Available online at www.sciencedirect.com

"*2* ScienceDirect Knowledge-Based

—SYSTEMS—

ELSEVIER Knowledge-Based Systems 19 (2006) 291-297

www.elsevier.com/locate/knosys

Reusing JessTab rules in Protégé

D. Corsar *, D. Sleeman

Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK

Received 28 October 2005; accepted 28 November 2005
Available online 6 February 2006

Abstract

Protégé provides a complete ontology and knowledge base management tool. Along with JESS, JessTab provides one method of rule-
based reasoning over a Protégé ontology and knowledge base. However, once JessTab rules have been created for a knowledge base, they
are explicitly tied to it as they name particular classes and slots, which greatly hinders their reuse with further knowledge bases. We have
developed a two-phase process and a supporting tool to support the reuse of JessTab rule sets. The first phase involves changing the class
and slot references in the rule set into an abstract reference; the second phase involves automatically mapping between the abstract rules
and further knowledge bases. Once mappings have been defined and applied for all the classes and slots in the abstract rules, the new rule
set can then be run against the new knowledge base. We have satisfactorily tested our tool with several ontologies and associated rule

sets; moreover, some of these tests have identified possible future improvements to the tool.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Protégé; JESS; JessTab; Rule set reuse; Ontology mapping

1. Introduction

Ontologies have become one of the most widely used
forms of domain knowledge capture. When used effective-
ly, they provide us with an explicit definition and a com-
mon understanding of a domain and the properties,
relationships and behaviours of its components that can
be communicated between people and machines.

RDF and RDFS [14], DAMLA+OIL and OWL [1] are
representational formalisms for describing ontologies.
Other languages provide mechanisms for querying these
representations, for example RDQL [21]. Similarly, lan-
guages such as SWRL [9] and the various RuleML projects
[25] allow one to formally specify rules for reasoning with
the content of an ontology. While these formalisms provide
a way to capture queries, an inference engine is still
required to run them. One rule engine currently growing
in popularity is JESS, the Java Expert System Shell; for
examples of two recent projects involving JESS, see [8,12].

* Corresponding author.
E-mail address: dcorsar@csd.abdn.ac.uk (D. Corsar).

0950-7051/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2005.11.010

JESS was originally developed by the Sandia National
Laboratories as a Java implementation of the popular C
Language Integrated Production System (CLIPS) [3],
although it has since evolved into a powerful Java rule
engine and scripting language in its own right [7]. The rise
in JESS’s use may be in part due to the useful JessTab [5]
plugin for the widely used Protégé' [24] ontology editor
which allows developers to run JESS rules against an ontol-
ogy created and populated in Protégé.

1.1. Ontology tied rules

As with CLIPS, JESS requires explicit definitions of the
data types that will be used in the form of templates. Con-
veniently, there is a mapping command in JessTab which
automatically produces these templates based on the clas-
ses and slots of a Protégé ontology. Along with the tem-
plates, JESS requires a set of facts (which are
instantiations of the templates) to reason over. Again, help-
fully the mapping command automatically creates facts

! Protégé-2000 and its successors up to the latest version, Protégé 3.1.

mailto:dcorsar@csd.abdn.ac.uk

292 D. Corsar, D. Sleeman | Knowledge-Based Systems 19 (2006) 291-297

from the corresponding instances which are defined as part
of a Protégé project. When writing JessTab rules, the devel-
oper refers to these templates and facts as if they had been
created as part of the main JessTab program. In doing this,
the rules are explicitly tied to the ontology as they are
required to name particular classes and slots.

Having the rules tied to a particular ontology in this way
is unavoidable, but it greatly hinders reusing a set of Jes-
sTab rules developed for one ontology with additional
ontologies/knowledge bases. This is because reuse of a set
of rules requires one to carry out a manual mapping
between the class and slot names in the JessTab rules and
those in the second (and subsequent) ontologies/knowledge
bases. Further, this would be a tedious and very error
prone process.

