Toward Human-Agent Competition in TAC SCM

Andrew Nelson*, Dickens Nyabuti, John Collins, Wolfgang Ketter, and Maria Gini
Dept of CSE, University of Minnesota, Minneapolis, USA
TRotterdam Sch. of Mgmt., Erasmus University, Rotterdam, NL

Abstract

We propose a variation of the TAC SCM supply-chain trad-
ing competition, in which human decision-makers compete
with fully-autonomous agents. Because of the complexity
and time pressures of the competition environment, humans
may be assisted by semi-autonomous agents, which could
be modifications of existing agents. The research goal is
to discover what kinds of decision support will make a hu-
man decision-maker most effective in this environment. We
show how an existing agent might be modified to operate in
this new competition by updating our MinneTAC agent into
a highly configurable, semi-autonomous agent that can sup-
port human users playing a variety of roles in the modified
competition environment. The agent’s decision processes are
composed of networks of simple services that are described
using an OWL ontology. The ontology describes the structure
of the service network, along with the structure and seman-
tics of the data elements that are produced and consumed by
individual services.

Introduction

Organized competitions are an effective way to drive re-
search and understanding in complex domains, free of the
complexities and risks of operating in open, real-world en-
vironments. Artificial economic environments typically ab-
stract certain interesting features of the real world, such as
markets and competitors, demand-based prices and cost of
capital, and omit others, such as human resources, secondary
markets, taxes, and seasonal demand. The Trading Agent
Competition for Supply-Chain Management (Collins et al.
2005) (TAC SCM) is an economic simulation in which com-
peting autonomous agents operate in a simple supply-chain
scenario, purchasing components, managing a factory and
warehouse, and selling finished products to customers.
Supply chain management organizes the transfer of
goods, information, and services between suppliers and buy-
ers. Traditional supply chains are created and maintained
through the interactions of human representatives of the var-
ious companies involved. Much progress in business pro-
cesses comes from automating the elements that do not re-
quire human judgments, and from providing better and more

*Work supported in part by National Science Foundation grant
11S-0414466
Copyright (© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

timely information for those that do. Recently many com-
panies have adopted Business Intelligence (BI) (Eckerson
2005) techniques to support information needs, and a va-
riety of systems to automate trivial tasks like data entry to
decrease the margin of human error.

Despite the many important research results arising from
TAC SCM and the other Trading Agent Competitions, busi-
ness people are not ready to trust fully autonomous agents
with critical business decisions (Maes 1994), and existing
BI systems are arguably not sufficiently flexible to produce
the kinds of ad hoc information and analysis that would truly
leverage their skills and experience and maximize their ef-
fectiveness (Collins, Ketter, & Gini 2008). One way to ad-
dress both of these issues is through configurable, compos-
able, and transparent decision processes that are fully de-
scribed in terms that end users can understand. Our ap-
proach to the needed flexibility and transparency is called
“ontology-driven decision support,” in which information,
analyses, and decisions are composed of a large variety of
data views and small, single-purpose analysis modules that
can be composed into dataflow networks to produce results
with well-defined business meaning.

What is missing at this point is a clear understanding of
exactly what kinds of information, and what level of auto-
mated assistance, will make human decision-makers most
effective in complex, dynamic, and multi-faceted trading
situations. It is also not clear whether an experienced hu-
man decision-maker, with appropriate information and as-
sistance, can outperform the current generation of fully-
autonomous agents. We believe that a modification to the
Trading Agent Competition for Supply-Chain Management
(TAC SCM), in combination with flexible mixed-initiative
agent technology such as we describe here, can help answer
these important questions.

The next section places our work in the context of related
work. We then review the classification of decisions into
strategic, tactical, and operational levels in both a general
business setting and in TAC SCM. These distinctions are im-
portant to understand our approach to adjustable-autonomy
decision making. We then discuss the ways in which the
game and agents must be modified to operate in a human-
agent competition environment. Next, we describe our ap-
proach to ontology-driven decision support and to human-
agent interaction, providing a few dashboard examples that

could support human decision making at multiple levels of
abstraction. Finally, we conclude and present our future re-
search agenda.

Related work

Advanced decision support systems and software agents
promise to assist businesses by acting rationally on behalf
of humans in numerous application domains. Examples in-
clude procurement (Sandholm et al. 2005), scheduling and
resource management (Collins, Ketter, & Gini 2002), Inter-
net shopbot agents (Montgomery et al. 2004), and personal
information management (Myers et al. 2007). In real-world
settings, fully-autonomous trading agents are inappropriate,
so we have introduced an alternate style of semi-autonomous
agents that we call “Advocate Agents” (Ketter et al. 2008).
In addition to composing services and displaying data, these
agents can help buyers to mine information from various
sources, such as vendor web pages, and to harvest other
facts.

