
A Semantic Web Approach to Handling Soft Constraints in
Virtual Organisations

Alun Preece
apreece@csd.abdn.ac.uk

Stuart Chalmers
schalmer@csd.abdn.ac.uk

Craig McKenzie
cmckenzie@csd.abdn.ac.uk

Jeff Z. Pan
jpan@csd.abdn.ac.uk

Peter Gray
pgray@csd.abdn.ac.uk

Department of Computer Science, University of Aberdeen, Aberdeen AB24 3UE, UK
http://www.csd.abdn.ac.uk/research/akt/cif/

ABSTRACT
In this paper we present a proposal for representing soft
constraint satisfaction problems (CSPs) within the Seman-
tic Web architecture. The proposal is motivated by the
need for a service-providing agent in a virtual organisation
to reason about its commitments as soft constraints. The
three essential requirements addressed are: (1) the need to
have constraints express commitments in terms of Semantic
Web services, (2) the need to associate utility values with
constraints, to reflect the relative importance of satisfying
them, and (3) the need to make statements about which
constraints are satisfied and violated by a given solution.
The proposal builds upon previous work in defining a Se-
mantic Web Constraint Interchange Format (CIF), which
itself builds on the proposed Semantic Web Rule Language
(SWRL). The paper describes an ontology for representing
soft CSPs and their solutions, allowing an agent’s set of com-
mitments to be expressed as a collection of soft constraints.
The ontology is an open interchange format for soft CSPs,
allowing commitment to be communicated and exchanged
among the members of a virtual organisation.

1. INTRODUCTION
Constraint satisfaction is an important type of reasoning,
with broad applicability in the Semantic Web context. Ex-
amples include representing and reasoning about capabilities
of Semantic Web services [16], supporting information inte-
gration through the interchange of constraints and data [13],
and extending the definitions of concepts in Web ontologies,
in a similar way to rules [9].

Constraints are often soft : they do not have to be satis-
fied for a solution to be valid or acceptable [4]. Instead,
the goal of the constraint-solving procedure becomes to find
an optimal solution that satisfies a maximal subset of the
constraints [6]. In this context, constraints often have as-

sociated utility values, indicating the relative importance
of satisfying individual constraints or clauses [2, 8]. Im-
portantly, these utilities are generally not absolute: they
are relative to the particular constraint satisfaction problem
(CSP) in which the constraint is being applied. In relation
to a particular solution, a given constraint may be satisfied
or violated, and it is often useful to be able to represent and
reason about which constraints are satisfied/violated by a
given solution [5]. The ability to make statements about
whether a constraint is satisfied or not in a given context is
commonly called constraint reification.

A class of applications where the handling of soft constraints
is a key issue is that of commitment management for service
provisioning in virtual organisations. In these applications
— commonly seen in domains such as e-commerce [15], e-
science [17], and e-response1 — a service-provider manages
particular resources, and commits these resources to satis-
fying specific goals. Often, the commitment of resources
to goals is governed by service-level agreements. The com-
mitments can be modelled as constraints on the resources,
and commitments managed as a soft CSP. When a service-
provider is presented with a new potential commitment,
it must perform reasoning to determine if it can take on
this commitment, possibly by dropping (breaking) existing
lower-utility commitments.

In this paper we present a proposal for representing soft
CSPs within the Semantic Web architecture, using the com-
mitment management scenario as motivation. The proposal
builds upon previous work in defining a Semantic Web Con-
straint Interchange Format (CIF) [14], which itself builds on
the proposed Semantic Web Rule Language (SWRL) [11].
This paper extends the previous form of CIF/SWRL, and
proposes a new ontology for representing soft CSPs which is
intended to complement CIF/SWRL (but is also potentially
usable with other constraint and rule representations). In
the context of service provisioning in virtual organisations,
the primary motivation for representing soft CSPs within
the Semantic Web architecture is to make the constraint
representation compatible with ontologies for Semantic Web
services (SWS); it is our expectation that services over which
commitments are being made are instances of existing SWS

1http://e-response.org/

ontologies, normally expressed in OWL or RDFS.2

The paper is organised as follows: Section 2 presents an ab-
stract scenario involving an agent reasoning about it’s com-
mitments using constraint solving, motivating the need to
represent utility values and constraint reification; Section 3
describes our SWRL-based Constraint Interchange Format;
Section 4 surveys approaches to handling soft and reified
constraints in various CSP-solving frameworks; Section 5
introduces an ontology for representing soft CSPs; Section 6
describes our virtual organisation demonstrator implemen-
tation; Section 7 provides discussion and conclusion.

2. MANAGING COMMITMENTS AS CON-
STRAINTS

To illustrate the use of soft constraints for modelling and
managing commitments, we now present a detailed example.
This example is a simplification of the type of problem that
occur in the virtual organisation service-provisioning appli-
cation domains alluded to in the introduction (see also [15]).

Consider two service-providing agents, a1 and a2. Each
agent can provide a certain amount of resource x (12 units
from a1 and 10 from a2). The agents have existing commit-
ments — c1, c2 and c3 on those resources, as shown in the
first schedule in Figure 1:

• c1: 5x from time 0→5 on a1

• c2: 3x from time 6→10 on a1

• c3: 5x from time 0→7 on a2

Note that in this simple example we only look at a single
type of resource (x). However, the solution to the commit-
ment management problem presented here generalises to any
number of resource types and combination [5]. We restrict
ourselves to a single resource type here only for the sake of
clarity.