For this reason, we have developed a plugin for Protégé,
which supports the developer with this task. Given a set of
JessTab rules (JessTab rules differ slightly from standard
JESS rules as they need to link to the Protégé ontology)
and a further ontology, our tool attempts to automatically
map concept names featured in the rules to concept names
in the “new” ontology. To achieve this, we make use of
techniques used in the ontology mapping, merging and
alignment sub-fields, namely partial and exact string com-
parisons and synonym look-up in a lexical database
(WordNet [6]). We also provide facilities for the user to
define mappings manually.

In Section 2, we discuss some current ontology mapping
and merging tools; in Section 3, we outline two scenarios
where our tool could be used; in Section 4, we briefly out-
line our tool’s functionality; in Section 5, we describe
experiments we have performed and report some results.
In Section 6, we discuss some modifications inspired by
our experiments which should improve our tool’s perfor-
mance and Section 7 concludes this report with a summary
of our findings.

2. Related work

As mentioned above, we make use of techniques origi-
nally developed in the ontology mapping, merging and
alignment fields. There have been various approaches to
these tasks including use of specially designed algebras
[17], use of lexical analysis of the concept names in the
two ontologies, as well as having the user manually define
mappings with the aid of a specially designed user inter-
face. Below we focus on the latter two approaches.

A popular web-based ontology management tool with
the facility to assist with merging is Stanford KSL’s Chi-
maera [15]. Chimaera provides limited support with
ontology mapping, by allowing multiple ontologies to
be loaded, automatically examining their concept names
and providing the user with a list of similarly named con-
cepts. The principal mapping approach used here is the
detection of common substrings. This approach is very
effective for pairs of concepts that have related names,
but clearly is ineffective when the same concepts are

expressed using synonyms, for example “person” and
“individual”.

Another Stanford product, PROMPT [19], provides a
suit of ontology management tools, in the form of a further
Protégé plugin. One of these tools, iPROMPT [18], was
developed as an interactive ontology-merging tool, which
assists the user by providing suggestions for merging, ana-
lysing any resulting conflicts and suggesting relevant con-
flict resolution strategies. The latter two functions are
concerned only with a pre-determined list of conflicts and
are triggered in response to the user selecting one of the
suggested changes.

When determining its suggested mappings, iPROMPT
makes use of two factors: a measure of linguistic similarity
between names, combined with the internal structure of
concepts and their location in the ontology. The linguistic
similarity measures of iPROMPT are based solely on sub-
string matching of the various concept names; it makes no
use of a lexical database for matching synonyms, and so
consequently suffers similar problems to Chimaera.

One tool which uses lexical databases is ONION [16].
The ONION algorithm was designed to address the prob-
lem of resolving semantic heterogeneity amongst ontolo-
gies. Mitra and Wiederhold implemented two methods of
addressing this task: one based, like ours, around a lexical
database, while the other uses domain specific corpora.
Briefly ONION’s algorithm evaluates two expressions for
similarity and assigns them a similarity value. When the
two terms being compared are not identical, ONION
makes use of either a thesaurus (WordNet) or a corpus in
assigning the value. If the value is above a user set thresh-
old, then the mapping is accepted.

The results of Mitra and Wiederhold’s experiments indi-
cated that generally the corpus-based mapping approach
produced more accurate mappings than the thesaurus tech-
nique. However, the main difficulty with the corpus
approach is in generating the corpus. In their experiments,
Mitra and Wiederhold used the Google [10] search engine
to find sources that were both relevant to the domain of
the ontologies and contained some of their key concepts.
Various sized corpora were used ranging from 50 to 1000
webpages. Although this approach provided the more
accurate results, the initial investment of time and effort
necessary to acquire such a corpus would no doubt be very
large, making this an infeasible approach for supporting
the mappings between many domains.

3. Example scenarios

There are many scenarios where reuse of an existing set
of rules could be beneficial. Practically any developer build-
ing a new application requiring a set of similar or identical
rules to those used in a previously developed application
could benefit from the use of our tool. By semi-automating
the rule reuse process, the developer could benefit from,
amongst other things, reduced design, implementation
and testing costs.

