
A Grammar-Driven Knowledge Acquisition Tool
that incorporates Constraint Propagation
Simon White*

Accelrys Ltd.,
230/250 The Quorum,

Barnwell Road, Cambridge, CB5 8RE.
England, UK.

email swhite@accelrys.com

Derek Sleeman
Computing Science Department,

 University of Aberdeen.
Old Aberdeen, AB24 3FX

Scotland, UK.
email dsleeman@csd.abdn.ac.uk

Abstract

To acquire knowledge that is fit for a specific purpose, it is
very desirable to have a structured, declarative expression
of the knowledge that is needed. This paper introduces a
stand-alone knowledge acquisition tool, called
COCKATOO (Constraint-Capable Knowledge Acquisition
Tool), which uses constraint technology to specify the
knowledge it requires. The language in which these specifi-
cations are given is based on the meta-language notation of
context-free grammars. However, we also took the opportu-
nity to build a tool that is both more flexible and powerful
by augmenting context-free grammars with the expressive-
ness of constraints. COCKATOO was implemented using
the SCREAMER+ declarative constraints package.

Keywords
Knowledge Acquisition, Formal Grammars, Constraints,
Constraint-Augmented Grammars, SCREAMER+

INTRODUCTION
Previous work has addressed the problem of determining
whether existing KBs (Knowledge Bases) can be used to-
gether with a selected problem-solver to satisfy a given
problem-solving goal [15], [16]. We refer to this task as
assessing the fitness-for-purpose of a KB. When the as-
sessment identifies a mismatch between the given KBs and
the problem-solver’s expected KBs, we recognise two pos-
sible responses. Either the available KBs are totally inap-
propriate, in which case it is necessary to acquire them ab
initio, or the existing KBs are close to being usable but
need to be modified (possibly in a number of ways). This
paper addresses the first of these actions; namely, to ac-
quire knowledge ab initio such that it meets the problem
solver’s requirements. In current practice, a knowledge en-
gineer uses a knowledge acquisition tool, or other elicita-
tion method(s), to acquire the knowledge needed by a prob-

lem solver. Afterwards, the knowledge must usually be
transformed, because the output of the knowledge acquisi-
tion tool cannot be used directly as input to the problem
solver. We call such transformations post-acquisitional
transformations. In this paper, we introduce the
COCKATOO knowledge acquisition tool, which aims to
minimise the need for post-acquisitional transformations.
Our tool is generic, in the sense that it is independent of
task, problem solver, and domain. On the other hand, it is
highly configurable, and can be configured to acquire
knowledge suited to a particular purpose (i.e., a problem-
solving role).

The paper is organised as follows. In the next section,
‘Grammar-Driven Knowledge Elicitation’ , we argue the
benefits of using a context-free grammar as the basis for the
specification of knowledge to satisfy a problem-solving
role. In the section on ‘Constraint-Augmented Grammars’ ,
we highlight some of the limitations of a purely grammar-
driven approach to this task, suggesting the judicial use of
constraints within the grammar to overcome some of the
difficulties. We call this formalism a constraint-augmented
grammar. The constraints are expressed using the declara-
tive constraints package SCREAMER+ [14], [16], an exten-
sion of SCREAMER [11], [12]. The section on ‘Grammar
Development and Maintenance’ outlines a process for
building a constraint-augmented grammar that supports
knowledge capture. Finally, we discuss the benefits and
limitations of our work, and relate it to other work in the
field.

GRAMMAR-DRIVEN KNOWLEDGE ELICITATION
When eliciting knowledge, it is desirable to have a struc-
tured, declarative specification of the body of knowledge
that needs to be acquired. This can be used as both the tar-
get of the knowledge acquisition process and the criterion
by which the acquired knowledge is assessed. Formal
grammars provide a means for specifying knowledge to be
acquired, are structured and declarative, and are also widely
understood by knowledge engineers and computer scien-
tists. However, there is an important difference in the way

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010…$5.00

* also affiliated with the Computing Science Department, University of
Aberdeen, Old Aberdeen, AB24 3FX, Scotland, UK.

that formal grammars are “ traditionally” used, and the way
that they have been applied here. Traditionally, grammars
are used to solve the parsing problem; that is, to determine
whether some given text conforms to some given formal
grammar. For example, a C compiler must determine
whether a given program consists entirely of legal C syntax.
In grammar-driven knowledge elicitation, however, one
attempts to acquire structured text such that it conforms to
the given grammar.

