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Abstract 

To acquire knowledge that is fit for a specific purpose, it is 
very desirable to have a structured, declarative expression 
of the knowledge that is needed. This paper introduces a 
stand-alone knowledge acquisition tool, called 
COCKATOO (Constraint-Capable Knowledge Acquisition 
Tool), which uses constraint technology to specify the 
knowledge it requires. The language in which these specifi-
cations are given is based on the meta-language notation of 
context-free grammars. However, we also took the opportu-
nity to build a tool that is both more flexible and powerful 
by augmenting context-free grammars with the expressive-
ness of constraints. COCKATOO was implemented using 
the SCREAMER+ declarative constraints package.  
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INTRODUCTION 
Previous work has addressed the problem of determining 
whether existing KBs (Knowledge Bases) can be used to-
gether with a selected problem-solver to satisfy a given 
problem-solving goal [15], [16]. We refer to this task as 
assessing the fitness-for-purpose of a KB. When the as-
sessment identifies a mismatch between the given KBs and 
the problem-solver’s expected KBs, we recognise two pos-
sible responses. Either the available KBs are totally inap-
propriate, in which case it is necessary to acquire them ab 
initio, or the existing KBs are close to being usable but 
need to be modified (possibly in a number of ways). This 
paper addresses the first of these actions; namely, to ac-
quire knowledge ab initio such that it meets the problem 
solver’s requirements. In current practice, a knowledge en-
gineer uses a knowledge acquisition tool, or other elicita-
tion method(s), to acquire the knowledge needed by a prob-

lem solver. Afterwards, the knowledge must usually be 
transformed, because the output of the knowledge acquisi-
tion tool cannot be used directly as input to the problem 
solver. We call such transformations post-acquisitional 
transformations. In this paper, we introduce the 
COCKATOO knowledge acquisition tool, which aims to 
minimise the need for post-acquisitional transformations. 
Our tool is generic, in the sense that it is independent of 
task, problem solver, and domain. On the other hand, it is 
highly configurable, and can be configured to acquire 
knowledge suited to a particular purpose (i.e., a problem-
solving role). 

The paper is organised as follows. In the next section, 
‘Grammar-Driven Knowledge Elicitation’ , we argue the 
benefits of using a context-free grammar as the basis for the 
specification of knowledge to satisfy a problem-solving 
role. In the section on ‘Constraint-Augmented Grammars’ , 
we highlight some of the limitations of a purely grammar-
driven approach to this task, suggesting the judicial use of 
constraints within the grammar to overcome some of the 
difficulties. We call this formalism a constraint-augmented 
grammar. The constraints are expressed using the declara-
tive constraints package SCREAMER+ [14], [16], an exten-
sion of SCREAMER [11], [12]. The section on ‘Grammar 
Development and Maintenance’  outlines a process for 
building a constraint-augmented grammar that supports 
knowledge capture. Finally, we discuss the benefits and 
limitations of our work, and relate it to other work in the 
field. 

GRAMMAR-DRIVEN KNOWLEDGE ELICITATION 
When eliciting knowledge, it is desirable to have a struc-
tured, declarative specification of the body of knowledge 
that needs to be acquired. This can be used as both the tar-
get of the knowledge acquisition process and the criterion 
by which the acquired knowledge is assessed. Formal 
grammars provide a means for specifying knowledge to be 
acquired, are structured and declarative, and are also widely 
understood by knowledge engineers and computer scien-
tists. However, there is an important difference in the way 
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that formal grammars are “ traditionally”  used, and the way 
that they have been applied here. Traditionally, grammars 
are used to solve the parsing problem; that is, to determine 
whether some given text conforms to some given formal 
grammar. For example, a C compiler must determine 
whether a given program consists entirely of legal C syntax. 
In grammar-driven knowledge elicitation, however, one 
attempts to acquire structured text such that it conforms to 
the given grammar.  

We chose to represent EBNF grammars using a “LISPified”  
equivalent to the meta-notation of EBNF. This meta-
language needs to: 

• provide for the definition of grammar clauses of the 
target language; 

• differentiate between a grammar’s terminal and non-
terminal symbols; 

• provide the standard operators of an EBNF grammar, 
namely, sequential composition, the expression of al-
ternatives, repetition, and optionality. 