If a new request, N is received by the agents to provide 15x
from time 0→10, then the agent has four main choices:

• Reject N and satisfy existing commitments c1, c2 & c3

(Schedule 1 in Figure 1)

• Accept N and break c1 & c2 (Schedule 2)

• Accept N and break c3 (Schedule 3)

• Accept N and break c1 & c3 (Schedule 4)

(Note that there are many permutations of the exact amounts
of the resource x, but in terms of commitments satisfied or
broken these are the four main choices.)

As the number of agents and commitments increases the
number of possible combinations of solutions that satisfy all
the commitments (and solutions that break commitments)

2For example, OWL-S (http://www.daml.org/services) or
WSML (http://www.wsmo.org).

12x

0 10

Resource/Agent

a1

a2

5x 0->5

10x

5x 0->7

12x

0 10

Resource/Agent

a1

a2

5x 0->5

10x

5x 0->7

12x

0 10

Resource/Agent

a1

a2

5x 0->5

10x

5x 0->7

Broken
Commitment

resources contributed
to new commitment

existing
commitment

Free
Resources

Schedule 2
Break c1&c2.
Satisfy N
(a:12x, a2:3x)

Schedule 3
Break c3
Satisfy N
(a1:5x,a2:10x)

Schedule 4
Break c1&c3
satisfy N
(a1:12x - 0->6
 9x - 6->10
 a2:3x - 0->6
 6x - 6->10)

3x 6->10

3x 6->10

3x 6->10

12x

Time

0 10

Resource/Agent

a1

a2

5x 0->5

10x

3x 6->10

5x 0->7

Schedule 1
Reject N
Satisfy c1,c2&c3

c1
c2

c3

1 2 3 4 5 6 7 8 9

c1
c2

c3

c1
c2

c3

c1
c2

c3

Figure 1: Agent a1 & a2’s options for providing new
commitment N

grows exponentially. Also the number of trivial solutions
(i.e. solutions that vary in extremely small detail) increases
(e.g. schedule 3 could take 7x from a1 and 8x from a2 rather
than 5x and 10x which would not affect the commitments
broken). The main emphasis behind the CSP-solving proce-
dure is to find solutions that break commitments (i.e. solu-
tions that are different enough in outcome that they break
different commitments). As a result of this we need to equip
the CSP solver with a method for differentiating between so-
lutions. We also need a way to prioritise commitments so
that we can rule out solutions that break commitments that
have been specified a priori as ‘must-complete’ tasks.

The commitment management system is implemented as a
reification extension to a cumulative scheduling CSP solver
that uses a combination of reification and constraint value
labeling to provide the required commitment management
and prioritisation — details are provided in [5], and further
discussion our virtual organisation demonstrator implemen-
tation appears in Section 6.

3. A CONSTRAINT INTERCHANGE FOR-
MAT BASED ON SWRL

Our Constraint Interchange Format (CIF) is based on the
Colan [1] constraint language, which is based on range re-
stricted first order logic. (The term “constraint” is often
used rather freely; in this paper we use the term for logical
expressions within the scope of Colan — see [14] for broader
discussion of the relationship between rules and constraints.)
Colan expressions allow explicit universal and existential
quantifiers, and nested implications. Earlier versions of the
language were aligned with RDF [12] and SWRL [14]. An
example CIF constraint is shown in human-readable SWRL-
style syntax below:

(∀?x∈X, ?y∈Y) p(?x,?y) ∧ Q(?x) ⇒
(∀?z∈Z) q(?x,?z) ∧ R(?z) ⇒

(∃?v∈V) s(?y,?v)

Commitment c2 from the example in Section 2 can be writ-
ten in this syntax as follows:

(∀?t∈Time) ?t≥6 ∧ ?t≤10 ⇒
(∃?c∈Commitment) hasService(?c,?s) ∧

hasServiceType(?s,‘x’) ∧ hasAmount(?s,3)

CIF constraints are essentially defined as quantified impli-
cations, so we re-use the implication structure from SWRL,
but allow for nested quantified implications within the con-
sequent of an implication. Compared to the SWRL syntax
in [11], this simply adds the quantifiers and supports nested
implications. Note that the innermost-nested implication
has an empty body as it is always of the form “true ⇒ . . . ”.
In the above syntax this is implicit; the following abstract
and RDF syntaxes make this explicit. (Comparison with
the SWRL FOL language is made in Section 7.)

Figure 2 shows the CIF extensions to the abstract syn-
tax given in SWRL and OWL documentation [11], using
the same EBNF syntax. We refer to this form of CIF as
CIF/SWRL. A constraint retains the URIreference and
annotation syntax features from SWRL so as to allow state-
ments to be made about the constraints themselves (see
Section 5). Note that nesting is handled by extending the
original SWRL grammar, allowing a constraint to appear
recursively inside a consequent.

The definition of antecedent is extended from SWRL to
allow combinations of disjunction, conjunction, and nega-
tion expressions. In the simplest case where an antecedent
is a conjunction of atoms, the syntax allows omission of an
explicit And structure — the “and” is implicit (as in the
SWRL syntax). However, disjunctions and negations are
always explicit, as are any conjunctions within them. It is
worth noting that a consequent can be only a conjunction
— CIF/SWRL does not allow disjunction or negation here.