We chose to represent EBNF grammars using a “LISPified”
equivalent to the meta-notation of EBNF. This meta-
language needs to:

• provide for the definition of grammar clauses of the
target language;

• differentiate between a grammar’s terminal and non-
terminal symbols;

• provide the standard operators of an EBNF grammar,
namely, sequential composition, the expression of al-
ternatives, repetition, and optionality.

We illustrate our ideas with a simplified example from the
domain of petroleum geology, and, in particular, the acqui-
sition of a case base of oil well drilling experiences. The
knowledge captured in this way is used to support subse-
quent drill bit run modelling and optimisation; for example,
to help choose the right drill bit for a given formation se-
quence [8]. The EBNF grammar in figure 1 both describes
and specifies a rock formation and its constituent lithologies
(basic rock-types). The same grammar can be expressed in
COCKATOO's syntax as shown in figure 2. (The correctness
of the domain knowledge in our example has not been veri-
fied by a domain expert.)

Note that the non-terminal symbols lithology-depth
and lithology-length have numeric values, and are
more difficult to specify concisely with a grammar. We
return to this issue in the following section. Note also that
although our simple example illustrates only repetitions of
‘one or more’ (in this case, lithologies), COCKATOO also

provides for repetitions of ‘zero or more’ with the keyword
‘repeat*’ .

COCKATOO grammars are interpreted top-down, left to
right. Usually, a special parameter to the defgrammar
macro (not described here for lack of space) informs
COCKATOO which is the ‘ top-most’ grammar clause. So,
for example, in the grammar of figure 2, we would tell
COCKATOO to start with the formation clause. The in-
terpretation of this clause leads to the acquisition of a repe-
tition of lithologies, each in turn consisting of a sequence of
a rock, a lithology-depth, and an optional
lithology-length. A rock, in turn, consists of a
sequence of a rock-type and a rock-hardness. The
acquisition of either of these two non-terminal symbols
involves the capture of a decision from the user among a
number of distinct options (e.g., shale, clay, chalk,
granite or other). These options are presented on-
screen to the user by COCKATOO, so that a choice can be
made and recorded. COCKATOO is sensitive to the number
of possible values available. If there are too many values to
be listed (i.e., more than a configurable upper limit), then
the upper and lower bounds of the symbol (internally, a
constraint variable) are provided to the user as additional
support. If these values are not available at acquisition time,
then the user is dependent upon the guidance provided by
the knowledge engineer in the form of comments and ques-
tions (see below).

It is unrealistic to expect users to base their interaction with
a knowledge acquisition tool on their understanding of an
EBNF grammar. To help the user understand what informa-
tion is required, and how it can be supplied, each clause of
a grammar can be “decorated” with a question and/or a
comment. A question should be a request for feedback
which is directed at the user, such as “What is the
rock-type?” . A comment provides additional informa-
tion, such as the meaning of particular terms, the exact for-
mat of the input, or other explanatory or “small-print” mate-
rial. An example comment for the lithology clause might be

formation → <lithology>+
lithology → (<rock> <lithology-depth> [<lithology-length>])
rock → (<rock-type> <rock-hardness>)

rock-type → (shale | clay | chalk | granite | other)
rock-hardness → (very-soft | soft | medium | hard | very-hard)

Figure 1: EBNF Grammar for acquiring knowledge of rock formations

(defclause formation ::= (repeat+ <lithology>))

(defclause lithology ::= (seq <rock> <lithology-depth> (optional <lithology-length>)))

(defclause rock ::= (seq <rock-type> <rock-hardness>)

(defclause rock-type ::= (one-of ’shale ’clay ’chalk ’granite ’other))

(defclause rock-hardness ::= (one-of ’very-soft ’soft ’medium ’hard ’very-hard))

Figure 2: COCKATOO Grammar for acquiring knowledge of rock formations

“A lithology consists of a rock-type, a
depth, an optional length, and a hard-
ness” .