There is a strong need to develop highly interactive, per-
sonalized dashboards so that managers are able to effectively
scan and identify key information quickly (Ontrup et al.
2009). Creating performance and information dashboards
is part of the new emerging field of BI (Eckerson 2005). BI
systems provide functions such as real-time monitoring, per-
formance reporting and support for exploring solution space
with normative models, statistical techniques and visualiza-
tion. Business intelligence software can crawl the web, mine
data, and generate reports customized to user preferences.
Our architecture fully supports BI and our dashboards are
customizable for individual managers. BI is a customized
solution, thus the purpose of the agents is to cover specific
requirements of its users (Azvine et al. 2006). Gregg et
al. (Gregg & Walczak 2006) claim that auction advisors like
agents can keep buyers better informed about current market
offers and maximize the outcome, even if the buyers have
conflicting preferences (Ketter et al. 2008). In other words
the main objective of the BI and agent is to process infor-
mation and deliver in a reliable format for further considera-
tion; according to Orlikowski and Iacono (Orlikowski & Ia-
cono 2001) this type of technology can be basically viewed
as “information processing tool”.

The business world distinguishes between strategic, tac-
tical, and operational decision making and their appropriate
information needs (Eckerson 2005):

Strategic view lets executives and staff chart their
progress toward achieving strategic objectives.

Tactical view helps managers and analysts track and ana-
lyze departmental activities, processes, and projects.

Operational view enables front-line workers and super-
visors to track core operational processes.

Strategic dashboards emphasize management more than
monitoring or analysis, tactical dashboards emphasize anal-
ysis more than monitoring or management, and operational
dashboards emphasize monitoring more than analysis or
management. The right approach to supporting these three
decision levels varies from a focus on decision-support for
knowledge workers to a focus on decision automation. Op-
erational decisions are ideal for automation, and therefore

to apply fully-autonomous intelligent agents. Tactical deci-
sions, are also a good candidate for decision automation, but
usually for partial automation guided by semi-autonomous
agents. Strategic decisions might show results only over
long time frames, suitable for reporting with standard busi-
ness intelligence capabilities, and semi-autonomous agents.
Performance management is particulary good at tracking the
effectiveness of operational and tactical decisions, since the
feedback times are much shorter than strategic decisions.

In prior work we show how to construct an intelli-
gent trading agent based on dynamic service networks and
present basic GUI components (Collins, Ketter, & Gini
2008). In the following we introduce an Ontology-Driven
Decision Support which extends the basic architecture with
an ontology, an inference engine, and connect to customiz-
able user interfaces. To our knowledge the Michigan Auc-
tionBot (Wurman, Wellman, & Walsh 1998) is the only other
auction platform in the community that allows for the partic-
ipation of human and software agents. AuctionBot was used
as the underlying platform fr the design and implementation
of TAC Travel (now called TAC Classic) (Stone & Green-
wald 2005). AuctionBot was mainly designed to support
research into auctions and mechanism design. Our architec-
ture is designed to support research into auctions, business
networks, ontologies, and human-agent interaction.

Game and agent modifications

Games in the current TAC SCM scenario run on a strict time
schedule. Each agent must make thousands of decisions dur-
ing each 15-second cycle. This strict, compressed sched-
ule works well when the competitors are fully autonomous
agents, because a full year of simulated supply chain interac-
tion can be completed in under an hour. However, it appears
to effectively eliminate the possibility of usable human in-
teraction.

It seems likely that many interesting research questions
into human-agent competition using the existing game pa-
rameters will require longer than an hour to complete. This
leads to two important questions: how much longer, and
how effectively could good decision support limit the time
required. This leads to a set of goals for a modified game
scenario:

e As far as possible, the competition should retain its full
complexity and dynamic qualities, since the goal is to
explore human decision-making in such a complex en-
vironment, and compare it with the performance of au-
tonomous agents.

e Existing agents should be able to operate in a human-
agent competition without modification. This means that
the existing “agentware” software layer should be com-
patible with the new scenario.

e A human user should be able to “stall” a game cycle for a
limited time, perhaps as much as a minute or two, in order
to examine data and make decisions. However, the game
should be able to run as quickly as possible given the cog-
nitive limitations of the users. In other words, game cycles
should stall only until the users have finished their deci-
sions, or until they time out. Behavior of the agent in a

timeout situation should be well-defined.

e A given human-interface agent may support multiple
users in different roles, such as procurement, production,
sales, etc.

e Because even a shortened game may last for an uncom-
fortable duration, it may be necessary to have an ability
to suspend a game and resume it at a later time. Unfortu-
nately, this conflicts with the goal of using existing agents
without modification.