As defined by the SWRL EBNF, an atom may be a unary
(class) predicate (for example, P(I-variable(x)) or a bi-
nary (property) predicate (for example, q(I-variable(y)

I-variable(z))). The only other significant new piece of
syntax is the quantifiers structure, a list of individual

constraint ::= ’Implies(’ [URIreference] { annotation }
quantifiers antecedent consequent ’)’

antecedent ::= ’Antecedent(’ { expr } ’)’
consequent ::= ’Consequent(’ consexpr ’)’
consexpr ::= constraint | { atom }
expr ::= atom | disjunct | conjunct | negation
disjunct ::= ’Or(’ { expr } ’)’
conjunct ::= ’And(’ { expr } ’)’
negation ::= ’Not(’ expr ’)’
quantifiers ::= ’Quantifiers(’ { q-atom } ’)’
q-atom ::= quantifier ’(’ q-var q-set ’)’
quantifier ::= ’forall’ | ’exists’
q-var ::= I-variable
q-set ::= description

Figure 2: CIF/SWRL abstract syntax in EBNF

quantifier expressions, each of which contains a reference
to a SWRL I-variable and an OWL description. So, in
the informal expression “?x ∈ X” x is an I-variable and X

is an OWL/RDFS class identifier. In more complex cases,
the OWL description may be a restriction or other more
elaborate expression allowed by the OWL syntax.

This new syntax also differs from an earlier version pub-
lished in [14] by allowing disjunction and negation in the
antecedents, and any OWL description as the value of a
q-set.

The informal example re-cast into the abstract syntax is
shown in Figure 3. Note the empty antecedent in the innermost-
nested implication.

3.1 CIF/SWRL RDF Syntax Summary
To support publishing and interchange of CIF constraints
in the Semantic Web context, we provide an RDF/XML
syntax as an extension to the one given for SWRL. The full
RDF Schema for the CIF/SWRL syntax is available at the
project website3; here we merely summarise the necessary
extensions to the SWRL RDF syntax:

• We define a new rdfs:Class Constraint, with proper-
ties hasQuantifiers and hasImplication. The range
of the former is an RDF list (of quantifier structures in
practice) and the range of the latter is a ruleml:Imp.

• We define the parent class Quantifier with two sub-
classes: Forall and Exists. Two properties var and
set complete the implementation of the q-atom from
the abstract syntax. The range of both is an RDF
resource: in the case of var this will be a URIref
to a SWRL variable, while for set it will identify an
OWL/RDFS class.

• Note that the SWRL RDF syntax allows the body of
an implication to be any RDF list, so it already allows
the nested inclusion of a Constraint.

• Finally, we define OrExpression and AndExpression

as sub-classes of rdf:List, and a Negation class that
has a swrl:argument1 property to point to the negated
atom.

3http://www.csd.abdn.ac.uk/research/akt/cif/

Implies(
Quantifiers(forall(I-variable(x) X) forall(I-variable(y) Y))
Antecedent(p(I-variable(x) I-variable(y)) Q(I-variable(x)))
Consequent(

Implies(
Quantifiers(forall(I-variable(z) Z))
Antecedent(q(I-variable(x) I-variable(z)) R(I-variable(z)))
Consequent(

Implies(
Quantifiers(exists(I-variable(v) V))
Antecedent()
Consequent(s(I-variable(y) I-variable(v))))))))

Figure 3: Example constraint shown in the CIF/SWRL abstract syntax

<cif:Constraint rdf:about=“#c2”/>
<cif:hasQuantifiers rdf:parseType=“Collection”>

<cif:Forall>
<cif:var rdf:resource=“#t”/>
<cif:set rdf:resource=“&schedule;#Time”/>

</cif:Forall>
</cif:hasQuantifiers>
<cif:hasImplication>

<swrl:Imp>
<swrl:body rdf:parseType=“Collection”/>

<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource=“&swrlb;#greaterThanOrEqual”/>
<swrl:argument1 rdf:resource=“#t”/>
<swrl:argument2 rdf:datatype=“&xsd;#int”/>6</swrl:argument2/>

</swrl:DatavaluedPropertyAtom>
<swrl:DatavaluedPropertyAtom>

<swrl:propertyPredicate rdf:resource=“&swrlb;#lessThanOrEqual”/>
<swrl:argument1 rdf:resource=“#t”/>
<swrl:argument2 rdf:datatype=“&xsd;#int”/>10</swrl:argument2/>

</swrl:DatavaluedPropertyAtom>
</swrl:body>
<swrl:head rdf:parseType=“Collection”>

<cif:Constraint>
<cif:hasQuantifiers rdf:parseType=“Collection”>

<cif:Exists>
<cif:var rdf:resource=“#c”/>
<cif:set rdf:resource=“&schedule;#Commitment”/>

</cif:Exists>
</cif:hasQuantifiers>
<cif:hasImplication>

<swrl:Imp>
<swrl:body/>
<swrl:head rdf:parseType=“Collection”>

<swrl:IndividualPropertyAtom>
<swrl:classPredicate rdf:resource=“&schedule;#hasService”/>
<swrl:argument1 rdf:resource=“#c”/>
<swrl:argument2 rdf:resource=“#s”/>