We illustrate our ideas with a simplified example from the 
domain of petroleum geology, and, in particular, the acqui-
sition of a case base of oil well drilling experiences. The 
knowledge captured in this way is used to support subse-
quent drill bit run modelling and optimisation; for example, 
to help choose the right drill bit for a given formation se-
quence [8]. The EBNF grammar in figure 1 both describes 
and specifies a rock formation and its constituent lithologies 
(basic rock-types). The same grammar can be expressed in 
COCKATOO's syntax as shown in figure 2. (The correctness 
of the domain knowledge in our example has not been veri-
fied by a domain expert.) 

Note that the non-terminal symbols lithology-depth 
and lithology-length have numeric values, and are 
more difficult to specify concisely with a grammar. We 
return to this issue in the following section. Note also that 
although our simple example illustrates only repetitions of 
‘one or more’  (in this case, lithologies), COCKATOO also 

provides for repetitions of ‘zero or more’  with the keyword 
‘repeat*’ . 

COCKATOO grammars are interpreted top-down, left to 
right. Usually, a special parameter to the defgrammar 
macro (not described here for lack of space) informs 
COCKATOO which is the ‘ top-most’  grammar clause. So, 
for example, in the grammar of figure 2, we would tell 
COCKATOO to start with the formation clause. The in-
terpretation of this clause leads to the acquisition of a repe-
tition of lithologies, each in turn consisting of a sequence of 
a rock, a lithology-depth, and an optional 
lithology-length. A rock, in turn, consists of a 
sequence of a rock-type and a rock-hardness. The 
acquisition of either of these two non-terminal symbols 
involves the capture of a decision from the user among a 
number of distinct options (e.g., shale, clay, chalk, 
granite or other). These options are presented on-
screen to the user by COCKATOO, so that a choice can be 
made and recorded. COCKATOO is sensitive to the number 
of possible values available. If there are too many values to 
be listed (i.e., more than a configurable upper limit), then 
the upper and lower bounds of the symbol (internally, a 
constraint variable) are provided to the user as additional 
support. If these values are not available at acquisition time, 
then the user is dependent upon the guidance provided by 
the knowledge engineer in the form of comments and ques-
tions (see below).  

It is unrealistic to expect users to base their interaction with 
a knowledge acquisition tool on their understanding of an 
EBNF grammar. To help the user understand what informa-
tion is required, and how it can be supplied, each clause of 
a grammar can be “decorated”  with a question and/or a 
comment. A question should be a request for feedback 
which is directed at the user, such as “What is the 
rock-type?” . A comment provides additional informa-
tion, such as the meaning of particular terms, the exact for-
mat of the input, or other explanatory or “small-print”  mate-
rial. An example comment for the lithology clause might be 

 

formation →  <lithology>+ 
lithology →  (<rock> <lithology-depth> [<lithology-length>]) 
rock      → (<rock-type> <rock-hardness>) 

rock-type →  (shale | clay | chalk | granite | other) 
rock-hardness →  (very-soft | soft | medium | hard | very-hard) 
 

Figure 1: EBNF Grammar for acquiring knowledge of rock formations 

 

(defclause formation ::= (repeat+ <lithology>)) 

(defclause lithology ::= (seq <rock> <lithology-depth> (optional <lithology-length>)))  

(defclause rock      ::= (seq <rock-type> <rock-hardness>) 

(defclause rock-type ::= (one-of ’shale ’clay ’chalk ’granite ’other)) 

(defclause rock-hardness ::= (one-of ’very-soft ’soft ’medium ’hard ’very-hard)) 

 

Figure 2: COCKATOO Grammar for acquiring knowledge of rock formations 



“A lithology consists of a rock-type, a 
depth, an optional length, and a hard-
ness” .  