We have implemented the basic modifications to the
server and agentware that will allow for variable-length cy-
cles. In order to retain compatibility with existing agents,
there are additional data elements passed between agent and
server when the agent logs in to the server. An human-
interface agent requests a maximum daily timeout in its lo-
gin message, and the server notifies agents of the maximum
daily timeout in its response. This prevents an existing agent
from timing out, but runs the risk that an existing agent is us-
ing the time/cycle information to control its computations,
and therefore may miss cycles that are not stalled by users.
There appears to be no fix for this that does not involve up-
grading existing agents with a new agentware library.

Figure 1 shows the modified TAC SCM game with a dash-
board that mediates the human-agent interaction. We have
implemented a role-based system, so that every major de-
cision component, i.e. procurement, production, and sales,
can be carried by a team of people. The role-based structure
enables us to use the system for teaching supply-chain man-
agement students, and to execute experiments with human
subjects. =

Trading
AGENt | St

=
i»

Procurement
Decision Marker

I

Production
Decision Maker

v

Sales
Decision Marker

\Ne sy
e

Suppliers

29D

Trading Environment Human-Agent Interaction Manufacturer

via Dashboard

Figure 1: Human-agent interaction in TAC SCM.

There are (at least) three other pieces of the puzzle that
must be in place before human-agent competitions are possi-
ble. First, agents running with human decision makers must
notify the server when they are ready to proceed. In a game

with multiple human-interface agents, the last agent to fin-
ish before the deadline controls the end of the cycle. Second,
the game viewer must not run its clock independently of the
server. Third, we need agents with usable human interfaces,
and ideally those interfaces will be remote - they will not
require that the user be sitting at the machine that is run-
ning the agent. We describe a design for such an agent in a
subsequent section.

Ontology-Driven Decision Support

Our method for transforming an autonomous agent into a
human-interactive agent hinges on its semantic description.
To see how a human interface might use such a model of
the agent we first discuss the architecture of our agent, Min-
neTAC (Collins, Ketter, & Gini 2009). The agent has a fine-
grained modular design. All software of consequence to the
agent’s performance in the TAC SCM competition is either
some structured data in a “repository,” or is encapsulated
in a small “data-flow service” module, each of which takes
zero or more inputs and produces an output. We limit the
topology of these services to simplify the problems of hu-
man understanding and of service composition. We define
three types of data-flow services:

A Source is a simple data source; it provides a specific
view of repository data.

An Evaluator takes input from sources and other evalu-
ators, performs some transformation, and makes the result
available to other services.

A Sink takes input from sources and evaluators in order
to change the agent’s state or affect the outside world. In the
MinneTAC agent, this data is either stored back in the repos-
itory, or routed to the simulation server, where it represents
the agent’s decisions.

A working MinneTAC agent configuration is wholly de-
fined by the sinks, sources and evaluators used; the data de-
pendencies between them; and the parameter values sent to
each. We visualize these data-flow services as a directed
graph. Figure 2 shows a small portion of the graph in a typi-
cal MinneTAC configuration that determines sales prices for
finished goods. The first component of a semantic descrip-
tion of our agent includes information intrinsic to the Java
classes for each of our services and the data dependencies
among them. To make these descriptions we use the World
Wide Web Consortium’s Resource Description Framework
(RDF)!. Semantic models are built in RDF by way of triplet
statements of the form <Subject> <Predicate> <Object>.
Such a statement relates its subject to another object by
a binary predicate, for example <order-probability> <has-
output> <pricers>.

We can represent a collection of RDF triples as a directed
graph, where each node represents some object and each
arc represents a predicate relation between them. Figure 3
shows a graphical RDF description of an evaluator and a
source which have “oracle.eval.SimplePriceEvaluator” and
“oracle.eval.QuantityEvaluator” as respective class names.
This figure also shows information that is extrinsice to the
classes, including unique identifiers for each service, needed

"http://www.w3.org/RDF/

’ market-prices price-distribution

’ cost-basis

’ factory-capacity

”[demand-prediction
’ current-demand |

=
P

order-probability

sales-quotas

pricers

simple-price

product-

prices
bidding

quotas

Sources

Evaluators Sinks

Figure 2: Evaluator network for computing sales prices.

since we often use the same class multiple times within an
agent. We show the data dependency between the customer-
quantity source and the simple-price evaluator as well as ad-
ditional node labels, the white rectangles, which we explain
shortly.