Even when the expert provides the knowledge acquisition
tool with the knowledge content required by a problem
solver, the format of the expert’s inputs are seldom exactly
the same as the format required by the problem solver.
Usually, some kind of syntactic transformation needs to be
performed. To achieve this functionality, COCKATOO al-
lows a post-processing function to be specified for each
clause. This is a single argument function that is applied to
the value acquired by the clause. As a simple example, a
question which the expert answered with ‘yes’ or ‘no’ is
more likely to be represented by a LISP program with t
(true) or nil (false). The post-processing function converts
the terminology/representation of the expert to that of the
problem solver. Note that the mechanism accommodates
arbitrary post-acquisitional transformations. We have used
this mechanism for simple syntactic transformations; we
believe it could also be used as the call-out mechanism for
supporting deeper semantic transformations. Currently, the
full power of this mechanism is available only to knowledge
engineers who are competent in LISP; later, we may devise
a more user friendly interface for the description of such
transformations. Additionally, we may allow adapters writ-
ten in other languages to be linked in.

CONSTRAINT-AUGMENTED GRAMMARS
This section shows how a knowledge elicitation grammar
can be augmented with constraint expressions. We claim
that this can improve the conciseness and readability of the
grammar, reduce its development time, and enhance its ex-
pressiveness. This view of knowledge elicitation is not in-
consistent with the definition of a constraint satisfaction
problem (CSP). (A CSP is defined by a set of variables,
each of which has a known domain, and a set of constraints
on some or all of these variables. The solution to a CSP is a
set of variable-value assignments that satisfy all the con-
straints.) For example, consider a structured interview in
which the answers to the knowledge engineer’s agenda of
questions are the variables of the problem, and there are
concrete expectations about what their allowable values
(the variables’ domains) might be.

As we have seen, Grammar-Driven Knowledge Elicitation
is a precise and powerful mechanism for acquiring knowl-
edge. However, by combining the grammar-driven ap-
proach with constraint technology, we gain the following
advantages.

Concise Specifications — Knowledge specifications for
some tasks can be written much more concisely, thus
giving a more readable specification, and also saving
development time.

Single-Input Property Checking — The required proper-
ties of each user input can be checked at acquisition
time, rather than prior to problem solving or at prob-

lem-solving time. That is, inadmissible values are
identified early in the knowledge acquisition cycle.
The properties that help to identify the admissibility
of an input value are expressed naturally as con-
straints.

Multiple-Input Property Checking — Required proper-
ties of multiple inputs can also be checked at acqui-
sition time. A property of this kind is expressed as a
constraint among multiple inputs.

Reactive User-Interfaces — Constraints among multiple
inputs can be constructed in such a way that the
user-interface appears to react to the user’s inputs.
For example, the choice of a particular value for one
input might narrow the domain of another.

Concise Specifications
The value of a COCKATOO clause can be specified by
combining concrete values with the keywords seq, one-
of, optional, repeat+ and repeat*. Alternatively,
a clause can be defined as an arbitrary LISP expression,
such as a constraint expression. For example, the following
concise clause accepts only an integer in the (inclusive)
range 10 to 5000:

(defclause lithology-depth ::=

 (an-integer-betweenv 10 5000)

 :comment "The depth is given in metres (10 <=

depth <= 5000)")

With a purely grammar-driven approach, a part of the ac-
quisition grammar would have to be dedicated to accepting
either the sequence of characters that compose the integers
of the range, or the enumeration of all acceptable values.
For problems such as this, the simple constraint-based
clause is much more maintainable than the equivalent
grammar-based solutions without constraints.

