

# Improving the resilience of symbiotic networks via permutable nodes

# Mehdi Khoury, Seth Bullock

University of Southampton



## Introduction

- Infrastructure systems can be represented (in an idealised manner) by a *network of networks*.
- Such systems are vulnerable to cascading failure.
- Here we explore the influence of permutable network nodes that can switch from playing a role in one system to playing a role within another, but may not play both roles simultaneously, e.g., traffic tunnel ⇔ flood water
- Symbiotic networks are those for which inter-network dependencies are critical to their operation meaning that network components that become isolated due to cascading failure are no longer viable.
- We demonstrate that symbiotic networks featuring permutable nodes can enjoy a significantly increased resilience, especially where attacks are large or the degree of symbiosis is significant.

#### Method

- Consider two infrastructure networks, A and B.
- A and B have are scale-free, i.e., they are structurally similar to the Western US power grid or the Internet.
- A and B are symbiotic: in order for a fragment of A to operate, the proportion of its nodes connected directly to a working fragment of network B must be above some threshold, and vice versa. Here the threshold is 1/3:



 Some nodes are permutable, i.e., they may switch roles in order to take part in the alternative network, potentially altering the resilience of the network as a whole:



- To assess network robustness:
- Some randomly chosen network A nodes are disabled.
- This causes some network *B* nodes to fail, which in turn causes some network *A* nodes to fail, and so on.
- Network robustness is the total size of the surviving fragments once cascading failure has run its course.
- Where networks contain permutable nodes we explore how swapping their roles changes network robustness and treat this as a measure of resilience.

#### Results



Networks saved as a result of role permutation for different attack sizes, using permutation between (a) uncoupled nodes and (b) coupled nodes, for low (=0.1), medium (=0.3), and high (=0.5) symbiotic interdependency thresholds.

- We evaluate symbiotic network pairs. Each 100-node Barabási-Albert network has 50 nodes directly coupled to the other network, and 40% of its nodes permutable.
- Networks are limited to 100 nodes due to computational demands introduced by the exponential increase in the number of possible networks due to permutation.
- Two types of permutation are considered: uncoupled and coupled. The former involves a permutable node where each of its roles is uncoupled, i.e., in neither of its roles is it directly dependent on the operation of a complementary network node. The latter involves a permutable node where one of its roles is coupled to the complementary network.
- In each case, we explore the percentage of coupled networks saved from cascading failure by permutation.
- Permutation saves the most networks when attacks are of a moderate size and symbiosis is of medium strength.

## Discussion

- In interdependent infrastructure systems, failure may spread iteratively during periods of stress/perturbation.
- Our results show that the risks of cascading failure are reduced by functionally permutable infrastructure nodes.
- These nodes do not offer multiple simultaneous services (e.g., dual infrastructures that can potentially be a liability), but switch between different types of service.
- While our simulation results provide some insight, there are limitations to their applicability and generality:
- We considered paired networks, but real infrastructure can involve a large number of interconnected systems.
- Network interdependencies are *not random*, but may be correlated with degree, betweenness, proximity, etc.
- Attacks may disable nodes non-randomly, according to centrality, proximity to a geographic attack location, etc.
- Role permutation can be implemented *during* the process of cascading failure rather than afterwards.
- However, studies like this one are useful as a starting point for more sophisticated models when trying to understand, e.g., the vulnerability of coupled energy networks, the robustness of transport networks, etc.