</swrl:IndividualPropertyAtom>
<swrl:IndividualPropertyAtom>

<swrl:classPredicate rdf:resource=“&schedule;#hasServiceType”/>
<swrl:argument1 rdf:resource=“#s”/>
<swrl:argument2 rdf:resource=“&service;#x”/>

</swrl:IndividualPropertyAtom>
<swrl:IndividualPropertyAtom>

<swrl:classPredicate rdf:resource=“&schedule;#hasAmount”/>
<swrl:argument1 rdf:resource=“#c”/>
<swrl:argument2 rdf:datatype=“&xsd;#int”/>3</swrl:argument2/>

</swrl:IndividualPropertyAtom>
</swrl:head>

</swrl:Imp>
</cif:hasImplication>

</cif:Constraint>
</swrl:head>

</swrl:Imp>
</cif:hasImplication>

</cif:Constraint>

Figure 4: RDF/XML for the constraint (commitment) c2

The RDF/XML for the constraint c2 is shown in Figure 4.

4. REPRESENTING SOFT CONSTRAINTS
IN CSP SYSTEMS

Before presenting our soft CSP ontology, we examine com-
mon features of soft CSPs in the literature and in practical
implementations, in order to identify the minimal features
required of the ontology.

Soft constraints can be represented and implemented in a
variety of ways, depending on language and system used. In
this section we look at a number of CSP-solving frameworks
(based on Prolog and Java), and describe ways in which we
can model soft constraints using the features available in
those frameworks. We then give a brief overview of some of
the soft constraint literature.

4.1 Prolog Implementations
In many Prolog implementations, the issue of soft constraints
can be modelled with reification. Reification is the attach-
ment of a boolean value to each constraint. If a constraint is
satisfied, then the boolean value is set to true, otherwise it
is set to false. This means that it is possible to reason about
the constraints, by reasoning about these boolean values.

Given an unsatisfiable problem, the aim then is to find
the best subset of simultaneously satisfiable constraints (i.e.
true values), by utilising the attached boolean values.

These values themselves can then form the basis for a meta-
level CSP, the solution to which is an assignment of reifica-
tion values to constraints at the lower level. SICStus4, GNU
Prolog5 and SWI Prolog6 all provide a system of reification.

4.2 Java Implementations
In Java, two dominant constraint libraries are Java Con-
straint Library (JCL)7 and Choco8.

The JCL attaches a floating point number to each tuple of
a constraint rated from 0.0 (important) to 1.0 (not impor-
tant), so each outcome pairing is given a value showing its
preference as a solution. When solutions are returned from
the solver they are given a ‘score’ dependent on what tu-
ple has been chosen. These may be used to prioritise the
solutions dependent on preferences.

This method can easily model the reification described in
the Prolog systems. If we add ‘0’ to each domain of possible
values for each variable, we can class this as a ‘not applied’
value for that variable (i.e. if the variable is assigned to 0, we
take it to be not satisfied). We can mark a constraint tuple
where an assigned value is 0 as 1.0 (i.e. not important), and
other possible values as anywhere between 0.0 to 0.9; there-
fore the preference will to be find a value other than 0 for
that constraint (i.e. satisfy the constraint). Obviously this
requires some work-arounds when zero value assignments

4http://www.sics.se
5http://gnu-prolog.inria.fr/
6http://www.swi-prolog.org/
7http://liawww.epfl.ch/JCL/
8http://choco.sourceforge.net/

are required for specific values, but in the case of the com-
mitment management examples we have been investigating,
this method has proved satisfactory.

Choco is a system for solving constriants, also written in
Java. It is a library for constraint satisfaction problems
(CSPs), constraint programming (CP) and explanation-based
constraint solving that is built upon an event-based prop-
agation mechanism. The type of constraints that can be
handled by Choco are arithmetic constraints (equality, dif-
ference, comparisons and linear combination), boolean and
user-defined N-ary constraints. The propagation engine main-
tains arc-consistency for binary constraints throughout the
solving process, while for n-ary constraints, it uses a weaker
propagation mechanism with a forward checking algorithm.
Choco uses a system of explanation based solving9. Using
this method, a constraint program can describe why certain
decision were taken (i.e. why variable x cannot take the
value a) and so show why a problem fails. This information
can then be used to find subsets of satisfiable constraints
within the given set.

4.3 Soft Constraints In the Literature
A number of people in the literature look at the scoring, or
ordering, of constraints in CSP solving in two main ways [2]:

• Assigning values to each possible tuple in a constraint.

• Assigning a value to the actual constraint itself.

There are a number of ways that these two methods are
modelled. Fuzzy CSPs [8] allow constraint tuples to have an
associated preference (1 = best, 0 = worst). Again, as de-
scribed in the Java Constraint Library section, we can still
model (and have modelled) partial CSPs using this method,
by adding a tuple with 0 values to the domain of possible
values, and assigning this a ‘1.0’ preference (i.e. worst out-
come). Similarly weighted CSPs [4] assign preference, but
the value given with each tuple is associated with a cost.
The main factor in these types of CSP is that a value is as-
sociated with the individual tuples in a constraint, not the
actual general constraint itself.