Single-Input Property Checking
In the previous section, we argued that a grammar would be
capable of describing the set of integers in the range 10-
5000, but the introduction of constraints made the solution
much more concise. For that problem, the constraint-based
approach was no more powerful (in terms of expressive-
ness) than the purely grammar-based approach1, though it
clearly offered advantages. However, a constraint-
augmented grammar also provides for the verification of
properties beyond the power of a purely grammar-driven
approach. As an example, consider prime numbers. It is not
possible to define a formal grammar that admits any prime
number, but disallows non-primes. However, a constraint-
augmented grammar can include a clause that admits only
prime numbers by constraining the input value to satisfy a
predicate that tests for primeness2.

1 Both approaches solved the problem.
2 The example is given in full in [16].

In LISP, membership of a type can be subject to satisfaction
of a arbitrary LISP predicate, so the mechanism for check-
ing the properties of a single input value is general and
powerful.

Multiple-Input Property Checking
Another way of specifying values that could not be ex-
pressed by a context-free grammar is by asserting con-
straints across multiple input values. For example, a con-
text-free grammar would not be able to constrain two vari-
ables to have different values unless it explicitly represented
all those situations in which the values were different. At
best, this represents much work for the implementer of the
grammar. If the variables have an infinite domain, however,
it is not even possible. The following clause returns a se-
quence of two rock-types which are constrained to be dif-
ferent.

(defclause rock-types ::=

 (let ((type-1 (make-variable))

 (type-2 (make-variable)))

 (assert! (not-equalv type-1 type-2))

 (seq type-1 type-2)))

A similar technique can be used in the grammar given ear-
lier to prevent the rock-types of consecutively acquired
lithologies to be the same (if consecutive rock-types were
the same, it would be a single lithology). When acquiring a
value for this clause, the second value must be different to
the first:

LISP> (acquire (find-clause ’rock-types))

Input a value: granite

Input a value: granite

That value causes a conflict. Please try another

value...

Input a value: shale

(GRANITE SHALE)

Here, (GRANITE SHALE), is the return value of the
rock-types clause.

Reactive User-Interfaces
Constraints can also be used to modify the behaviour of the
acquisition tool, depending on the values supplied by the
expert. The idea is that inputting a value in answer to one
question may trigger a reduction in the set of possible an-
swers to a different question. This is the issue of reactive
knowledge acquisition mentioned earlier. Reconsider the
example of acquiring a pair of rock types that are con-
strained to be different. This time, we reuse the clause first
given in figure 2 that acquires a single rock type:

(defclause rock-type ::=

 (one-of ’shale ’clay ’chalk ’granite ’other))

When this clause is interpreted, it creates a constraint vari-
able whose domain (set of possible values) consists of the

rock types shale, clay, chalk, granite and other.
COCKATOO uses the domain of a variable when displaying
the possible input values to the user. The following clause
uses the rock-type clause to return a sequence of two
rock types. The values of the rock types type-1 and type-
2, which are not known until acquisition time, are con-
strained to be different:

(defclause rock-types ::=

 (let ((type-1 (find-clause ’rock-type))

 (type-2 (find-clause ’rock-type)))

 (assert! (not-equalv (acquired-valuev type-1)

 (acquired-valuev type-2)))

 (seq type-1 type-2)))

Note that the constraint on type-1 and type-2, imposed
by the assert! function, is declarative and therefore
symmetrical, allowing either of the two values to be ac-
quired first. The return value, on the other hand, is a se-
quence that is interpreted such that type-1 is acquired
before type-2. If the expert inputs shale as the first
value of the pair, it should not be offered as a possible
value for the second value of the pair. Instead, the user-
interface should react to the expert’s inputs, as illustrated
below:

LISP> (acquire (find-clause ’rock-types))

The possible values are:

 A. SHALE

 B. CLAY

 C. CHALK

 D. GRANITE

 E. OTHER

Which value? : granite

The possible values are:

 A. SHALE

 B. CLAY

 C. CHALK

 D. OTHER

Which value? : shale

(GRANITE SHALE)

When acquiring the second rock-type, GRANITE was not
offered as a possible value because choosing that value
would be inconsistent with the disequality constraint. Such
behaviour cannot be realised by a context-free grammar
because the rock-type is not known until acquisition time. A
context-free grammar cannot build in such conditions at
‘compile time’ .