D. Corsar, D. Sleeman | Knowledge-Based Systems 19 (2006) 291-297 293

Below we outline two examples where our tool has been
used. The first example involves building simulations of
two seemingly disparate areas — shopping and water treat-
ment, while the second emphasises the reuse of a problem
solving method (ruleset) in two distinct route planning
applications.

3.1. Simulating shopping and water treatment

Our first example involves the creation of two different
simulations, which at their core use similar procedures,
meaning their development could be achieved by using
our approach. At a very abstract level, the day-to-day
activity of a retail store is:

(1) it receives stock from some supplier(s),

(2) it stores this stock either in a storeroom or on the
shelves,

(3) customers buy items reducing the stock level,

(4) it orders new stock,

(5) return to step 1.

In this problem, the environment (the retail store) can be
easily represented by an ontology. Likewise the processes
noted above can be simulated by a series of JessTab rules
coded to run against that ontology.

At a similarly abstract level, water treatment plants fea-
ture similar underlying processes:

(1) receives water from sources,

(2) stores it in treatment tanks,

(3) passes the results onto desired locations,
(4) signals that it can process more water,
(5) return to step 1.

Again, the environment (the water treatment plant) can
easily be represented by an ontology and the processes by
JessTab rules. However, as the underlying processes in
water treatment are in essence very similar to those of the
store, our tool could be used to reconfigure the problem
solver (the JessTab rules) implemented for the store to pro-
vide similar functionality for the water treatment plant.

Although it is unlikely that the second set of rules will
provide all the detail required for a complete simulation
of a water treatment plant, it could form the basis for such
a simulation, and in so doing should reduce the develop-
ment costs.

3.2. Route planning

Our previous example illustrated reuse of the same set of
rules in building simulations in two different domains. Our
second example is similar and illustrates the reuse of a
route planning problem solver with two distinct applica-
tions, based on two different ontologies.

A highly researched field, route planning, has many
applications ranging from the classical vehicle route finding

problem [4], to various tasks in robotics and artificial intel-
ligence, to determining flow rates in IP networks [2].

Numerous algorithms have been developed over the
years (for example, A*, Iterative Deepening A* (IDA¥*)
[13], and Recursive Best First Search (RBFS)) to solve,
what is essentially a search problem. A typical scenario
involves finding the best path from one location to another
in an environment (usually represented as a graph, in which
the nodes represent states and the arcs represent pathways).
The notion of “best path” can mean different things in dif-
ferent applications, and so algorithms typically incorporate
a suitably configured evaluation metric when deciding
which potential path to investigate first.

Although typically a graph is used, it is possible to rep-
resent the environment as an ontology. Classes can repre-
sent locations with attributes containing details of
locations reachable from it (with classes representing path-
ways). Given such an ontology, a route planning algorithm
could then be implemented as a series of JessTab rules to
perform planning based on the ontology.

For example, a retail company could use an ontology to
represent its warehouse, describing the items in it, and their
locations relative to one another. A JessTab rule base could
be used to calculate the shortest route around the ware-
house when collecting items to fulfil orders. The same set
of rules could later be reused with a second ontology rep-
resenting a courier company’s deliveries and their loca-
tions. Our tool could help tailor the original planning
algorithm for use against the deliveries ontology to calcu-
late the cheapest route for the courier to take when deliver-
ing orders.

Although the above two examples are discussed at a
highly abstract level, they serve to illustrate two separate
uses for our tool. Both show how two tasks, which may
not necessary at first appear to be related, can make use
of the same underlying JessTab rules. Using our tool to
achieve this reuse would simplify the process for the devel-
oper and consequentially enable him to benefit from
reduced development and implementation costs for the sec-
ond, and subsequent, tasks.

