
Implementing a Semantic Web Blackboard System
using Jena

Craig McKenzie, Alun Preece & Peter Gray
{cmckenzie,apreece,pgray}@csd.abdn.ac.uk

Department of Computer Science, University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract

In this paper, we discuss the need for a hybrid reasoning approach to handing Seman-
tic Web data and explain why we believe that the Blackboard Architecture is particularly
suitable. We describe how we have utilised it for combining ontological inference, rules
and constraint based reasoning within a Semantic Web context.

After describing the metaphor on which the Blackboard Architecture is based we intro-
duce the key components of the architecture: the blackboard Panels containing the solution
space facts and problem related goals and sub-goals; the differing behaviours of the asso-
ciated Knowledge Sources and how they interact with the blackboard; and, finally, the
Controller and how it manages and focuses the problem solving effort.

To help clarify, we use our test-bed system, the AKTive Workgroup Builder and Black-
board (AWB+B) to explain some of the issues and problems encountered when implement-
ing a Semantic Web Blackboard System in Java, using Jena. We also discussour reasons
why we elected to use the Jena toolkit and explain its usage within several of the key
components of our system.

1 Introduction & Motivation

Our research interest lies in exploring the suitability of aBlackboard System to utilise incom-
plete, Semantic Web information in a closed world, problem oriented context, i.e. using SW
data to create a (finite domain) Constraint Satisfaction Problem (CSP) before attempting to
solve it. An interesting starting domain was within the context of the CS AKTive Space1 [10],
namely the Computing Science (CS) community in the UK. Our demoapplication, the AKTive
Workgroup Builder and Blackboard (AWB+B), is a SW application that attempts to construct
one or more working groups of people from a pool of known individuals. Workgroup composi-
tion must adhere to a set of user defined constraints, e.g. “the workgroup must contain between
5 and 10 individuals” or “at least half the members of the workgroup must have an interest of
Agents”. Having successfully used Jena in past developments, our familiarity with the toolkit
meant that we knew it was capable of handling our initial requirements and, as we discuss later,
does not appear to restrict us in our future work plan either.

Since our problem combines ontological inference, rules and constraint based reasoning,
we believe that a combination of reasoning methods are necessary. The “one size fits all” rea-
soning theory was questioned in [11] when a DL based reasonerwas compared to a First-Order

1http://cs.aktivespace.org

1



prover. The final conclusion was that when dealing with a veryexpressive OWL DL ontology
a combination of both is necessary because there was no knownsingle reasoning algorithm
able to adequately cope with the full expressivity possiblewith the OWL DL language. They
also flagged slow performance speed as a potential hurdle. Therefore, for this to be efficient, a
hybrid reasoning [1] approach is required.

Once this necessity for hybrid reasoning was identified, we realised that there is nothing in
the architecture of the Semantic Web for coordinating this effort. We believe the Blackboard
architecture is appropriate as it meets our requirements – supporting the use of distributed
Knowledge Sources (KSs) responding to a central, shared knowledge base via a control mech-
anism [9, 2].

The structure of this paper is as follows. In section 2 we introduce our test-bed application,
the AWB+B, and explain the process of building workgroups. Then, in section 3, we describe
the blackboard analogy before comparing the traditional approach to our Semantic Web based
approach. In section 4 we describe the role of the KSs within the architecture and discuss
their individual attributes using the AWB+B to help illustrate the concepts. Next, section 5
describes the controlling mechanism of the blackboard. Finally, in section 6 we conclude with
a discussion of our findings and comment on the direction of our future work.

2 Building Workgroups

The AKTive Workgroup Builder and Blackboard (AWB+B) is a new incarnation of our earlier
version of the system (AWB [8]) that also used Jena but did not use the blackboard architecture.
Like its predecessor, the AWB+B is a web-based application that tackles the problem of assem-
bling a workshop containing one or more workgroups from a pool of known people. Since the
user is not expected to have knowledge about the lower level operations of the blackboard, we
assume that all the necessary RDF information resources to beincluded are known to the user
(via URIs). This allows the blackboard to be initialised and the KSs to be dynamically created
and registered with the blackboard “behind the scenes”.