We have shown that the determination of a variable’s value
at acquisition time can cause the domain of another variable
to be reduced. Sometimes, the domain of a variable might
be reduced to a single value, causing that variable to be-
come bound. When this happens, the value of that variable
need not be acquired from the expert, as it has already been
inferred.

GRAMMAR DEVELOPMENT AND MAINTENANCE
It is important for a knowledge specification to be easily
readable so that persons other than the KA tool developer
can understand it. Readable specifications tend to be easier
to write, discuss, and maintain. COCKATOO has two main
features that enhance both the readability and maintainabil-
ity of its knowledge specifications. Firstly, it has developed
an approach based on the use of (EBNF-like) formal gram-
mars, which are a well-known type of formal specification,
and in widespread use. Secondly, COCKATOO makes a
clear separation between the knowledge specification and
the acquisition engine that acquires the knowledge. This
leads to concise specifications, which contain only pertinent
material, as well as a general purpose acquisition tool which
is reusable across domains. By way of contrast, consider a
custom-tailored acquisition tool that embeds the knowledge
specification within its program’s source code. Such a tool
would not be reusable across different problem domains,
and even with optimal coding style, only those with knowl-
edge of the programming language would be able to under-
stand the specification.

COCKATOO already provides mechanisms for specifying
the required knowledge at a “high level” . That is, during
(grammar) development, the knowledge engineer can con-
centrate on the nature of the knowledge to be acquired,
rather than the program that acquires it. Grammar develop-
ment using COCKATOO is a (cyclic) refinement process,
which includes the following chronological stages.

Knowledge Analysis — The aim of this stage is to capture
the most important concepts of the domain and the
relationships between their instances. In effect, we
aim to derive a basic domain ontology.

Grammar Construction — In this stage, we decide which
of the ontological elements from the previous stage
will be included in the knowledge capture. A further
analysis of these elements (for example, a structural
decomposition) leads to a grammar that captures the
basic knowledge requirements in terms of those ele-
ments and their multiplicities (e.g., one-one, one-
many, many-many).

Adding Constraints — An optional stage to enhance the
grammar with constraints. When used, the aim of
the stage is twofold: firstly, to remove unwanted or
nonsensical input combinations from the specifica-
tion; and secondly, to eliminate redundant questions.

Embellishment — Embellishing the grammar with ques-
tions and comments.

Notice that the system’s communication with the expert is
not considered until the final stage of development, reflect-
ing the attention paid to the correctness of the knowledge
specification in the early stages.

The examples presented throughout this paper have demon-
strated COCKATOO’s flexibility for use in many different
domains. COCKATOO can also be configured quickly for

use in a new domain. For example, three sample grammars
presented in [16] were developed (and refined) in less than
a day each! The main reason for the ease with which
COCKATOO can be reused is the clear separation between
the data that drives knowledge acquisition (the grammar)
and the more generic tool that processes the data (the
COCKATOO acquisition engine). COCKATOO is, in effect,
a knowledge acquisition shell that supports the building of
custom-tailored KA tools.

Although it was developed to acquire knowledge bases for
use within the MUSKRAT toolbox [16], a KA tool such as
COCKATOO has the potential to be applied to a very wide
range of application domains. Not only can it acquire sim-
ple knowledge elements, it can manage complex constraint
relationships between them, and post-process user inputs
for further compatibility with other tools. With regard to
COCKATOO’s suitability for different acquisition tasks, it
could be used in most situations that involve a substantial
amount of numerical, textual or symbolic user input. It is
well-suited to supporting knowledge acquisition for both
classification and configuration (or limited design) tasks.
For classification tasks, we must acquire example cases and
their associated class; for configuration tasks, the building
blocks of the design are well-known, but their combinations
may be explored. Although all the design decisions are
made by the human user, the output is nevertheless con-
strained to be within the “space” specified by the grammar.