Freuder and Wallace [6] talk more in terms of the actual
constraints themselves, and relaxing them. They talk about
sets of solutions, rather than the actual individual solutions
to each variable. They then talk about a partial ordering
of solutions, where the solutions are ordered by a given dis-
tance metric.

5. DEVELOPING THE CSP ONTOLOGY
We were interested in developing a well formed means of
representing a set of one (or more) constraints that, when
combined, form a single (soft) CSP, the ultimate goal being
to facilitate interchange of information between a CSP prob-
lem constructor and an appropriate solver. The solver would
process the problem and return to the constructor zero or
more solutions, each solution identifying those constraints
that are satisfied and those that are violated by that solu-
tion. This would then allow the CSP constructor to decide
itself which solution to select.
9http://www.e-constraints.net/

Figure 5: Graph of the OWL DL CSP ontology

As discussed in Section 4, soft CSP solvers typically allow
each constraint to be assigned a utility value, defined as a
floating point number with a value ranging from 0 to 1 inclu-
sive. These values represent the significance, or importance,
of that constraint with respect to the other constraints com-
prising the CSP. Essentially, this value represents the degree
of softness of each constraint, with a higher number imply-
ing a lower softness, and therefore a greater desirability to
satisfy that constraint. However, depending upon the strat-
egy employed by the CSP solver, a constraint with a lower
utility value may still be satisfied in preference to violating
another constraint with a higher utility value.

From the preceding discussion, it is clear that a utility value
is not an intrinsic part of a constraint itself, rather it can
be viewed as a kind of annotation on a constraint, with re-
spect to a particular CSP (set of constraints). Similarly, the
status of a constraint in terms of whether it is satisfied or
not can be seen as an annotation of that constraint with
respect to a particular solution. Therefore, we decided to
create a separate ontology to represent a CSPs, indepen-
dent of the (CIF/SWRL) representation of the individual
constraints themselves. The following sections describe two
variant representations of the CSP ontology.

5.1 CSP Ontology in OWL DL
Figure 5 is a graphical depiction of the OWL DL version
of the CSP ontology (classes are drawn as ovals, primi-
tive data types as rectangles, and properties are arcs going
from the domain and pointing to the range of that prop-
erty). Initially, a CSP constructor would create an instance
of a ConstraintProblem with one, or more, instances of
ValuedConstraint. Each ValuedConstraint is assigned a
utility value (real number) with the actual constraint ex-
pressed using CIF/SWRL. At this point the constructor
would have only a representation of the CSP itself; there
would be no instances of the Solution class. Only once

Figure 6: Graph of the CSP ontology using a SWRL
rule to enforce the disjunct properties satisfies and
violates

the CSP has been passed onto a solver will any instances of
Solution be created (or not, if no solution can be found).

In order to describe the state of a ValuedConstraint (i.e.
whether it is satisfied or not with respect to a particular
Solution instance), this version of the ontology features a
sub-class of Solution called ConstraintGroup. This class
acts as a container for a set of ValuedConstraints involved
with a particular Solution instance and attaches a single
boolean-valued property isSatisfied to each member of
the ConstraintGroup. (Enforcing this restriction of a single
isSatisfied property is the main reason OWL DL was used
to define the soft CSP ontology.)

5.2 CSP Ontology in OWL DL + SWRL
The second variation of our CSP ontology is shown in Fig-
ure 6. The motivation for this variant is to capture the direct
relationships between individual solutions and constraint in-
stances. The ConstraintGroup class and its boolean prop-
erty isSatisfied are replaced by the properties satisfies
and violates, both of which have domain Solution and
range ValuedConstraint. Clearly, the use of these proper-
ties must be disjoint between the same instances: a given
constraint can only be satisfied or violated with respect to a
given solution. OWL DL does not enable us to enforce this
check10, so we define a rule to enforce data integrity in this
case. Using SWRL:

csp:satisfies(?x,?y) ∧ csp:violates(?x,?y) ⇒ ⊥

(⊥ denotes the empty consequent i.e. trivially false [11].)

10Disjoint property axioms are expected to be available
in OWL 1.1, which is still decidable: http://www-
db.research.bell-labs.com/user/pfps/owl/overview.html

In principle, both variants of the ontology can be used; how-
ever, we prefer the simplicity and directness of this second
variant. In this representation, the first two solutions from
Figure 1 are as follows:

<ex:soln1> <csp:satisfies> <ex:c1> .

<ex:soln1> <csp:satisfies> <ex:c2> .

<ex:soln1> <csp:satisfies> <ex:c3> .

<ex:soln1> <csp:violates> <ex:N> .

<ex:soln2> <csp:violates> <ex:c1> .

<ex:soln2> <csp:violates> <ex:c2> .

<ex:soln2> <csp:satisfies> <ex:c3> .

<ex:soln2> <csp:satisfies> <ex:N> .

While adding SWRL rules to a DL knowledge base can make
inference undecidable [10], this particular rule is within the
DL-safe subset of SWRL (as the disjointness is imposed on
named ValueConstraints rather than any possible ones).
Therefore, it is still possible to have decidable reasoning sup-
port for our OWL DL + SWRL version of the CSP ontolgy.