4. The JessTab rule reuse process

We have developed a reuse process composed of two
distinct phases. The first phase consists of two actions:
the extraction of class names, slot names and slot types
from the relevant ontology?; and the generalisation of this
information to produce a set of ontology-independent
rules. During the second phase, the independent rules are
mapped to the new ontology to which they are to be
applied. Fig. 1 shows a representation of these processes,
including the relations between the two phases. Below we
discuss the two phases in more detail.

2 If the relevant ontology is not available, the class and slot names could
be extracted from the rule set, however the slot data type information
would not be available.

294 D. Corsar, D. Sleeman | Knowledge-Based Systems 19 (2006) 291-297

Phase 1

Protege JessTab Rules 1
Ontology 1

T
Rule
Abstraction
Engine

[]

JessTah

Independent
Raules

Protege Protege Protege
Ontology 2a Ontology 2b Ontology 2n

Mapping
JessTab
Rules 2n

ol Class
Extraction

Engine

Phase 2

JessTab
Rules 2b

JessTab
Rules 2a

Fig. 1. Illustration of the JessTab rule reuse process.

4.1. Phase I — rule abstraction

The rule abstraction phase is the first stage and is iden-
tified in Fig. 1 by the vertical stripe filled box in the upper-
left corner labelled “Phase 1”°. During this phase, a set of
JessTab rules and the corresponding ontology are passed
to the Rule Abstraction Engine. Here the tool extracts
from the ontology class names, and in the case of slots,
both their names and their types. The JessTab rules are
then rewritten replacing each class and slot name with a
more general form. This removes all the references to the
original ontology, making the resulting rule set more
abstract and ontology-independent.

The abstract forms of both the class and slot names have
a similar structure. Abstracted class names consist of a pre-
defined prefix concatenated with the original class name.
The default prefix is simply “XX_”, so, for example, every
reference to the class name “Person” in the rules is replaced
by the string “XX_ Person”. Slots are treated similarly;
however, their abstracted name consists of the prefix, con-
catenated with the slot name, concatenated with the slot
data type. For example, an Integer slot with the name
“age” is replaced by the string “XX_ age Integer”, a slot
of type String with the name ‘title” is replaced by
“XX _title_String”.

There are several reasons for transforming the names in
this manner: the first is to ease the extraction of the onto-
logical information from the rules in the second (mapping)
phase; the second is to provide slot data type information
to the mapping stage to enhance the automatically suggest-
ed mappings; also this naming convention is more helpful
to the user than cryptic abstract names (for example,
“class1”, “slotl”, “slot2”, etc.).

4.2. Phase 2 — rule to ontology mapping

After successful completion of the rule abstraction
phase, the independent rules contain enough information
to enable the Class Extraction component of Phase 2 to
build a list of classes (and their slots). Combined with a sec-

ond ontology we have enough information to attempt to
map the classes (and slots) extracted from the rules to the
new ontology. This phase is illustrated by the horizontal
stripe filled box in the lower right corner of Fig. 1 labelled
“Phase 2.

The basic mapping algorithm is:

(1) Extract all the classes and their associated slot infor-
mation from the abstract JessTab rules and store
them in a list.

(2) For each class extracted from the abstract JessTab
rules
(a) Find the most suitable class in the new ontology
to map to, and suggest the individual (slot and class
name) mappings.

(3) Update the rules to reflect suggested mappings and
allow the user to complete and/or correct the
mappings.

Clearly the key step is 2a — finding the most suitable
mappings for the classes. We derive our suitability rat-
ings by applying some commonly used lexical analysis
techniques — namely string comparison, spell checking
(provided by Jazzy [26]) and synonym lookup in a lexi-
cal database (WordNet accessed via JWord [11]). For a
mapping to be suggested, the calculated similarity rating
for two names (either class names or slot names) must
exceed a threshold set by the user. Furthermore, slot
mappings are only suggested for slots with the same
data type. This means that if a slot extracted from the
abstract JessTab rules has type String it will only be
mapped to slots in the ontology of type String and
not, for example, to those of type Integer or Float. This
is to ensure no data type errors occur when the rules are
run against the ontology. When searching for potential
mappings, our tool compares every slot of every extract-
ed class, along with the class name, with those in the
ontology. If any two slots are suitable for mapping, they
are given a classification based on how that mapping
was achieved (the classification mechanisms are discussed
below). At this level a mapping simply consists of a
from string (the name from the abstract JessTab rules),
a to string (the name from the new ontology) and the
mapping classification. Once this process has been per-
formed for all the classes, the mappings which have
the highest values and which maintain a unique mapping
between a rule-class and an ontology-class are recom-
mended to the user as the most likely mapping for his
configuration.