DISCUSSION
This paper has argued the value of a declarative specifica-
tion of the knowledge to be acquired, and introduced the
COCKATOO tool, which acquires knowledge by interpret-
ing a constraint-augmented grammar. This approach offers
enhanced readability, eased maintenance, and a reduced
initial development effort compared with the construction
of multiple customised tools for different domains. Aug-
menting a context-free grammar with constraints increases
both the expressiveness and conciseness of the notation.
The power of the tool that interprets the notation is also
increased because in some situations its behaviour can be
altered by the user’s responses to questions. Conciseness of
the notation is improved because admissible values do not
always have to be detailed down to the level of individual
characters or symbols.

Related Work
COCKATOO is an automated knowledge elicitation tool, but
differs considerably from current knowledge elicitation
tools based on repertory grids, sorting, and laddering (see,
for example, [1], [10], and PC-PACK3), because they can-
not be tightly coupled with an application. The knowledge
acquired using these tools must be post-processed “by
hand” before they can be used by a problem solver or other

3 PC-PACK is a software package marketed by Epistemics Ltd. See

www.epistemics.co.uk

application program. COCKATOO, on the other hand, pro-
vides a very general post-processing facility which allows
the acquired knowledge to be packaged in a form suitable
for subsequent use.

Generalised Directive Models (GDMs) [13], [7] also use
grammars, but for a different purpose to COCKATOO.
COCKATOO uses a grammar to guide the acquisition of
domain knowledge from a domain expert, such that the
knowledge can be used by an existing problem solver.
GDMs, on the other hand, apply grammars to assist knowl-
edge engineers with task decomposition when building a
knowledge-based system. The purpose of a GDM grammar
is to guide the knowledge engineer to classify the task(s) at
hand, so that an appropriate knowledge elicitation tool can
be selected. Thus, the grammars of the two approaches de-
scribe sentences of quite different natures: a COCKATOO
sentence describes a domain structure, whereas a GDM
sentence describes the decomposition of a task into subtasks
and their respective types. It may also help to consider the
meanings of the terminal symbols in each of the two formal-
isms. A terminal symbol of a COCKATOO grammar repre-
sents a domain concept or value; a terminal symbol of a
GDM represents a task type whose association with a
knowledge elicitation tool is known. The two approaches
are complementary, and could even be used together – a
terminal node of the GDM grammar could be associated
with COCKATOO as the most appropriate elicitation tool
for the node’s task type.

It is interesting to compare COCKATOO with the Protégé
project and, in particular, the Maître tool [2]. Protégé, like
COCKATOO, is a general tool (a “knowledge acquisition
shell”) whose output is in a format that can be read by other
programs (CLIPS expert systems). Also, before using Pro-
tégé to acquire knowledge, the knowledge engineer must
first configure it with an “Ontology Editor” subsystem,
called Maître. This tool enables the knowledge engineer to
define an ontology, which is then used as the basis for
knowledge acquisition. The ontology plays the same role in
Protégé as the constraint-augmented grammar in
COCKATOO — it specifies the knowledge to be acquired.
Another subsystem of Protégé, called Dash, can be used
interactively to define a graphical user-interface for the KA
tool. Although the graphical user interfaces are very appeal-
ing, we do not believe that Protégé has the same knowledge
specification power as COCKATOO, since it is not sup-
ported by an underlying constraints engine.

The idea of minimising the number of questions asked of
the user was inspired by the questioning techniques of
MOLE [3], and the intelligent mode of the MLT Consultant
[5]. However, the approach taken by COCKATOO is differ-
ent from both of these systems. MOLE reduces the amount
of questioning by making intelligent guesses about the val-
ues of undetermined variables, and subsequently requesting
the user’s feedback. MLT Consultant uses an information
theoretic measure to determine which questions are asked.

In contrast, COCKATOO uses local propagation techniques
to identify redundant questions.