The RDF data processed by the AWB+B contains information about each individual’s re-
search interests, publications and projects they have beeninvolved in. The detail of this infor-
mation will vary depending upon what is published by a particular data source. Ideally, this
information will need to be reasoned against in order to infer additional facts that may not have
been explicitly stated – for example projects that a person has worked on or papers that they
have published can imply additional research interests.

3 The Blackboard Analogy

The concept of a Blackboard System is based upon a metaphor whereby a group of people,
each with differing expertise and knowledge, are all standing around a blackboard deliberating
over a problem that has been written up on it. Everyone understands that the ultimate goal is
to solve the problem and that they will know the solution whenthey see it but, at this point
in time, no single individual can work it out on their own. Theprocess begins when one
person looks at the problem description on the board and realises that he/she can make a small,
relevant contribution. They write their finding onto the blackboard for the others to see. This
inspires another person to a further idea, which they also write on the blackboard. This scenario
continues until eventually a solution is reached via these incremental, cooperative steps (for a

2



Figure 1: Each Knowledge Source (KS)
can view the Abstraction Levels within a
Blackboard Panel. A KS can betriggered
by any of the items on blackboard, allow-
ing it to contributesomething at any of the
abstraction levels.

Figure 2: The core architectural compo-
nents of a Blackboard System. Each KS
can view the contents of the Blackboard
Panels, but it is the Controller that decides
which KS(s) are allowed to contribute to
the Blackboard.

fuller description see [9]). No-one is allowed to communicate directly, everything must be done
through the blackboard which becomes a shared “thinking space” for all the participants.

In computing terms, the architecture of a Blackboard System has the “blackboard” as a
shared knowledge base, and the “people” as various KSs – we discuss KSs in more detail in
section 4.

3.1 Traditional Approach

The pioneering blackboard systems (e.g. Hearsay-II [4], HASP/SIAP [5], CRYSALIS [3] and
OPM [7]) maintained the blackboard as a shared data repository representing a communal
work area or “solution space” of potential solution components. The associated KSs were able
to view the contents of the blackboard and react by indicating what they could contribute. They
were only allowed to modify the contents of the blackboard if/when requested to do so by the
Controller.

For this to work efficiently, the data held on the blackboard must be structured hierarchi-
cally into Abstraction Levels (see Figure 1); multiple distinct hierarchies were referred to as
Panels. This organisation served two purposes. Firstly, itaided each KS to check if it can
contribute (i.e. the KS was activated, ortriggered, by the propagation of information onto an
abstraction level that it was monitoring). Secondly, it helped focus the search for the solution.
As the name suggests, each layer is an abstraction using concepts that hide the detail of the
layer below it. For example, using the domain of speech understanding, the lowest abstraction
level could be the phonetic sounds accepted by the system; the level above could be potential
combinations of these sounds into letter groups; the next level being single words; the next
level could be phrases; with, finally, the topmost level consisting of potential whole sentences.
A word-dictionary KS would examine the phonetic letter groups and combine these to form
words, which (controller permitting) it would then post onto the level above.

The nature of each abstraction level and the actual entries within each level can vary from
implementation to implementation depending upon the nature of the problem attempted. In-
stead of the bottom-up approach used in the example, a top-down approach may be required,
so the first abstraction level is vague with later ones becoming more refined. Likewise a KS’s

3



trigger could span multiple layers with a contribution alsoaffecting one or more layers see
Figure 2).

As mentioned already, the decision of what is (or is not) placed on the blackboard is made
by the controller, and the complexity of the solving strategy adopted can vary from a simplistic
“just action everything” approach to a more complex goal driven algorithm. The key point is
that it directs the solving process via goals and sub-goals that each of the KSs can be triggered
by. This helps to ensure that onlyrelevantinformation is added. Since the triggering action can
be dependent upon information added by a different KS, this results in an opportunistic solving
paradigm. A blackboard system is fundamentally backward chaining – it is goal driven. In our
case, the initial goal placed on the blackboard is to find a solution to a specified workgroup
problem.

