.

There has been much work within the last few years on managing how on-
tology change, so that such updates can be logged and used to provide better



maintenance and accessability. Most work so far are focused on ways to han-
dle ontology change, such as change characterisation [5], ontology evolution [6],
ontology versioning [3], consistency maintenance [8, 10, 13], etc.

However, not much has been done with respect to using change-tracks to
eliminate or reduce any impact that ontology change can have on any dependent
applications and services. It would be very costly and perhaps even unrealistic
to expect all parties that could be affected by a change to coordinate any such
changes [2]. Therefore, we believe that it would be very beneficial to have a
system that could track such changes, relate changes to incoming queries, amend
such queries accordingly, and inform the query source of those changes and
actions taken.

In this paper we describe a prototype system that tries to do the above mis-
sion. The system logs ontology change and uses it to amend RDQL queries sent
to the ontology as necessary. Such a system could save application development
many hours by not only updating their queries automatically and maintaining
the flow of knowledge to their applications as much as possible, but also to inform
the developers of such changes in the ontology related to their queries.

2 Ontology Change Management is Needed for the
Semantic Web

To our current knowledge, the interoperability-enabled knowledge represented
by the different ontologies and the different versions of the same ontologies is
necessary to the Semantic Web. It is therefore important to manage the ontology
changes effectively to maintain the relations that specify how the knowledge
is related between the different versions of the same ontologies or the various
ontologies efficiently to avoid wrong interpretations.

There have been a lot of research activities related to ontology changes. Most
of them could fall into one or more of three groups as following:

— Detection and characterisation of change;
— Ontology versioning and evolution;
— Handling inconsistency introduced by ontology change.

To handle ontology changes, detection and characterisation will be the first
task. Comparison could be the direct and efficient method to find out the changes
between the different versions of the same ontology. Currently, Ontoview [10] and
Promptdiff [8] of Protégé are two popular systems to locate the changes between
the variants of the same ontology. The granularity level of changes detected by
the former (RDF statements) is lower than the latter (structural level).

Currently, there is no agreed versioning and evolution methodology for on-
tologies on the Web [5]. Within this research area, most of work focuses on

Page 2



tracking ontology change during evolution process [9,6] using changes identi-
fied by comparison, introducing evolution strategies to allow the developers to
specify complex effects of changes [1,11] and the efforts on defining change oper-
ations for ontology language, in particular for OKBC, OWL [4, 7] and for KAON
ontology language [12].

The inconsistency introduced by ontology changes will bring unexpected con-
sequences to related ontologies and dependent applications. However, this realm
has received little attention so far. It is identified that the impact of a change
in the ontology on the function of the system is hard to predict and strongly
depends on the application that uses the ontology. Part of the problem is the
fact that ontologies are often not just used as a fixed structure but as the basis
for deductive reasoning. The functionality of the system often depends on the
result of this deduction process and unwanted behavior can occur as a result
of changes in the ontology. Haase, et al’s work [13] addresses this problem by
introducing a common formal basis for comparing the existing approaches to
dealing with the inconsistency in terms of a set of elementary definitions.

The ideas that our system is based on fall between the last two groups we
described above. Our system is designed to diagnose and fix the inconsistency
happening between two versions of the same ontology with respect to the de-
pendent applications/services by using change-tracks in order to eliminate or
reduce any impact that ontology change can have on the dependent applications
or services.

3 Approach

In this section, we will describe the important components within our approach.
In Section 1, we have stated that it could be costly and perhaps impossible to
populate every change brought by the dependent ontologies to the applications
and services. Our system aims at taking advantage of change-tracks to reduce
any impacts on the dependent applications and services brought by the changes
of the underlying ontologies. An overview of the approach is shown in Figure 1.

The description will be summarised as follows:

3.1 Approach Description

Problems and Scenarios The main vision of the Semantic Web is that it
could provide the end-users with more intelligent services by the means that
the machine could understand and communicate with each other based on the
knowledge about how to use and combine the information presented by the on-
tologies. The ontologies with the knowledge they presented are crucial elements
in the ontology-based applications in the scenario of the Semantic Web. How-
ever, neither the date the ontologies would encode, nor the ontologies themselves
are permanent and stable.