Even when the expert provides the knowledge acquisition 
tool with the knowledge content required by a problem 
solver, the format of the expert’s inputs are seldom exactly 
the same as the format required by the problem solver. 
Usually, some kind of syntactic transformation  needs to be 
performed. To achieve this functionality, COCKATOO al-
lows a post-processing function to be specified for each 
clause.  This is a single argument function that is applied to 
the value acquired by the clause. As a simple example, a 
question which the expert answered with ‘yes’  or ‘no’  is 
more likely to be represented by a LISP program with t 
(true) or nil (false). The post-processing function converts 
the terminology/representation of the expert to that of the 
problem solver. Note that the mechanism accommodates 
arbitrary post-acquisitional transformations. We have used 
this mechanism for simple syntactic transformations; we 
believe it could also be used as the call-out mechanism for 
supporting deeper semantic transformations. Currently, the 
full power of this mechanism is available only to knowledge 
engineers who are competent in LISP; later, we may devise 
a more user friendly interface for the description of such 
transformations. Additionally, we may allow adapters writ-
ten in other languages to be linked in.  

CONSTRAINT-AUGMENTED GRAMMARS 
This section shows how a knowledge elicitation grammar 
can be augmented with constraint expressions. We claim 
that this can improve the conciseness and readability of the 
grammar, reduce its development time, and enhance its ex-
pressiveness. This view of knowledge elicitation is not in-
consistent with the definition of a constraint satisfaction 
problem (CSP). (A CSP is defined by a set of variables, 
each of which has a known domain, and a set of constraints 
on some or all of these variables. The solution to a CSP is a 
set of variable-value assignments that satisfy all the con-
straints.) For example, consider a structured interview in 
which the answers to the knowledge engineer’s agenda of 
questions are the variables of the problem, and there are 
concrete expectations about what their allowable values 
(the variables’  domains) might be. 

As we have seen, Grammar-Driven Knowledge Elicitation 
is a precise and powerful mechanism for acquiring knowl-
edge. However, by combining the grammar-driven ap-
proach with constraint technology, we gain the following 
advantages. 

Concise Specifications — Knowledge specifications for 
some tasks can be written much more concisely, thus 
giving a more readable specification, and also saving 
development time. 

Single-Input Property Checking — The required proper-
ties of each user input can be checked at acquisition 
time, rather than prior to problem solving or at prob-

lem-solving time. That is, inadmissible values are 
identified early in the knowledge acquisition cycle. 
The properties that help to identify the admissibility 
of an input value are expressed naturally as con-
straints. 

Multiple-Input Property Checking — Required proper-
ties of multiple inputs can also be checked at acqui-
sition time. A property of this kind is expressed as a 
constraint among multiple inputs. 

Reactive User-Interfaces — Constraints among multiple 
inputs can be constructed in such a way that the 
user-interface appears to react to the user’s inputs. 
For example, the choice of a particular value for one 
input might narrow the domain of another. 

Concise Specifications 
The value of a COCKATOO clause can be specified by 
combining concrete values with the keywords seq, one-
of, optional, repeat+ and repeat*. Alternatively, 
a clause can be defined as an arbitrary LISP expression, 
such as a constraint expression. For example, the following 
concise clause accepts only an integer in the (inclusive) 
range 10 to 5000: 

(defclause lithology-depth ::=  

  (an-integer-betweenv 10 5000) 

  :comment "The depth is given in metres (10 <= 

depth <= 5000)") 

 

With a purely grammar-driven approach, a part of the ac-
quisition grammar would have to be dedicated to accepting 
either the sequence of characters that compose the integers 
of the range, or the enumeration of all acceptable values. 
For problems such as this, the simple constraint-based 
clause is much more maintainable than the equivalent 
grammar-based solutions without constraints. 

Single-Input Property Checking 
In the previous section, we argued that a grammar would be 
capable of describing the set of integers in the range 10-
5000, but the introduction of constraints made the solution 
much more concise. For that problem, the constraint-based 
approach was no more powerful (in terms of expressive-
ness) than the purely grammar-based approach1, though it 
clearly offered advantages. However, a constraint-
augmented grammar also provides for the verification of 
properties beyond the power of a purely grammar-driven 
approach. As an example, consider prime numbers. It is not 
possible to define a formal grammar that admits any prime 
number, but disallows non-primes. However, a constraint-
augmented grammar can include a clause that admits only 
prime numbers by constraining the input value to satisfy a 
predicate that tests for primeness2. 