6. DEMONSTRATOR SYSTEM: MULTIME-
DIA SERVICE PROVISIONING

This section presents the CSP-based commitment manage-
ment system (CMS) in the context of the multimedia ser-
vice provisioning demonstrator system developed as part of
the Conoise-G project [17]. The decision task with which a
service-providing agent is faced is shown in Figure 7. In re-
sponse to a call for bids, the agent reasons about its available
resources and commitments on those resources, and decides
whether and what to bid. This is the core decision-making
task that was detailed in Section 2. If it is already repre-
senting a virtual organisation, the available resources and
existing commitments are the combined resources and com-
mitments of the organisation. In making its deliberations,
the agent has the option to seek to recruit other service
providers to extend the resources it can provide; it can also
opt to free-up resources by breaking existing commitments
as described in Section 2.

The Conoise-G representation is built on the FIPA standard
agent platform11. Following experience gained in previous
related work [7] we employ formalisms from the Semantic
Web to provide the information representations for commu-
nication among agents in Conoise-G. We chose these rep-
resentations in preference to the more conventional use of
SL in the content of FIPA messages for a number of rea-
sons. Firstly, the Semantic Web representations are far more
widely used than FIPA-SL, so while in principle both SL
and the Semantic Web formats are equally open, in practice
Conoise-G is lent greater interoperability with the rest of
the distributed systems world by aligning with World Wide
Web consortium recommendations. Secondly, by adopting
Semantic Web representations we benefit from being able to
reuse existing schemas and ontologies; for example, we bor-
rowed heavily from the DAML-S service ontology. In creat-
ing a Conoise-G system for a particular application domain,
we would be in a position to exploit any existing schemas
or ontologies in that area. Thirdly, particularly at the lower
(RDF) layers of the Semantic Web formalism stack, the se-

11http://www.fipa.org/

mantics of the data model are much simpler than FIPA-SL
(while still adequate for operational use), so there is less of
a learning curve for designers and implementors of Conoise-
G agents. (As a related point, there is also a substantial
amount of well-tested software for processing RDF, unlike
FIPA-SL.)

In the current version of the Conoise-G architecture, we have
created a set of interrelated ontologies expressed in a rela-
tively lightweight manner as RDF schemas. For now, RDFS
is sufficiently expressive to capture usable structures, and
has allowed us to rapidly develop the necessary message for-
mats for inter-agent communication in the testbed applica-
tion. We would envisage the definitions in the ontologies
becoming tightened up with the addition of OWL state-
ments once the formats have stabilised through further test-
ing and refinement. Two sample RDF messages expressed
using a number of the ontologies are shown in Figures 8
and 9. The first shows a sample call for bids, as issues to
provider agents. This consists of an instance of a user Re-
quirement structure, stating a number of services that the
user’s requirement consistsOf, and also a qualityPreference
property, indicating that the most important thing for this
user is lowest cost. The descriptions of each required service
are adorned with service-specific properties, for example the
MovieContent requirement specifies a number of movies
(per month), a subscription preference, and a genre type.
This example illustrates the use of terms from three of the
Conoise-G ontologies:

• the package ontology describes service packages, defin-
ing terms such as the class Requirement and the
property consistsOf ;

• the quality ontology describes domain-independent
quality-of-service terms such as the qualityPreference
property, and its various settings such as “minCost”;

• the media ontology defines all application domain-specific
terms for the multimedia service provisioning scenario,
including the service classes MovieContent, Html-
Content, PhoneCalls, and TextMessaging, all of
which the ontology defines to be (indirect) sub-classes
of the generic Conoise-G ServiceProfile class (closely
based on DAML-S).

The second sample message in Figure 9 shows a bid issued
by one of the service provider agents in response to the call
shown in Figure 8. The bid is for just one of the required
services (the HtmlContent part); the Bid structure is sim-
ilar to the Requirement structure in that it also employs
the consistsOf property, but here there is also an identified
instance of a Provider, whose properties are defined using
terms from the profile ontology (that also defines the Ser-
viceProfile class mentioned above). This information will
allow the user to access the service if this bid is ultimately
accepted as part of the winning package. Note also that
the services offered in bids have Price structures attached,
which are rich enough to identify different price “bands”
depending on the volume the user might wish to consume.

The elements of these ontologies are used in the commit-
ment expressions. Specifically, the service types (for exam-

SP Agent

SP Agent

SP Agent

SP Agent

SP Agent

SP Agent

Decide not to bid

Bid on its own

Call for bids

Use Existing
VO

Call for bids
(new VO formation)

Break existing
commitment(s)

Agent

VO

Request/
Response

Commitment

Figure 7: Decision task tackled by a service-providing agent in Conoise-G

ple, MovieContent or HtmlContent) are used to define
the types of service in a commitment (in place of the ab-
stract service x in our examples in Section 2 and 3), and
service properties (for example, subscriptionType or medi-
aStyle) can be constrained in a commitment expression.

A screenshot showing the running Conoise-G demonstrator
is shown in Figure 10. The composition of the virtual organ-
isation is shown in the top-right portion of the figure. The
foreground shows a simulated PDA delivering the provided
package of services.

7. DISCUSSION AND CONCLUSION
In this paper we presented a proposal for representing soft
CSPs within the Semantic Web architecture. The proposal
was motivated by the need for a service-providing agent in
a virtual organisation to reason about its commitments as
soft constraints. The two essential requirements addressed
were: the need to associate utility values with constraints,
to reflect the relative importance of satisfying them, and the
need to make statements about which constraints are satis-
fied and violated by a given solution. While there exists an
XML-based proposal for representing CSPs [3], to the best
of our knowledge our proposal is the first CSP interchange
format founded on RDF and OWL.