Page 3



i L
: ’ RDGL Querles Resulis
RDGL Duer:esl 1 1 f 11 Change i n*armwnn
Au.;u:-'ﬁs taken

Our Approach

//"

@Dntulﬁgy o “[ Middle Analysing Layer]

—

L]

b

L]
Amended RDGL. Gueries
\ ROHGL Quseries’ Results

Faohodns

Upd&ted ontologiss
The Knﬂwledge Base

Fig. 1. An overview of the Approach

Ontology change is important to consider for a ontology-based application
because changes effect the way data should be interpreted and handled. From the
perspective of the end-users, they expect to receive continuous and high-quality
services as usual, especially for some particular end-users in the crucial industry
where the service could be a part of the service-chain within an application. Any
unavailable service at any time would break down the whole system. The direct
and indirect consequences could be costly. In this scenario, end-users anticipate
that the services would be continuously available within 24*7. In addition, as
the end-users, they normally care about the knowledge delivered by the sys-
tem more than the background supporting elements, such as version update of
the underlying ontologies. When the end-users have no knowledge of the updat-
ing ontologies, they might have no awareness that the results delivered by the
applications and services could be changed as well. In this scenario, end-users
anticipate not only obtaining the right knowledge but also to be informed of the
updated domain knowledge.

In summary, the end-users expect that the applications and services in the
Semantic Web could continually deliver the right knowledge at right time in

Page 4



an intelligent fashion. Consistently and efficiently coping with ontology changes
would be critical for the applications and services to achieve this requirement.

Research Question The central research question in our discussion is the
following:

Which approach is required to cope with ontology changes consistently
in order to not only keep the ontology-based applications to provide
continuous and updated services as usual, but also make the end-user’s
domain knowledge up-to-date?

We have identified two sub-questions to assist us to identify the research
question more clearly, as follows:

— What is the adequate representation of ontology change?
— Which approach could be developed to resolve the problems caused by the
ontology changes identified in our scenarios?

Our Solution for the Approach Within our research, we try to achieve a
better understanding of a complicated problem. We developed our understanding
by analyzing the context of our problem and comparing it with the related works
in the area. Based on this, our approach was introduced to explore a number
of techniques that is useful to solve some of the problems we identified in the
scenarios described above.

Capture Manage Analyse Access Response

Fig. 2. The Solution of the Approach

Figure 2 shows the solution to tackle the problems identified in our scenarios.
The description of each stage is as follows:

1. Capture: the changes made between two versions of the same ontology was
captured in this stage. Currently, we manually locate changes by comparing
two variants using Protégé. In the future, it could be implemented to capture
changes by using certain script language.

2. Manage: based on the identified changes in the first stage, an appropriate
representation of ontology change, called Log Ontology, was produced in this
stage.

Page 5



3. Analyse: Queries submitted from the applications/services were analysed
to find out their effectiveness and usability by checking each entity within
the queries coordinating with Log Ontology.

4. Access: if certain entities within the users’ queries were found being up-
dated to the new versions, they would be replaced by their relevant new
versions to form the new queries with updated entities, and then submitted
to applications/service for execution.

5. Response: after the new-formed queries were submit to the applications
or service for execution, the results would returned back as anticipated. In
the meantime, change/update information, including the new entity name,
domain or range information, and change operations performed during the
update process, would also be returned back to the end-users with the query
results so as to make users informed of the updated domain knowledge in
due course.

3.2 Example Applications — CRM

The application we used within our prototype system intends to be the applica-
tions which use CIDOC Conceptual Reference Model ! (CRM) as the backbone
ontology. CRM provides a common language and semantic framework for the
domain experts and developers in the culture heritage documentation to share
the understanding of the culture heritage information. In this way, any cultural
heritage information can be mapped to this framework. CRM acts as a semantic
glue to mediate between the different sources of cultural heritage information.

CRM provided detailed documentation with each of its fertile releases of ver-
sions, which is helpful to our research on the change process among the different
versions of the same ontology. This distinguishing advantage made to choose
CRM as the test-bed of our prototype system. We use released version 3.3.2 and
3.4.

4 Discussion and Future Work

In this paper, we discussed the ontology changes as an open problem with respect
to their serious effects on the underlying applications/services. We proposed
an approach for coping with ontology changes consistently by means of using
change-tracks to eliminate or reduce any impact that ontology change can have
on the dependent applications and services. For this purpose, we defined the Log
Ontology that captures and manages the change information between two ver-
sions of CRM ontology. We developed the Middle Analysing Layer that analyses
the end-user’s queries, amends the entities within the queries accordingly re-
lated to the change information captured in the Log Ontology, and informs the
end-user of the changes and actions taken. We have implemented a prototypical

! The CIDOC Conceptual Reference Model: http://zeus.ics.forth.gr /cidoc/index.html

Page 6



implementations of this middle layer infrastructure for ontology-based systems
and successfully tested it on CRM ontology. We showed that with the extra
support of the middle layer ontology-based system could provide continuous and
unchanged services to the end-users without the deleterious effects brought by
the changes of underlying ontologies, in the mean time, the interested end-user
could as also get the knowledge of up-to-date changes taken on the underlying
ontologies.

There are some of the ideas that we would like to research and discuss further.
By implementing these ideas appropriately in the near future, we believe that
our approach will provide a promising method to cope with ontology changes.