                                                           
1 Both approaches solved the problem. 
2 The example is given in full in [16]. 



In LISP, membership of a type can be subject to satisfaction 
of a arbitrary LISP predicate, so the mechanism for check-
ing the properties of a single input value is general and 
powerful.  

Multiple-Input Property Checking 
Another way of specifying values that could not be ex-
pressed by a context-free grammar is by asserting con-
straints across multiple input values. For example, a con-
text-free grammar would not be able to constrain two vari-
ables to have different values unless it explicitly represented 
all those situations in which the values were different. At 
best, this represents much work for the implementer of the 
grammar. If the variables have an infinite domain, however, 
it is not even possible. The following clause returns a se-
quence of two rock-types which are constrained to be dif-
ferent. 

(defclause rock-types ::=  

  (let ((type-1 (make-variable)) 

        (type-2 (make-variable))) 

     (assert! (not-equalv type-1 type-2)) 

     (seq type-1 type-2))) 

 

A similar technique can be used in the grammar given ear-
lier to prevent the rock-types of consecutively acquired 
lithologies to be the same (if consecutive rock-types were 
the same, it would be a single lithology). When acquiring a 
value for this clause, the second value must be different to 
the first: 

LISP> (acquire (find-clause ’rock-types)) 

Input a value: granite 

Input a value: granite 

That value causes a conflict. Please try another 

value... 

 

Input a value: shale 

(GRANITE SHALE) 

 

Here, (GRANITE SHALE), is the return value of the 
rock-types clause.  

Reactive User-Interfaces 
Constraints can also be used to modify the behaviour of the 
acquisition tool, depending on the values supplied by the 
expert. The idea is that inputting a value in answer to one 
question may trigger a reduction in the set of possible an-
swers to a different question. This is the issue of reactive 
knowledge acquisition mentioned earlier. Reconsider the 
example of acquiring a pair of rock types that are con-
strained to be different. This time, we reuse the clause first 
given in figure 2 that acquires a single rock type: 

(defclause rock-type ::= 

  (one-of ’shale ’clay ’chalk ’granite ’other)) 

 

When this clause is interpreted, it creates a constraint vari-
able whose domain (set of possible values) consists of the 

rock types shale, clay, chalk, granite and other. 
COCKATOO uses the domain of a variable when displaying 
the possible input values to the user. The following clause 
uses the rock-type clause to return a sequence of two 
rock types. The values of the rock types type-1 and type-
2, which are not known until acquisition time, are con-
strained to be different: 

(defclause rock-types ::= 

  (let ((type-1 (find-clause ’rock-type)) 

 (type-2 (find-clause ’rock-type))) 

    (assert! (not-equalv (acquired-valuev type-1)  

                        (acquired-valuev type-2))) 

    (seq type-1 type-2))) 

 

Note that the constraint on type-1 and type-2, imposed 
by the assert! function, is declarative and therefore 
symmetrical, allowing either of the two values to be ac-
quired first. The return value, on the other hand, is a se-
quence that is interpreted such that type-1 is acquired 
before type-2. If the expert inputs shale as the first 
value of the pair, it should not be offered as a possible 
value for the second value of the pair. Instead, the user-
interface should react to the expert’s inputs, as illustrated 
below: 

LISP> (acquire (find-clause ’rock-types)) 

 

The possible values are:  

  A.  SHALE 

  B.  CLAY 

  C.  CHALK 

  D.  GRANITE 

  E.  OTHER 

Which value? : granite 

 

The possible values are:  

  A.  SHALE 

  B.  CLAY 

  C.  CHALK 

  D.  OTHER 

Which value? : shale 

(GRANITE SHALE) 

 

When acquiring the second rock-type, GRANITE was not 
offered as a possible value because choosing that value 
would be inconsistent with the disequality constraint. Such 
behaviour cannot be realised by a context-free grammar 
because the rock-type is not known until acquisition time. A 
context-free grammar cannot build in such conditions at 
‘compile time’ .  