The proposal built upon previous work in defining a Se-
mantic Web Constraint Interchange Format (CIF), which
itself built on the proposed Semantic Web Rule Language
(SWRL). This paper extended the previous definition of
CIF/SWRL to allow disjunction and negation in implication
antecedents, and the ability to use OWL descriptions in the

scope of quantifiers. Note that, while the CSP ontology is
designed to work with CIF as the constraint representation,
it is conceivable that other constraint and rule representa-
tions could be used as the values of the expression properties
of ValueConstraints . As work continues on standardising
Semantic Web rule and constraint languages12, we will con-
sider suitable extensions to the CSP ontology.

The SWRL FOL proposal to extend SWRL to full first-order
logic13 shares many of the features we earlier proposed for
CIF/SWRL. While, at the time of writing, the SWRL FOL
proposal lacks an RDF syntax, we anticipate it would not
be hard to fully align CIF/SWRL with SWRL FOL. The
main differences are in the syntactic form for the quantifier
parts of expressions, a more expressive consequent (SWRL
FOL allows disjunction and negation here), and a more com-
plex syntax for simple conjunctions (SWRL FOL opts not
to follow the SWRL “list format” for these).

It is worth emphasising that the CSP ontology and CIF are
intended to be interchange formats — to solve a CSP it is
necessary to translate the CSP and the individual CIF/SWRL
constraints to a native format, such as one of those surveyed
in Section 4. This will involve some degree of (often non-
trivial) conversion and mapping of the various elements of
the CSP. For example, as mentioned in Section 2 our cur-
rent implementation of the commitment management sys-
tem uses the Java Constraint Library and, as a result, utility
values need to be mapped from the 0 (softest). . . 1 (hard-
est) scale used in the ontology (Section 5) to the 1 (soft-

12http://www.w3.org/2005/rules/
13http://www.daml.org/2004/11/fol/

<rdf:RDF
xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:quality=“http://conoise.org/ontologies/quality#”
xmlns:media=“http://conoise.org/ontologies/media#”
xmlns:package=“http://conoise.org/ontologies/package#”>
<package:Requirement rdf:about=“http://conoise.org/samples/request”>

<quality:qualityPreference rdf:resource=“http://conoise.org/ontologies/quality#minCost”/>
<package:consistsOf

rdf:type=“http://conoise.org/ontologies/media#PhoneCalls”
media:numberOfMinutes=“25”/>

<package:consistsOf >
<media:MovieContent media:numberOfMovies=“72”>

<media:subscriptionType rdf:resource=“http://conoise.org/ontologies/media#monthly”/>
<media:mediaStyle rdf:resource=“http://conoise.org/ontologies/media#scienceFiction”/>

</media:MovieContent>
</package:consistsOf >
<package:consistsOf >

<media:HtmlContent media:updateFrequency=“24”>
<media:mediaStyle rdf:resource=“http://conoise.org/ontologies/media#news”/>

</media:HtmlContent>
</package:consistsOf >
<package:consistsOf

rdf:type=“http://conoise.org/ontologies/media#TextMessaging”
media:numberOfMessages=“100”/>

</package:Requirement>
</rdf:RDF>

Figure 8: Sample call for bids in RDF format, as sent to provider agents

<rdf:RDF
xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:media=“http://conoise.org/ontologies/media#”
xmlns:profile=“http://conoise.org/ontologies/profile#”
xmlns:package=“http://conoise.org/ontologies/package#”>
<package:Bid rdf:about=“http://conoise.org/samples/pa2bid#bid2”>

<package:providedBy>
<package:Provider

profile:fipaAddress=“pa2@conoise.org:15551/JADE”>
<profile:name>Provider Agent 2</profile:name>

</package:Provider>
</package:providedBy>
<package:consistsOf

<media:HtmlContent rdf:about=“http://conoise.org/samples/pa2bid#pa2news”
media:updateFrequency=“72”>
<media:mediaStyle rdf:resource=“http://conoise.org/ontologies/media#news”/>
<package:hasPriceStructure

rdf:type=“http://conoise.org/ontologies/package#Price”
package:min=“0” package:max=“10” package:unitPrice=“3”/>

<package:hasPriceStructure
rdf:type=“http://conoise.org/ontologies/package#Price”
package:min=“10” package:max=“50” package:unitPrice=“2”/>

<package:hasPriceStructure
rdf:type=“http://conoise.org/ontologies/package#Price”
package:min=“50” package:max=“1000” package:unitPrice=“1”/>

</media:HtmlContent>
</package:consistsOf >

</package:Bid>
</rdf:RDF>

Figure 9: Sample bid in RDF format, as issued by a provider agent

Figure 10: The Conoise-G virtual organisation demonstrator system.

est). . . 0 (hardest) scale used in the JCL (Section 4). In
previous work, CIF has also been translated to the native
formats of the Sicstus Prolog FD library and ECLiPSe [13,
12].