3.2 Semantic Web Approach

Our Semantic Web Blackboardmaintains all the principles of thetraditional blackboards but
improves upon them by incorporating some of the concepts of the Semantic Web. The notion
of Abstraction Levels aligns itself well to the hierarchical, structured nature of an ontology. In
the AWB+B it is a JenaOntModel that is used to store the data. Our decision to use Jena
was influenced by our familiarity with the toolkit but, primarily, rather than just being atriple
cachefor RDF data, Jena uses a graph representation, with an intuitive and convenient API for
accessing content. This also has the advantage that the contents of the blackboard can be easily
serialised into textual form – either for debugging purposes or propagation of the contents –
and represented in a well known and understood format (e.g. RDF, N3).

Until now, the blackboard has been passive, with any reasoning function placed firmly on
the shoulders of the KSs. While not wishing to stray too far from the original concepts of
the blackboard architecture, we have introduced an elementof intelligence to the blackboard
itself. Unfortunately, enabling the Blackboard to make inferences about itself must be treated
with caution. Since reasoning is both difficult and time consuming, it would be undesirable if
the actual blackboard became a bottleneck while it attempted to fully reason about itself and
denied all KSs from contributing. Unfortunately, this did become an issue when we attached
an OWL Lite reasoner. Therefore, we elected to only infer transitive sub-class/property rela-
tions on classes and instances. Because this is such a common operation, having it done by
the blackboard eliminates the need for frequent call outs toKS that would perform the same
function. In implementation terms, we simply attached aGenericRuleReasoner and the
following set of 4 forward chaining rules to theOntModel:

(?a rdfs:subPropertyOf ?b),(?b rdfs:subPropertyOf ?c) -> (?a rdfs:subPropertyOf ?c)

(?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)

(?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) -> (?a rdfs:subClassOf ?c)

(?x rdfs:subClassOf ?y), (?a rdf:type ?x) -> (?a rdf:type ?y)

Jena is quite flexible in that there are a choice of their own rule based reasoners that can be
attached but also because Jena’s architecture provides a mechanism for attaching external rea-
soners to Jena models (by implementing the DIG description logic reasoner interface). This
means that, down the line, our research will not be restricted as we can incorporate reasoners
such as FaCT2, Racer3 or Pellet4.

2http://www.cs.man.ac.uk/∼horrocks/FaCT/
3http://www.sts.tu-harburg.de/∼r.f.moeller/racer/
4http://www.mindswap.org/2003/pellet/index.shtml

4



4 Behaviours of Knowledge Sources

The KSs represent the problem solving knowledge of the system. Each KS can be regarded as
being anindependentdomain expert with informationrelevantto the problem at hand. The key
point is that no assumptions should be made about the capabilities of a KS – conceptually it
should be regarded black box. Due to the tightly coupled nature of the KSs and the Blackboard,
all KSs must be “registered” so that they can view the blackboard contents and inform the
Controller of any potential contributions.

KSs access the blackboard and continually check to see if they can contribute. Each one has
a precondition (or event trigger) and an action (what it can add to the blackboard). The black-
board is monotonic, facts are only ever added by the KSs, never retracted. This mechanism is
governed by a controller which monitors changes to the blackboard and delegates actions ac-
cordingly. The whole process is driven by the posting of goals which a KS either offers a direct
solution to, or breaks down further into sub-goals, indicating that more knowledge is required.

The following sub-sections describe the main types of KS currently implemented within
the AWB+B system based on their behaviours w.r.t. the blackboard. This is by no means an
exhaustive list of all the possible types of KS and it should be noted that future KSs could
combine some of these behaviours, but we have not explored this yet.