We have shown that the determination of a variable’s value 
at acquisition time can cause the domain of another variable 
to be reduced. Sometimes, the domain of a variable might 
be reduced to a single value, causing that variable to be-
come bound. When this happens, the value of that variable 
need not be acquired from the expert, as it has already been 
inferred.  



GRAMMAR DEVELOPMENT AND MAINTENANCE 
It is important for a knowledge specification to be easily 
readable so that persons other than the KA tool developer 
can understand it. Readable specifications tend to be easier 
to write, discuss, and maintain. COCKATOO has two main 
features that enhance both the readability and maintainabil-
ity of its knowledge specifications. Firstly, it has developed 
an approach based on the use of (EBNF-like) formal gram-
mars, which are a well-known type of formal specification, 
and in widespread use. Secondly, COCKATOO makes a 
clear separation between the knowledge specification and 
the acquisition engine that acquires the knowledge. This 
leads to concise specifications, which contain only pertinent 
material, as well as a general purpose acquisition tool which 
is reusable across domains. By way of contrast, consider a 
custom-tailored acquisition tool that embeds the knowledge 
specification within its program’s source code. Such a tool 
would not be reusable across different problem domains, 
and even with optimal coding style, only those with knowl-
edge of the programming language would be able to under-
stand the specification.  

COCKATOO already provides mechanisms for specifying 
the required knowledge at a “high level” . That is, during 
(grammar) development, the knowledge engineer can con-
centrate on the nature of the knowledge to be acquired, 
rather than the program that acquires it. Grammar develop-
ment using COCKATOO is a (cyclic) refinement process, 
which includes the following chronological stages. 

Knowledge Analysis — The aim of this stage is to capture 
the most important concepts of the domain and the 
relationships between their instances. In effect, we 
aim to derive a basic domain ontology. 

Grammar Construction — In this stage, we decide which 
of the ontological elements from the previous stage 
will be included in the knowledge capture. A further 
analysis of these elements (for example, a structural 
decomposition) leads to a grammar that captures the 
basic knowledge requirements in terms of those ele-
ments and their multiplicities (e.g., one-one, one-
many, many-many). 

Adding Constraints  — An optional stage to enhance the 
grammar with constraints. When used, the aim of 
the stage is twofold: firstly, to remove unwanted or 
nonsensical input combinations from the specifica-
tion; and secondly, to eliminate redundant questions. 

Embellishment — Embellishing the grammar with ques-
tions and comments. 

Notice that the system’s communication with the expert is 
not considered until the final stage of development, reflect-
ing the attention paid to the correctness of the knowledge 
specification in the early stages.  

The examples presented throughout this paper have demon-
strated COCKATOO’s flexibility for use in many different 
domains. COCKATOO can also be configured quickly for 

use in a new domain. For example, three sample grammars 
presented in [16] were developed (and refined) in less than 
a day each! The main reason for the ease with which 
COCKATOO can be reused is the clear separation between 
the data that drives knowledge acquisition (the grammar) 
and the more generic tool that processes the data (the 
COCKATOO acquisition engine). COCKATOO is, in effect, 
a knowledge acquisition shell that supports the building of 
custom-tailored KA tools. 

Although it was developed to acquire knowledge bases for 
use within the MUSKRAT toolbox [16], a KA tool such as 
COCKATOO has the potential to be applied to a very wide 
range of application domains. Not only can it acquire sim-
ple knowledge elements, it can manage complex constraint 
relationships between them, and post-process user inputs 
for further compatibility with other tools. With regard to 
COCKATOO’s suitability for different acquisition tasks, it 
could be used in most situations that involve a substantial 
amount of numerical, textual or symbolic user input. It is 
well-suited to supporting knowledge acquisition for both 
classification and configuration (or limited design) tasks. 
For classification tasks, we must acquire example cases and 
their associated class; for configuration tasks, the building 
blocks of the design are well-known, but their combinations 
may be explored. Although all the design decisions are 
made by the human user, the output is nevertheless con-
strained to be within the “space”  specified by the grammar. 