We define three distinct mappings operators; these
are:

(1) Direct mapping. Direct mappings consist of two
strings that are identical, or where one has been deter-
mined to be a minor variant of the other. A typical
example is the mapping from “XX age Integer” to
the Integer slot with name “age”.

D. Corsar, D. Sleeman | Knowledge-Based Systems 19 (2006) 291-297 295

(2) Constituent mapping. In constituent mappings, the con-
stituents® of each string are extracted and compared. If
the two strings share at least a (settable) percentage of
constituents, then a constituent mapping is suggested.
An example is the mapping from “XX_date-of-birth__
String” to a slot of type String named “birthDate”
(where the threshold level is set at 60%).

(3) WordNet mapping. In WordNet mappings, the con-
stituents of each string are extracted, and WordNet
is used to find synonyms of each constituent. If the
percentage of synonyms in the from string appearing
in the constituents of the to string (and vice versa) is
greater than the threshold percentage, a WordNet
mapping is suggested. A successful WordNet map-
ping is from “XX_yearly-earnings Integer’ to a slot
of type Integer named ‘‘annual-remuneration”
(where the threshold level is set at 60%), as “yearly”
maps to “annual” and “earnings’ maps to “‘renumer-
ation” (and of course both slots are of type Integer so
data type consistency is maintained).

In principle, each mapping between an extracted class
and a new ontology class consists of direct, constituent
and WordNet mappings. As noted earlier each of the map-
pings will return a value, the largest value (providing it’s
over a threshold) is the one which is recommended to the
user. In the case of a numerical tie, the algorithm selects
the mapping by applying the following precedence rule:

Direct Mappings > Constituent Mappings > WordNet Mappings

Currently the tool supports mappings between each
extracted class to a single class in the ontology. In a few
cases, this may result in some extracted classes not having
a mapping. To minimise this, after the mapping algorithm
has produced the list of mappings, a global optimisation
algorithm is applied. This algorithm analyses the suggested
mappings to determine if choosing a sub-optimal mapping
for one class would result in more classes being mapped. If
this were the case, then this alternative mapping configura-
tion is suggested to the user.

Suppose we have a situation where we have 3 classes in
the abstracted rules, let’s call them RC;, RC, and RC5 and
further suppose the new ontology has 3 classes, let’s call
them AC;, AC, and AC;. Then suppose the best new map-
pings between the abstract rules and the actual classes are
as shown in Fig. 2.

If we optimise the local mappings, we will have

RC, — AC; (1.0); RC; — AGC; (1.0); and no mapping
for RC, and AG,.

3 The constituents of a string are the words that make up that string. We
use the symbols *-’, ©* and (in mixed case strings) uppercase letter to
denote the start of new words. For example, the string date-of-birth has
constituents date, of and birth.

RC, 10 AC
0.75
RC,” 0.8 AG,
1.0
RC;————* AC,

Fig. 2. Sample mappings illustrating the need for the enhanced mapping
algorithm.

This mapping set is unacceptable as some of the classes
are unmapped. However, our enhanced algorithm would
suggest the following mappings:

RC, — AC; (0.75); RC, — AC; (0.8); RC; — AC; (1.0).

In this mapping set, all the classes are mapped, and if we
use a simple evaluation, we would have a higher mapping
score: 2 in the first case and 2.55 in the second (It is appre-
ciated that a more sophisticated mapping function is likely
to be used).