4.1 Human (User Interface) KS

While this may not be immediately obvious, the user of the system can be regarded as a type
of KS. This represents “human” knowledge which is entered via a web-based user interface.
In AWB+B terms this is the user specifying the problem parameters, e.g. the number of work-
groups to be built, the size of each workgroup, any associated constraints, etc. Once all the
necessary information for the CSP has been entered, the KS transforms it into the starting goals
for the system which are then posted onto the blackboard, thus kick-starting the process.

In the current AWB+B implementation this interaction is minimal, merely the problem def-
inition. However, there is nothing to prevent a more “interactive” human KS. Another variation
of a Human KS could, for example, continually check the blackboard for inconsistencies and
when one is found present the user with pop-up windows askingthem to offer a possible reso-
lution, i.e. it gives the user a “view” of inconsistencies found on the blackboard.

4.2 Instance based KS

This type of KS only contains instance data corresponding toan ontology but not the actual
schema itself. This could either be from a simple RDF file or be held in an RDF datastore. This
KS contributes in the following way:

i) Try to add a “solution” to a posted (sub-)goal by adding instance data for classes and/or
properties defined on the blackboard.

ii) Try to add a “solution” to classify any property’sdirect subject and/or object which the
blackboard does not have a class definition for.

For example, if the ontological classProfessor is defined on the blackboard and this KS has
instances of that class then, as per (i), the offered solution is all theProfessor instances that
it knows about. Property definitions work in the same way, butare slightly more complex. As
per (i), when this KS responds to the property based goalworksFor the KS would offer the

5



statement:
<ex:john> <ont:worksFor> <ex:abdnUni> .

However, this gives no information about the subject or the object of that triple. This is not an
issue if they are already instantiated on the blackboard, but if they are not (and assuming the
object is not a literal) then subsequently, as per (ii), the KS could also offer the following:
<ex:john> <rdf:type> <ont:Lecturer> .
<ex:abdnUni> <tdf:type> <ont:University> .

Since this KS does not know the underlying schema, it cannot contribute class defintion infor-
mation about theLecturer or University classes.

If this KS is a repository of RDF triples (for example, 3Store [6]) we require a wrapper for
this KS, allowing us to communicate with the datastore via its API. In the case of the 3Store, it
uses ahttp interface that accepts SPARQL5 queries. We transform any blackboard goal into
a query, the result of which can be transformed into triples and asserted onto the blackboard.

4.3 Schema based KS

This represents a KS that only contains information at an ontological schema level. Since the
blackboard initially contains no ontological structure, it is the job of this KS to help facilitate
the construction of the relevant ontological parts on the blackboard. This type of KS attempts
to contribute in the following ways:

i) Try to add new sub-goals to the blackboard by looking for:
- Ontological sub-classes of a class defined on the blackboard.
- Ontological sub-properties of property defined on the blackboard.

ii) Try to improve the (limited) reasoning ability of the blackboard by adding:
- subClassOf statements connecting classes already defined on the blackboard.
- subPropertyOf statements connecting properties alreadydefined on the blackboard.

Note: Statements are only added fordirect sub-class or sub-property relations.

iii) Try to add new sub-goals for any property’s subject and/or object on the blackboard that
does not have a class definition. The sub-goals, in this case,would be the missing class
definitions.

In (i) and (ii) super-classes/properties are never added tothe blackboard as these are deemed ir-
relevant and would widen the scope of the blackboard contents too much. Likewise, we need to
be careful in (iii). Continuing our previous example from section 4.3, let us suppose that when
the ontology was first authored, theworksFor property was assigned a domain ofPerson
and a range of<owl:Thing>. This was because the author believed that only aPerson is
capable of working, but what it is they actually work for could either be anotherPersonor an
Organisation. Therefore, for simplicity, they just widened the domain toencompass as many
classes as possible. If we were to use these domain and range values, we would introduce a
sub-goal asking for all instances of<owl:Thing>which would end up with each KS offering
every instance it has. Therefore, in an attempt to narrow thesearch space as much as possible,
only the class definitions of instances with theworksFor property are added as sub-goals (in
this caseLecturer andUniversity respectively).