DISCUSSION 
This paper has argued the value of a declarative specifica-
tion of the knowledge to be acquired, and introduced the 
COCKATOO tool, which acquires knowledge by interpret-
ing a constraint-augmented grammar. This approach offers 
enhanced readability, eased maintenance, and a reduced 
initial development effort compared with the construction 
of multiple customised tools for different domains. Aug-
menting a context-free grammar with constraints increases 
both the expressiveness and conciseness of the notation. 
The power of the tool that interprets the notation is also 
increased because in some situations its behaviour can be 
altered by the user’s responses to questions. Conciseness of 
the notation is improved because admissible values do not 
always have to be detailed down to the level of individual 
characters or symbols.  

Related Work 
COCKATOO is an automated knowledge elicitation tool, but 
differs considerably from current knowledge elicitation 
tools based on repertory grids, sorting, and laddering (see, 
for example, [1], [10], and PC-PACK3), because they can-
not be tightly coupled with an application. The knowledge 
acquired using these tools must be post-processed “by 
hand”  before they can be used by a problem solver or other 

                                                           
3 PC-PACK is a software package marketed by Epistemics Ltd. See 

www.epistemics.co.uk 



application program. COCKATOO, on the other hand, pro-
vides a very general post-processing facility which allows 
the acquired knowledge to be packaged in a form suitable 
for subsequent use. 

Generalised Directive Models (GDMs) [13], [7] also use 
grammars, but for a different purpose to COCKATOO. 
COCKATOO uses a grammar to guide the acquisition of 
domain knowledge from a domain expert, such that the 
knowledge can be used by an existing problem solver. 
GDMs, on the other hand, apply grammars to assist knowl-
edge engineers with task decomposition when building a 
knowledge-based system. The purpose of a GDM grammar 
is to guide the knowledge engineer to classify the task(s) at 
hand, so that an appropriate knowledge elicitation tool can 
be selected. Thus, the grammars of the two approaches de-
scribe sentences of quite different natures: a COCKATOO 
sentence describes a domain structure, whereas a GDM 
sentence describes the decomposition of a task into subtasks 
and their respective types. It may also help to consider the 
meanings of the terminal symbols in each of the two formal-
isms. A terminal symbol of a COCKATOO grammar repre-
sents a domain concept or value; a terminal symbol of a 
GDM represents a task type whose association with a 
knowledge elicitation tool is known. The two approaches 
are complementary, and could even be used together – a 
terminal node of the GDM grammar could be associated 
with COCKATOO as the most appropriate elicitation tool 
for the node’s task type. 

It is interesting to compare COCKATOO with the Protégé 
project and, in particular, the Maître tool [2].  Protégé, like 
COCKATOO, is a general tool (a “knowledge acquisition 
shell” ) whose output is in a format that can be read by other 
programs (CLIPS expert systems). Also, before using Pro-
tégé to acquire knowledge, the knowledge engineer must 
first configure it with an “Ontology Editor”  subsystem, 
called Maître. This tool enables the knowledge engineer to 
define an ontology, which is then used as the basis for 
knowledge acquisition. The ontology plays the same role in 
Protégé as the constraint-augmented grammar in 
COCKATOO — it specifies the knowledge to be acquired. 
Another subsystem of Protégé, called Dash, can be used 
interactively to define a graphical user-interface for the KA 
tool. Although the graphical user interfaces are very appeal-
ing, we do not believe that Protégé has the same knowledge 
specification power as COCKATOO, since it is not sup-
ported by an underlying constraints engine. 

The idea of minimising the number of questions asked of 
the user was inspired by the questioning techniques of 
MOLE [3], and the intelligent mode of the MLT Consultant 
[5]. However, the approach taken by COCKATOO is differ-
ent from both of these systems. MOLE reduces the amount 
of questioning by making intelligent guesses about the val-
ues of undetermined variables, and subsequently requesting 
the user’s feedback. MLT Consultant uses an information 
theoretic measure to determine which questions are asked.  