A so-called Adaptive Form [4] is a graphical user-interface
for acquiring structured data that modifies its appearance
depending on the user’s inputs. For example, a form for
entering personal details would only show a field for enter-
ing the spouse’s name if the user had entered married in the
marital status field. Although this kind of behaviour is very
similar to the reactive knowledge acquisition of
COCKATOO, Adaptive Forms are driven by (context-free
and regular-expression) grammars alone, and do not sup-
port more complex constraints. The system uses look-ahead
parameters to decide which unbound fields to display at
any given time. We also note that Frank and Szekely ex-
tended their grammar notation to include ‘ labels’ , which
have the same function as the questions of COCKATOO.
They do not provide the equivalent of comments, name
spaces, or post-processing. The Amulet system [6] does use
a constraint solver to manage its user-interface, but employs
it to control the positioning and interactions of graphical
objects, rather than to support knowledge acquisition.

Limitations
COCKATOO currently does not allow the user to backtrack
from a given user input, and try something else. Once an
input has been entered, the user is committed to that value
and cannot change it later. This is a serious limitation be-
cause not only does it not allow for typographical errors; it
also prevents the user from experimenting with the
COCKATOO grammar in a ‘what-if’ mode. Of course,
COCKATOO can always be aborted and the acquisition re-
started from the beginning, but a more flexible backtracking
capability is a desirable feature that should be addressed.
Ideally, at each stage of the acquisition process the user
should be given the option to go back to the previous stage,
retract the previous input, and input a new value. The prob-
lem is that retracting an input is not simple, because the
constraint-based assertions associated with that input may
already have caused propagation to other constraint vari-
ables. To retract an input, one must be able to recover the
states of all constraint variables before the assertion was
made. One option to achieve this functionality is to record
the states of all constraint variables before each user input;
another option is to record the changes that occur after each
user input, so that they may be reversed. Ideally, the con-
straints package would provide a retraction facility of its
own [16].

There are two types of propagation that should be sup-
ported by a KA tool for MUSKRAT; namely inter-KB
propagation and intra-KB propagation. In the former case,
knowledge is propagated from one knowledge base to a
different knowledge base. In the latter case, knowledge is
propagated from one part of a knowledge base to a different
part of the same knowledge base.

For inter-KB propagation, we require a mechanism by
which the knowledge contained in an existing knowledge
base is made available to COCKATOO for acquiring a dif-
ferent, but related, knowledge base. We have not yet ad-
dressed this problem. However, COCKATOO already pro-
vides a mechanism for intra-KB propagation through the
functions find-clause and acquired-valuev. The
function find-clause can be used from within a gram-
mar to search for a known clause, thus offering a facility for
grammar introspection. The function acquired-valuev
is used to make assertions about the value that a clause
(eventually) acquires. These two functions can therefore be
used together to specify at acquisition time the knowledge
that some other clause should acquire. This is the behaviour
of intra-KB propagation.

We feel that the usability of COCKATOO would be signifi-
cantly improved by the addition of graphical user-interfaces
at two levels. Firstly, a graphical user-interface ‘ front-end’
to COCKATOO would provide the opportunity for enhanced
end-user support; for example, through the use of distinct
graphical input forms (with appropriate widgets, such as
text boxes and drop-down menus). Secondly, a graphical
user-interface could provide useful support for the acquisi-
tion of grammars, so that the knowledge engineer would no
longer have to input COCKATOO grammars in their ‘LISPi-
fied’ syntax. Such a ‘meta-tool’ would output a
COCKATOO grammar (perhaps as the result of post-
processing). It would be interesting to investigate whether
COCKATOO is flexible enough to act as both the meta-tool
and the domain expert’s tool.

COCKATOO will be used by a class of undergraduate stu-
dents in the autumn of 2001, and we expect it to be used
subsequently by the Advanced Knowledge Technologies
(AKT) project.

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support provided
for this work through an EPSRC studentship.

REFERENCES
[1] Diaper, D., (1989), “Knowledge Elicitation: Principles,

Techniques and Applications” , Ellis Horwood, Chich-
ester, England, UK.

[2] Eriksson, H., Puerta, A. R., Gennari, J. H., Rothenfluh,
T. E., Samson, W. T., Musen, M., (1994), “Custom-
Tailored Development Tools for Knowledge-Based
Systems” , Technical Report KSL-94-67, Section on
Medical Informatics, Knowledge Systems Laboratory,
Stanford University, California, USA.