5. Results

To evaluate the performance of our tool, we conducted
a series of experiments designed to test first the rule
abstraction process and second the mapping capabilities.
Each test involved the development of an initial JessTab
rule set, which was based around an initial ontology. This
ontology was either created by ourselves or downloaded
from the Stanford KSL OKBC server (accessed via the
Protégé OBKB Tab plugin [22]). Once each set of rules
had been developed to a satisfactory level, we built further
ontologies with which to test the mapping functionality.

Tables 1* and 2 provide a selection of the results from
our tests with the Document ontology from the Stanford
KSL OKBC server’s Ontolingua section. Table 1 gives
results for the mappings of selected class names and Table
2 gives the results for the slot mappings. The columns of
Table 1 detail the concept name (in the Document ontolo-
gy), the abstract name it was given after Phase 1, and
details of the mappings produced in tests with two separate
applications, detailing the concept it was mapped to and
the mapping operator selected. The columns of Table 2
are identical with the additional column stating the slot
type.

These results offer a good illustration of the type of sup-
port the user can expect from our tool. The “Document”
concept in Table 1 demonstrates nicely the direct mapping:
in Application A the name is identical, in Application B the
minor spelling error in “Docment” is picked up by our tool
and has no adverse effect on the suggested mapping. Both
tables exhibit examples of constituent mappings, while the
WordNet mappings also feature prominently both with
one-word name examples (“Book™ to ‘“Volume”) and

4 The spelling mistakes in Table 1 are intentionally left as they illustrate
the minor variant checking feature of direct mappings.

296 D. Corsar, D. Sleeman | Knowledge-Based Systems 19 (2006) 291-297

Table 1

Results for mapping the classes of the Document ontology*

Name Abstract name Mapped in to

Application A Application B

Name Mapping Name Mapping

operator operator

Document XX Document Document Direct Docment Direct
Book XX_Book Book Direct Volume WordNet
Thesis XX _Thesis Thesis Direct Dissertation WordNet
Masters-Thesis XX_Masters-Thesis ThesisMasters Constituent Masters-Dissertation WordNet
Doctoral-Thesis XX Doctoral-Thesis DoctoralThesis Constituent Dissertation-Doctoral WordNet
Miscellaneous-Publication XX _Miscellaneous-Publication =~ AssortedPublishing WordNet Miscellaneous-Publishings WordNet
Artwork XX _Artwork Art WordNet Artistry Manual
Technical-Manual XX_Technical-Manual TechnicalMnual Direct Manual-Technical Constituent
Computer-Program XX_Computer-Program ComuterProgram Direct Computer-Programme WordNet
Cartographic-Map XX_Cartographic-Map Cartographical-Correspondence WordNet Cartographical-Mapping ~ WordNet

Table 2
Results for mapping the slots of the Document ontology

Name Data type Abstract name Mapped in to

Application A Application B

Name Mapping operator Name Mapping operator
Has-Author String XX_Has-Author_String Author Direct HasWriter WordNet
Has-Editor String XX_Has-Editor_String HasEditor Direct Editor-Of Manual
Title-Of String XX_Title-Of_String Title Constituent TitleOf Direct
Publication-Date-Of String XX_Publication-Date-Of_String IssueDate WordNet Date-Of-Publication Constituent
Publisher-Of String XX_Publisher-Of_String PublicationHouse Manual PublisherOf Direct

multi-word concept names (“Cartographic-Map” and
“CartographicalCorrespondance™).

6. Discussion

Overall we were very pleased with the outcome of these
experiments. However, they do suggest that some modifica-
tions to the tool, particularly the mapping phase, could be
beneficial. One significant change would be to allow the
user to specify how deep the tool searches WordNet for
synonyms. This is best described by means of an illustra-
tion. Take the “Artwork™ concept in Table 1 line 7. In
Application B, the user was required to manually map this
concept to “Artistry”. When suggesting a mapping, the
tool looked up synonyms of artwork in WordNet, which
returned “artwork’, ‘“‘art”, “graphics” and ‘“nontextual
matter”’. Had the tool searched another level (i.e., looked
up synonyms of art, graphics, and so on), it would have
found “‘artistry” is a synonym of ‘“‘art” and suggested a
mapping. However, performing deeper searching like this
could dramatically increase the time taken by the automat-
ic mapper, and so the user would have to decide how deep
to search.