In contrast, COCKATOO uses local propagation techniques 
to identify redundant questions.  

A so-called Adaptive Form [4] is a graphical user-interface 
for acquiring structured data that modifies its appearance 
depending on the user’s inputs. For example, a form for 
entering personal details would only show a field for enter-
ing the spouse’s name if the user had entered married in the 
marital status field. Although this kind of behaviour is very 
similar to the reactive knowledge acquisition of 
COCKATOO, Adaptive Forms are driven by (context-free 
and regular-expression) grammars alone, and do not sup-
port more complex constraints. The system uses look-ahead 
parameters to decide which unbound fields to display at 
any given time. We also note that Frank and Szekely ex-
tended their grammar notation to include ‘ labels’ , which 
have the same function as the questions of COCKATOO. 
They do not provide the equivalent of comments, name 
spaces, or post-processing. The Amulet system [6] does use 
a constraint solver to manage its user-interface, but employs 
it to control the positioning and interactions of graphical 
objects, rather than to support knowledge acquisition.  

Limitations 
COCKATOO currently does not allow the user to backtrack 
from a given user input, and try something else. Once an 
input has been entered, the user is committed to that value 
and cannot change it later. This is a serious limitation be-
cause not only does it not allow for typographical errors; it 
also prevents the user from experimenting with the 
COCKATOO grammar in a ‘what-if’  mode. Of course, 
COCKATOO can always be aborted and the acquisition re-
started from the beginning, but a more flexible backtracking 
capability is a desirable feature that should be addressed. 
Ideally, at each stage of the acquisition process the user 
should be given the option to go back to the previous stage, 
retract the previous input, and input a new value. The prob-
lem is that retracting an input is not simple, because the 
constraint-based assertions associated with that input may 
already have caused propagation to other constraint vari-
ables. To retract an input, one must be able to recover the 
states of all constraint variables before the assertion was 
made. One option to achieve this functionality is to record 
the states of all constraint variables before each user input; 
another option is to record the changes that occur after each 
user input, so that they may be reversed. Ideally, the con-
straints package would provide a retraction facility of its 
own [16].  

There are two types of propagation that should be sup-
ported by a KA tool for MUSKRAT; namely inter-KB 
propagation and intra-KB propagation. In the former case, 
knowledge is propagated from one knowledge base to a 
different knowledge base. In the latter case, knowledge is 
propagated from one part of a knowledge base to a different 
part of the same knowledge base.  



For inter-KB propagation, we require a mechanism by 
which the knowledge contained in an existing knowledge 
base is made available to COCKATOO for acquiring a dif-
ferent, but related, knowledge base. We have not yet ad-
dressed this problem. However, COCKATOO already pro-
vides a mechanism for intra-KB propagation through the 
functions find-clause and acquired-valuev. The 
function find-clause can be used from within a gram-
mar to search for a known clause, thus offering a facility for 
grammar introspection. The function acquired-valuev 
is used to make assertions about the value that a clause 
(eventually) acquires. These two functions can therefore be 
used together to specify at acquisition time the knowledge 
that some other clause should acquire. This is the behaviour 
of intra-KB propagation. 

We feel that the usability of COCKATOO would be signifi-
cantly improved by the addition of graphical user-interfaces 
at two levels. Firstly, a graphical user-interface ‘ front-end’  
to COCKATOO would provide the opportunity for enhanced 
end-user support; for example, through the use of distinct 
graphical input forms (with appropriate widgets, such as 
text boxes and drop-down menus). Secondly, a graphical 
user-interface could provide useful support for the acquisi-
tion of grammars, so that the knowledge engineer would no 
longer have to input COCKATOO grammars in their ‘LISPi-
fied’  syntax. Such a ‘meta-tool’  would output a 
COCKATOO grammar (perhaps as the result of post-
processing). It would be interesting to investigate whether 
COCKATOO is flexible enough to act as both the meta-tool 
and the domain expert’s tool.  

COCKATOO will be used by a class of undergraduate stu-
dents in the autumn of 2001, and we expect it to be used 
subsequently by the Advanced Knowledge Technologies 
(AKT) project. 
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