[3] Eshelman, L., (1988), “MOLE: A Knowledge-
Acquisition Tool for Cover-and-Differentiate Sys-
tems” , in Marcus, S., (Ed.), “Automating Knowledge
Acquisition for Expert Systems” , Kluwer Academic
Publishers, pp. 37-80.

[4] Frank, M. R., Szekely, P., (1998), “Adaptive Forms:
An Interaction Technique for Entering Structured
Data” , Knowledge-Based Systems, Vol. 11, pp. 37-45.

[5] Kodratoff, Y., Sleeman, D., Uszynski, M., Causse, K.,
Craw, S., (1992), “Building a Machine Learning Tool-
box” , in Enhancing the Knowledge Engineering Proc-
ess, Steels, L., Lepape, B., (Eds.), North-Holland, El-
sevier Science Publishers, pp. 81-108.

[6] Myers, B. A., Mcdaniel, R. G., Miller, R. C., Ferrency,
A. S., Faulring, A., Kyle, B. D., Mickish, A., Klimovit-
ski, A., And Doane, P., (1997), “The Amulet Environ-
ment: New Models for Effective User Interface Soft-
ware Development” , IEEE Transactions on Software
Engineering, Vol. 23, No. 6, pp. 347-365.

[7] O’Hara, K., Shadbolt, N., Van Heijst, (1998), “Gener-
alised Directive Models: Integrating Model Develop-
ment and Knowledge Acquisition” , International Jour-
nal of Human-Computer Studies, Vol. 49, No. 4, pp.
497-522.

[8] Preece, A., Flett, A., Sleeman, D., Curry, D., Meany,
N., Perry, P., (2001), “Better Knowledge Management
through Knowledge Engineering” , IEEE Intelligent
Systems, Vol. 16, No. 1, pp. 36-43.

[9] Reichgelt, H., Shadbolt, N., (1992), “ProtoKEW: A
knowledge-based system for knowledge acquisition” ,
in Artificial Intelligence, Sleeman, D, and Bernsen, NO
(Eds.), Research Directions in Cognitive Science:
European Perspectives, volume 6, Lawrence Erlbaum,
Hove, UK.

[10] Shadbolt, N. R., (2000), Knowledge Elicitation Tech-
niques In Knowledge Engineering & Management: The
CommonKADS Methodology. G. Schreiber, H. Ak-
kermans, A. Anjewierden, R. de Hoog, N. Shadbolt,
W. van der Velde & B. Wielinga. Pub: MIT Press.

[11] Siskind, J. M., McAllester, D. A., (1993), “Nonde-
terministic LISP as a Substrate for Constraint Logic
Programming” , in proceedings of AAAI-93.

[12] Siskind, J. M., McAllester, D. A., (1994),
“SCREAMER: A Portable Efficient Implementation of
Nondeterministic Common LISP'” , Technical Report
IRCS-93-03, Uni. of Pennsylvania Inst. for Research in
Cognitive Science.

[13] Van Heijst, G., Terpstra, P., Wielinga, B., Shadbolt,
N., (1992), “Using generalised directive models in
knowledge acquisition” , in Proceedings of EKAW–92,
Springer Verlag.

[14] White, S., Sleeman, D., (1998), “Constraint Handling
in Common LISP” , Department of Computing Science
Technical Report AUCS/TR9805, University of Aber-
deen, Aberdeen, UK.

[15] White, S., Sleeman, D., (1999), “A Constraint-Based
Approach to the Description of Competence” , in

Fensel, D., Studer, R., (Eds.), Proceedings of the Elev-
enth European Workshop on Knowledge Acquisition,
Modelling, and Management (EKAW–99), LNCS,
Springer Verlag, pp. 291-308.

[16] White, S., (2000), “Enhancing Knowledge Acquisi-
tion with Constraint Technology” , PhD Thesis, Univer-
sity of Aberdeen, Scotland, UK.