A second significant change involves relaxing the slot
data type matching constraint. Currently, suggested slot
mappings are only made between slots of the same type
(to avoid run time errors). However many slot types are
compatible with each other; for example, an Integer can
also be considered a Float (but not, of course, the reverse).

Relaxing this constraint would increase the number of slots
considered during the automatic mapping but would still
ensure no run time data incompatibility errors.

One relatively minor modification which might improve
the accuracy of the automatic mapping, particularly when
searching for constituent mappings, would be the removal
of surplus words from concept names. Words such as
“has”, “is” and “of”’ often feature in concept names to help
the user understand their purpose. However, they have rel-
atively little meaning for the mapping algorithm, but can
often dramatically affect the similarity rating of two con-
cept names. Consider the two concepts ‘“Has-Author”
and “Writer-Of”” both used to indicate the author of a doc-
ument. Currently our system would assign them a similar-
ity rating of .50 (which, depending on the threshold level,
may mean a mapping is not suggested), but by removing
“Has” and “Of” we increase this to 1.0 guaranteeing a
mapping is suggested.

7. Summary

The experiments performed have provided favourable
results, although there are some enhancements which could
be made. However, by automating part of the reuse process,
our tool can be of considerable use to a developer wishing to
reuse a set of JessTab rules with further ontologies. In fact,
we claim to have gone some way to implementing the vision,
developed by John Park and Mark Musen [20] of creating ad
hoc knowledge-base systems from existing problem solving

D. Corsar, D. Sleeman | Knowledge-Based Systems 19 (2006) 291-297 297

methods (here JessTab rule sets) and knowledge bases (here
Protégé OKBC/OWL ontologies).

Acknowledgements

This work is supported under the Advanced Knowledge
Technologies (AKT) IRC (EPSRC Grant No. GR/
N15764/01) comprising the Universities of Aberdeen,
Edinburgh, Sheffield, Southampton and the Open Univer-
sity. See http://www.aktors.org.

References

[1] G. Antoniou, F. van Harmelen, Web Ontology Language: OWL, in:
Staab and Studer [23], pp. 67-92.

[2] A.B. Bagula, Hybrid traffic engineering: the least path interference
algorithm, in: SAICSIT ’04: Proceedings of the 2004 Annual
Research Conference of the South African Institute of Computer
Scientists and Information Technologists on IT Research in Devel-
oping Countries, South African Institute for Computer Scientists and
Information Technologists, 2004, pp. 89-96.

[3] NASA/Johnson Space Center, CLIPS. <http://www.ghg.net/clips/
CLIPS.html/>.

[4] R.D. Cuthbert, L. Peckham, APL models for operational planning of
shipment routing loading and scheduling, in: WSC *73: Proceedings of
the Sixth Conference on Winter simulation, ACM Press, New York,
1973, pp. 622-631.

[5] H. Eriksson, The JESSTAB approach to Protégé and JESS integra-
tion, in: Proceedings of the IFIP 17th World Computer Congress —
TC12 Stream on Intelligent Information Processing, Kluwer, B.V.,
Dordrecht, 2002, pp. 237-248.

[6] C. Fellbaum (Ed.), WordNet: An Electronic Lexical Database, The
MIT Press, Cumberland, RI, 1998.

[7] E. Friedman-Hill, Jess In Action: Rule-Based Systems in Java,
Manning Publications, Greenwich, CT, 2003.

[8] C. Golbreich, Combining rule and ontology reasoners for the
semantic web, in: G. Antoniou, H. Boley (Eds.), Rules and Rule
Markup Languages for the Semantic Web, RuleML, Springer-Verlag,
Berlin and Heidelberg, 2004, pp. 6-22.

[9] 1. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M.
Deal, SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission, May 2004.