— Log Ontology: the Middle Analysing Layer depends on the designed struc-
ture and change information organisation of Log Ontology in our approach.
The modification to the structure of Log Ontology will bring the essential
needs to change the implementation of the Middle Analysing Layer as well.
This demands us to figure out a method to increase the flexibility of the
implementation of the Middle Analysing Layer. The solution of this issue
could add the extra power to the Middle Analysing Layer to make it a crys-
tal interface for another ontology-based applications/services.

— Application/Service: we choose CRM ontology as the underlying ontology
for the ontology-based systems. Comparing with the other ontologies we
found, though it provides much more available versions, it does not reach our
demands as expected. Due to the quantity and quality of changes captured
in the Log Ontology, the methods to cope with the different kinds of ontology
changes could not be a complete list in our prototype system. We need the
other applications/serives to enlarge the scope of our research related to
the possible types of ontology changes so as to make our system more fully
functional.

— The issues about changes: by analysing the fashion of representation of
change information delivered by Log Ontology, two issues attracted our more
attentions. For example when is an appropriate time to inform the end-user
of the changes besides those changes related to the entities within end-users’
queries returned with the results of the queries in the final stage. Because
the knowledge represented by the ontologies are correlated, is it a necessity
to inform the end-users of any changes happened on these correlations? If so,
when to inform them? Also, the change issue we discuss here mainly focuses
on the change process, i.e. from the point of view of query, our focus is on
the changes represented by Log Ontology during the course of processing
the query, not on the query result. What if the knowledge delivered by the
query result were changed as well between two different query times? Should
we inform the end-users of these type of changes as well? And how could we
judge whether the end-users need this information?

Page 7



Acknowledgement This work has been supported under the Advanced Knowl-
edge Technologies Interdisciplinary Research Collaboration (AKT IRC), which is
sponsored by the UK Engineering and Physical Science Research Council under
grant number GR/N15764/01.

References

10.

11.

12.

13.

Stojanovic, L., et al. User-driven ontology evolution management. In Proceeding
of the 13th International Conference on Knowledge Engineering and Knowledge
Management, Ontologies and the Semantic Web, pages 285-300, 2002.

. Heflin, J. and Hendler, J. Dynamic ontologies on the web. In Proceeding of the

17th American Association for Artificial Intelligence Conference (AAAI), pages
443-449, Menlo Park, CA, US, 2000. AAAI/MIT Press.

Huang, Z. and Stuckenschmidt, H. Reasoning with multi-version ontologies: A
temporal logic approach. In Proceeding of the 4th International Semantic Web
Conference (ISWC), Galway, Ireland, 2005.

Klein, M. Change Management for Distributed Ontologies. PhD thesis, Vrjie Uni-
versiteit, Amsterdam, 2004.

Klein, M. and Fensel, D. Ontology versioning on the semantic web. In Proceeding of
International Semantic Web Working Symposium (SWWS), Stanford University,
California, U.S.A, 2001.

Noy, N.F., Kunnatur, S., Klein, M., and Musen, M.A. Tracking changes during on-
tology evolution. In Proceeding of the 3rd International Semantic Web Conference
(ISWC2004), Hiroshima, Japan, November 2004.

Mostowfi, F. and Fotouhi, F. Change in ontology and ontology of change. In
Proceeding of K-CAP 2005 Workshop on Ontology Management for Searching,
Selection, Ranking and Segmentation, Banff, Canada, October 2005.

Noy, N.F., and Musen, M.A. Promptdiff: A fixed-point algorithm for compar-
ing ontology versions. In Proceeding of the 18th National Conference of Artificial
Intelligence (AAAI), pages 744-750, Edmonton, Alberta, Canada, 2002.
Ognyanov, D. and Kiryakov, A. Tracking changes in rdf(s) repositories. In Pro-
ceeding of the 13th International Conference on Knowledge Engineering and Man-
agement, Ontologies and the Semantic Web, Spain, 2002.

Klein, M., Kiryakov, A., Ognyanov, D., and Fensel, D. Ontology versioning and
change detection on the web. In Proceeding of 13th International Conference on
Knowledge Engineering and Management, Siguenza, Spain, 2002.

Plessers, P., and Troyer, O.De. Ontology change detection using a versioning log.
In Proceeding of the 4th International Semantic Web Conference, Galway, Ireland,
2005.

Stojanovic, L. Methods and Tools for Ontology Evolution. PhD thesis, University
of Karlsruhe, 2004.

Haase, P., Harmelen, F.van, Huang, Z., Stuckenschmidt, H., and Sure, Y. A frame-
work for handling inconsistency in changing ontologies. In Proceeding of the 4th
International Semantic Web Conference (ISWC), Galway, Ireland, 2005.

Page 8