5SPARQL (SPARQL Protocol And RDF Query Language) is a query language for getting informa-
tion from RDF graphs. The W3C working draft,SPARQL Query Language for RDF, is available at:
http://www.w3.org/TR/rdf-sparql-query/

6



4.4 Rule Engine KS

A Rule KS, like all the other KS types, can be viewed as a black box, encapsulating its rules
and keeping them private. The ability to derive new information through rules is an extremely
important and powerful asset. We achieve this by expressingthem using SWRL6. This KS
works by examining the contents of the blackboard to determine if any of the rules that it knows
about are required and then attempts to contribute. A rule isrequiredonly if any of the elements
in the consequent (head) are present on the blackboard7. The KS attempts to contribute to the
blackboard in the following ways:

i) Try to add a “solution” by firing the rule against instancesalready on the blackboard and
asserting the appropriate statement(s).

ii) Try to add new sub-goals to the blackboard by looking for:
- Any ontological classes that are antecedents of the rule and that have not been

defined on the blackboard.
- Any ontological properties that are antecedents of the rule and that have not been

defined on the blackboard.
The sub-goals in this case are the ontological class or property definitions.

We need to be careful here, remembering that we want to keep the blackboard contents relevant
to the problem at hand and not introduce superfluous classes and/or properties. If a rule has
a conjunctive consequent, it can be split into separate rules for each head atom. This means
that if a consequent is not needed, that rule will not be considered avoiding the placement of
unnecessary sub-goals (i.e. class/property definitions) that could, subsequently, cause other KSs
to add irrelevant information relating to these (either solution instances or sub-class/property
sub-goals).

The current AWB+B implementation has only one starting rule per Rule KS. The rule is
rewritten into a SPARQL query, which is placed against the blackboard contents to determine
if any new triples can be asserted. The results of the query are asserted onto the blackboard as
the new triples. This is, essentially, a brute force, forward chaining approach to deriving new
entailments (and goes against the grain of the backward chaining approach of the blackboard).

In our future work we plan to further investigate the effectsof Rule Chaining and plan to
take advantage of Jena’s rule engine by converting the SWRL rules into the Jena format and
applying these directly to the blackboard. This tighter integration, coupled with a backward
chaining approach would greatly improve efficiency. Since the KSs access the blackboard via
an API, we have the alternative option of using an external rule engine too (e.g. Prolog, Jess8,
SweetRules9).

4.5 CSP Solver KS

This KS allows us to perform constraint-based reasoning andattempts to solve the CSP goal
posted on the blackboard. The constraints for the workgroup(s) are expressed using CIF/SWRL
[8] – our Constraint Interchange Format (CIF), which is an RDF based extension of SWRL that

6SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3CMember submission,
http://www.w3.org/Submission/SWRL/

7The reason why this is “any head element” is because SWRL allows the consequent to contain a conjunction
of atoms.

8http://herzberg.ca.sandia.gov/jess/
9http://sweetrules.projects.semwebcentral.org/

7



allows us to express fully quantified constraints. Since thegoal of the AWB+B is to form
workgroups that adhere to the specified constraints, this KSis integral to the system and causes
the termination of the goal, i.e. once a solution to the problem has been found, then there is
little point in continuing!

There are essentially two ways for this KS to operate. The first method is the easiest to
implement. It involves the Controller waiting until all the other KSs have finished contributing
and the contents of the blackboard are as complete as they canbe. Only then is a solution
checked for. The second method involves the KS continually checking if a solution can be
found. Rather than attempting full blown CSP solving continuously, the solver checks each
of the constraints individually and only if they can all be satisfied, does it attempt the more
difficult task of solving them combinatorially. It is the first approach which we have adopted in
the AWB+B.

If a solution is found the workgroups are posted onto the blackboard. For convenience,
the user is also presented with a web page listing the proposed members of the workgroup(s).
Otherwise, they are informed that no solution can be found. In the latter case, the user must
decide which constraint(s) must be relaxed before the problem can be attempted again. The
system aids this decision by also including unsatisfiable constraint combinations.