Our immediate future plans lie in developing the interaction
between constraint solving and the user using our two inter-
change formats. Using an emergency response application
domain14 as a test-bed scenario for our commitment man-
agement system, we aim to experiment with various styles
of user interface to allow a user to pose a constraint satis-
faction problem to a solver, receive a number of solutions
with various overall utilities, and choose a preferred set of
commitments.

8. ACKNOWLEDGMENTS
This work is supported by the Advanced Knowledge Tech-
nologies (AKT) Interdisciplinary Research Collaboration (IRC),
funded by the UK Engineering and Physical Sciences Re-
search Council (grant number GR/N15764/01). The AKT
IRC comprises the Universities of Aberdeen, Edinburgh,
Sheffeld, Southampton, and the Open University. See also:
http://www.aktors.org

The commitment management service was developed in the
context of the Conoise and Conoise-G projects, involving the
Universities of Aberdeen, Cardiff, and Southampton, and
British Telecom, and funded by the DTI/Welsh e-Science
Centre, and BT. We are grateful to Gareth Shercliffe and
Patrick Stockreisser for their work on the Conoise-G demon-
strator user interface. See also: http://www.conoise.org

9. REFERENCES
[1] N. Bassiliades and P. Gray. CoLan: a Functional

Constraint Language and Its Implementation. Data
and Knowledge Engineering, 14:203–249, 1994.

[2] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi,
T. Schiex, and G. Verfaillie. Semiring-based CSPs and
Valued CSPs: Basic properties and comparison. In
M. Jampel, E. Freuder, and M. Maher, editors,
Over-Constrained Systems, pages 111–150.
Springer-Verlag LNCS 1106, Aug. 1996.

[3] F. Boussemart, F. Hemery, and C. Lecoutre.
Description and representation of the problems
selected for the first international constraint
satisfaction solver competition. Technical report,
CRIL, Université d’Artois, 2005.

[4] K. Brown. Soft consistencies for weighted csps. In
Proceedings of Soft’03: 5th International Workshop on
Soft Constraints, Kinsale, Ireland, September 2003.

[5] S. Chalmers, A. D. Preece, T. J. Norman, and
P. Gray. Commitment management through
constraint reification. In 3rd International Joint
Conference on Autonomous Agents and Multi Agent
Systems (AAMAS 2004), pages 430–437, 2004.

[6] E. C. Freuder. Partial Constraint Satisfaction. In
Proceedings of the Eleventh International Joint

14http://e-response.org/

Conference on Artificial Intelligence, IJCAI-89,
Detroit, Michigan, USA, pages 278–283, 1989.

[7] G. A. Grimnes, S. Chalmers, P. Edwards, and
A. Preece. Granitenights: A multi-agent visit
scheduler utilising semantic web technology. In
Cooperative Information Agents VI (LNAI 2782),
pages 137–151. Springer, 2003.

[8] H. W. Guesgen and A. Philpott. Heuristics for solving
fuzzy constraint satisfaction problems. In 2nd New
Zealand Two-Stream International Conference on
Artificial Neural Networks and Expert Systems
(ANNES ’95), 1995., 1995.

[9] S. Hawke, editor. W3C Workshop on Rule Languages
for Interoperability, 2005.
http://www.w3.org/2004/12/rules-ws/.

[10] I. Horrocks and P. Patel-Schneider. A proposal for an
OWL Rules Language. In Thirteenth International
World Wide Web Conference (WWW 2004). ACM,
2004.

[11] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web rule
language combining OWL and RuleML. Technical
report, W3C, 2004.
http://www.w3.org/Submission/SWRL/.

[12] K. Hui, S. Chalmers, P. Gray, and A. Preece.
Experience in using RDF in agent-mediated
knowledge architectures. In L. van Elst, V. Dignum,
and A. Abecker, editors, Agent-Mediated Knowledge
Management (LNAI 2926), pages 177–192.
Springer-Verlag, 2004.

[13] K. Hui, P. Gray, G. Kemp, and A. Preece. Constraints
as mobile specifications in e-commerce applications. In
R. Meersman, K. Aberer, and T. Dillon, editors,
Semantic Issues in e-Commerce Systems, pages
327–341. Kluwer, 2003.

[14] C. McKenzie, P. Gray, and A. Preece. Expressing fully
quantified constraints in CIF/SWRL. In G. Antoniou
and H. Boley, editors, Rules and Rule Markup
Languages for the Semantic Web (RuleML 2004),
pages 139–154. Springer-Verlag, 2004.

[15] T. J. Norman, A. D. Preece, S. Chalmers, N. R.
Jennings, M. M. Luck, V. D. Dang, T. D. Nguyen,
V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian.
CONOISE: Agent-based formation of virtual
organisations. Knowledge-Based Systems, 17:103–111,
2004.

[16] M. Nottingham and P. Le Hégaret, editors. W3C
Workshop on Constraints and Capabilities for Web
Services, 2004.
http://www.w3.org/2004/09/ws-cc-program.html.

[17] J. Patel, . M. L. L˙ Teacy, N. R. Jennings,
S. Chalmers, N. Oren, T. J. Norman, A. Preece,
P. M. D. Gray, P. J. Stockreisser, G. Shercliff, J. Shao,
W. A. Gray, N. J. Fiddian, and S. Thompson.
Agent-based virtual organisations for the grid. In Proc
1st International Workshop on Smart Grid
Technologies, 2005.