[10] Google Inc. Google. <http://www.google.com/>.

[11] K. Johar, R. Simha, Jword 2.0. <http://www.seas.gwu.edu/
simhaweb/software/jword/index.html/>.

[12] J. Kopena, DAMLIJessKB. <http://edge.mcs.drexel.edu/assemblies/
software/damljesskb/damljesskb.html/>.

[13] R.E. Korf, Depth-first iterative-deepening: an optimal admissible tree
search, Artif. Intell. 27 (1985) 97-109.

[14] B. McBride, The Resource Description Framework (RDF) and its
Vocabulary Description Language RDFS, in: Staab and Studer [23],
pp. 51-66.

[15] D.L. McGuiness, R. Fikes, J. Rice, S. Wilder, An environment for
merging and testing large ontologies, in: Proceedings of the Seventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR2000), Morgan Kaufmann, Los Altos, CA, 2000,
pp. 483-493.

[16] P. Mitra, G. Wiederhold, Resolving terminological heterogeneity in
ontologies, in: Proceedings of Workshop on Ontologies and Semantic
Interoperability at the 15th European Conference on Artificial
Intelligence (ECAI 2002), 2002.

[17] P. Mitra, G. Wiederhold, An ontology-composition algebra, in: Staab
and Studer [23], pp. 93-116.

[18] N.F. Noy, M.A. Musen, PROMPT: algorithm and tool for auto-
mated ontology merging and alignment, in: Proceedings of the
Seventeenth National Conference on Artificial Intelligence
(AAAI-2000), 2000.

[19] N.F. Noy, M.A. Musen, The PROMPT suite: interactive tools for
ontology merging and mapping, Int. J. Hum-Comput. Stud. 59 (6)
(2003) 983-1024.

[20] J. Park, M. Musen, The Virtual Knowledge Constructor: A Schema
for Mapping Across Ontologies in Knowledge-Based Systems, PhD
Thesis Proposal, Stanford University, 1999.

[21] A. Seaborne, RDQL: A Query Language for RDF, W3C Member
Submission, January 2004.

[22] M. Sintek, OKBC Tab Website. <http://protege.stanford.edu/
plugins/okbctab/okbe_tab.html/>.

[23] S. Staab, R. Studer (Ed.), Handbook on Ontologies, International
Handbooks on Information Systems, Springer, 2004.

[24] Stanford Medical Informatics, Stanford University, Protégé Website.
<http://protege.stanford.edu/>.

[25] The Rule Markup Initiative, RuleML Homepage. <http://www.
ruleml.org/>.

[26] T. White, Can’t Beat Jazzy: Introducing the Java Platform’s Jazzy
New Spell Checker API. <http://www-106.ibm.com/developerworks/
java/library/j-jazzy/>.

http://www.aktors.org
http://www.ghg.net/clips/CLIPS.html
http://www.ghg.net/clips/CLIPS.html
http://www.google.com
http://www.seas.gwu.edu/simhaweb/software/jword/index.html
http://www.seas.gwu.edu/simhaweb/software/jword/index.html
http://edge.mcs.drexel.edu/assemblies/software/damljesskb/damljesskb.html
http://edge.mcs.drexel.edu/assemblies/software/damljesskb/damljesskb.html
http://protege.stanford.edu/plugins/okbctab/okbc_tab.html
http://protege.stanford.edu/plugins/okbctab/okbc_tab.html
http://protege.stanford.edu
http://www.ruleml.org
http://www.ruleml.org
http://www-106.ibm.com/developerworks/java/library/j-jazzy/
http://www-106.ibm.com/developerworks/java/library/j-jazzy/

	Reusing JessTab rules in Prot eacute g eacute
	Introduction
	Ontology tied rules

	Related work
	Example scenarios
	Simulating shopping and water treatment
	Route planning

	The JessTab rule reuse process
	Phase 1 - rule abstraction
	Phase 2 - rule to ontology mapping

	Results
	Discussion
	Summary
	Acknowledgements
	References