5 The Controller

As the name suggests, the role of the Controller is to oversee the running of the system as a
whole. So far we have talked about the contents of the blackboard as merely containing the
solution. In actual fact, the AWB+B blackboard is divided intotwo panels. The first panel is
the Data Panel which holds the solution related information. In order to inhibit the actions of
the KSs accessing this panel, there are a couple of safeguards in place. The Controller will
not allow the goal of “instances of<owl:Thing>” to be placed onto the blackboard. Since
this is the OWL super-class and would result inall class (and sub-class) instances known by
a KS being added onto the blackboard. KS access to the blackboard is via a restrictive API
that allows only thoseOntModel method calls that view the underlying graph but not modify
it. This is in place to prevent a KS from modifying the blackboard without the Controller’s
knowledge.

The second panel is the Tasklist Panel, and is used by the Controller to coordinate the
actions of each KS by storing information aboutwhat each KS can contribute, based on the
current state of the blackboard. Like the Data Panel, this isvisible to all the KSs however,
unlike the Data Panel, the KSs are allowed to add to this paneldirectly (but not remove items
from it). The KSs addTasklistItems that describe the nature of any contribution they
could offer. The Controller looks at the items on the TasklistPanel and determines which KS
is allowed to contribute. Once aTasklistItem has been actioned, the Controller removes
it from the panel. This “request for contribution” and “makeyour contribution” sequence is
applied using a Java interface, which each registered KS must implement and consists of the
two method calls:canContribute andmakeContribution.

When a KS’scanContribute method is called it first determineswhat it can contribute
(as per the steps previously outlined in the KS descriptions) and then checks, in the following
order, if its “current” proposed contribution is not on the blackboard already; has not been
contributed previously by itself; and is not already on the Tasklist, i.e. already proposed by
another KS. Only if none of these cases apply is aTasklistItem created and added to the
Tasklist Panel.

8



In our current implementation the Controller is relatively simple. After all the KSs have
been registered, the system “cycles” over each one asking itto populate the Tasklist Panel
(by calling itscanContribute method). Next, the Controller examines the contents of the
Tasklist and decides which items to action (by calling the appropriatemakeContribution
method of a KS). After actioning the appropriateTasklistItems on the Tasklist Panel,
the Controller has the option of retaining tasks that have notbeen actioned, or removing any
remaining items from the Tasklist completely. This is purely a housekeeping measure as it
prevents redundant or “out of date” items remaining on the Tasklist Panel. Then the cycle
begins again. If nothing new has been added after a complete cycle, it is assumed that none
of the KSs can contribute further and the CSP Solver KS is activated and attempts to find a
solution.

While this is relatively straightforward to implement, it isfar from optimised. We plan to
increase the intelligence of the Controller to further focusthe problem solving, which should
improve performance, as well as introduce threading to improve concurrency (taking advantage
of Jena’sModelChangedListener interface).

6 Conclusions

In this paper we have discussed the implementation of a blackboard system in Java, using Jena.
From the onset, we wished to make the system as generic as possible, allowing groups and
constraint reasoning to be orthogonal to the choice of ontology by not giving the underlying
blackboard any ontological structure.

An important issue we encountered was a lack of efficiency of the two stage approach
of canContribute andmakeContribution for KS interaction; the work involved in
determining if a KS can contribute is comparable to the actual work involved in making the
contribution. However we believe the benefits of the blackboard architecture outweigh this
shortcoming since the paradigm allows us to perform a mix of reasoning methods on instance
data. We would argue that performance could be improved by committing more time to the
development of the AWB+B to further optimise it.

We have also highlighted the importance of ensuring onlyrelevantitems are placed on the
blackboard. Since the blackboard system is attempting to centralise distributed SW data it does
not wantall the data available from each of the KSs; it is only interestedin as small a subset of
this as is possible in order to solve the CSP problem. It is the job of the Controller to ensure that
this is the case. In our future work we plan to investigate complexity and scalability trade-offs
(e.g. using multiple ontologies that require being mapped,increasing the size of the dataset,
etc.) as well as the modification of the Controller strategy toenhance performance.

Even with these improvements, we still foresee that the timetaken to solve the CSP can
exceed the acceptable threshold for rendering a web page in real-time. Quite simply, reasoning
and CSP solving are time consuming, so a certain level of patience is expected on the part of
the user. Even with application optimisation, there are still complexity issues. The Blackboard
framework gives us a number of options on how to explore thesein our future work. What if
the data on the blackboard makes the CSP undecidable? What happens if a KS starts to perform
reasoning that could take hours or days to complete? Thankfully, the Blackboard Architecture
guards against the inefficiency of KSs – the overall process of controlling the problem solving
remains with the Controller. Had we implemented an asynchronous version of the application,
then a time-out mechanism can be added to the Controller, so ifa KS takes an inordinate amount
of time to respond it is just ignored. The architecture supports the addition or removal of KSs

9



from the system, with the only adverse effect being on quality of the results.

Acknowledgements
This work is supported under the Advanced Knowledge Technologies (AKT) IRC, supported by the EPSRC

(grant number GR/N15764/01). The AKT IRC comprises the Universities of Aberdeen, Edinburgh, Sheffield,

Southampton and the Open University. For further information see:http://www.aktors.org

References

[1] R. Brachman, V. Gilbert, and H. Levesque. An Essential Hybrid Reasoning System:
Knowledge and Symbol Level Accounts of KRYPTON. InThe Ninth International Joint
Conference on Artificial Intelligence (IJCAI-85), pages 532–539, Los Angeles, California,
USA, 1985.

[2] N. Carver and V. Lesser. The Evolution of Blackboard ControlArchitectures. CMP-
SCI Technical Report 92-71, Computer Science Department, Southern Illinois University,
1992.

[3] R. S. Engelmore and A. Terry. Structure and Function of theCRYSALIS System. InThe
Sixth International Joint Conference on Artificial Intelligence (IJCAI79), pages 250–256,
Tokyo, Japan, August 20-23 1979.

[4] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The Hearsay-II Speech-
Understanding System: Integrating Knowledge to Resolve Uncertainty.ACM Computing
Surveys, 12(2):213–253, 1980.

[5] E. A. Feigenbaum, H. P. Nii, J. J. Anton, and A. J. Rockmore.Signal-to-signal Transfor-
mation: HASP/SIAP Case Study.AI Magazine, 3(2):23–35, 1982.

[6] S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storage. In 1st International
Workshop on Practical and Scalable Semantic Systems (PSSS’03), pages 1–20, 2003.

[7] B. Hayes-Roth, F. Hayes-Roth, F. Rosenschien, and S. Cammarata. Modelling Planning
as an Incremental, Opportunistic Process. InThe Sixth International Joint Conference on
Artificial Intelligence (IJCAI79), pages 375–383, Tokyo, Japan, August 20-23 1979.

[8] C. McKenzie, A. Preece, and P. Gray. Extending SWRL to Express Fully-Quantified
Constraints. In G. Antoniou and H. Boley, editors,Rules and Rule Markup Languages
for the Semantic Web (RuleML 2004), LNCS 3323, pages 139–154, Hiroshima, Japan,
November 2004. Springer.

[9] H. P. Nii. Blackboard Systems: The Blackboard Model of Problem Solving and the
Evolution of Blackboard Architectures.AI Magazine, 7(2):38–53, 1986.

[10] N. Shadbolt, N. Gibbins, H. Glaser, S. Harris, and m. schraefel. CS AKTive Space, or
How We Learned to Stop Worrying and Love the Semantic Web.IEEE Intelligent Systems,
19(3):41–47, 2004.

[11] D. Tsarkov and I. Horrocks. DL Reasoner vs. First-Order Prover. In 2003 Descrip-
tion Logic Workshop (DL 2003), volume 81, pages 152–159. CEUR (http://ceur-ws.org/),
2003.

10