The second portion of our semantic model takes the form
of an ontology. Ontologies are made up of concepts, such
as classes of individual objects, which form a hierarchy
through subsumption relationships. We compose our ontolo-
gies using the World Wide Web Consortium-defined Web
Ontology Language (OWL)?. OWL is an extension of RDF
which includes the special predicate “is-a” which allows us
to make statements such as <Price> <is-a> <Number>,
<Number> <is-a> <DataType>.

A partial view of our current ontology can be seen in Fig-
ure 4. We are using the OWL-DL subspecies of OWL, so
named for its equivalence to description logics, because it is
expressive enough for our purposes while its syntactic lim-
itations allow for inference performed upon the ontology to
guarantee computation completeness and decidability.Using
the open source inference engine Pellet?, our software can
take the two statements above and conclude <Price> <is-
a> <DataType>.

Our model relates its two sets of semantic informa-
tion, which are commonly referred to as the termi-
nological (TBox) and assertion (ABox) sets, via an-
other special predicate in OWL, the “has-type” rela-
tionship <oracle.eval.SimplePriceEvaluator> <has-type>
<Evaluator> These relations are shown in Figure 3 within
the boxes next to each node.

Now that we have described our agent to a certain level of
detail, how can we use it? Firstly, semantic information is
used by developers and composers of the agent. The ontol-
ogy can be used to validate individual service descriptions
via another OWL construct, the class restriction. With OWL
restrictions we designate which predicates must be used in
describing a member of a class, what classes of objects these
predicates can relate to and the cardinality of each predicate.
The Pellet inference engine can determine if the semantic
description of an individual violates the restrictions on its
class. Once we are confident of the consistency of a descrip-
tion we can use it in turn to confirm that the behavior of some
service matches its description, by testing it in a network of

2http://www.w3.0rg/2004/OWL/
*http://clarkparsia.com/pellet/

compatible services. Thus, while our semantic descriptions
and the actual java code are duplicate representations of the
agent’s behavior, we enforce an order of precedence to re-
solve conflicts.

Secondly, our agent’s descriptions can be queried and
modified by users so they may know what information is
moving between services and to inject changes as they
see fit. These descriptions, being composed of human-
understandable terms such as “price” or “product,” are pro-
vided to the interface to decorate displays. For instance,
from the semantic description of the simple-price evaluator
the interface can determine that a graph of its output should
have Product ID and Price as its axis labels. The semantics
can also inform what type of display is appropriate. If we
know that some source service provides English descriptions
of each product it makes no sense to display this information
as a pie chart. Services may be included simply to generate
information for the user. For instance, we might insert a ser-
vice that samples the output of another service each day to
generate a time series.

Our model can also determine if a data dependency be-
tween two services is valid. Such validation is necessary
when processing a configuration before the start of game or
as the result of a user’s change to the service network. We
do so by comparing data types, dimensional cardinality and
indexer types of a given input and output. We see in Fig-
ure 3 that these descriptions need not be exactly the same
to form a valid dependency, Pellet must only show they are
compatible. For instance, Pellet could confirm two differing
data types are compatible by subsumption. This data-flow
connection validation is done via rules written in the Seman-
tic Web Rule Language (SWRL)*. Each rule can confirm, if
queried, one part of a valid connection. For example, one
rule states that if the input of some evaluator has a differ-
ent dimensional cardinality then the output of another, we
must conclude that a dependency between these services is
invalid. When a valid dependency is established, rules also
allow Pellet to conclude that the input involved has the out-
put service’s possibly more specific data type. The simple-
price evaluator, for instance, will take any one dimensional
array of numbers for its quantity input, but when we assign
the output of the customer-quantity source to this input, Pel-
let will conclude that this input is an array of quantities rep-
resenting customer demand. A proactive application of this

*http://www.w3.org/Submission/SWRL/

|Simp|e-Price Semantic Description|/—\
simple-price

hasClassName
evaluator

hasinput

hasDataSink

simplifiedServiceUniqueldentifier .
regression
oracle.eval.SimplePriceEvaluator .
‘ hasClass hasDataType
-Iiteral

hasOutput

haslnput
effective-demand

hasinput

X . hasDimensions
hasDimensions

hasDimensions

quantity

hasDataType

hasDataType

hasDimensions rdf:Seq

hasDataType elementl

hasDataSource

| Customer-Quantity Semantic Description |

hasDataType

elementl

productSKU

hasOutput

customer-quantity

simplifiedServiceUniqueldentifier

hasClass

hasClassName

oracle.eval.QuantitySource
litera

Figure 3: Representation of the semantic descriptions of two dataflow services, the data dependency between them, and their

memberships in the ontological classes.

validation procedure can be used to suggest data-flow con-
nections to the interface. If we combine proactive data-flow
connection validation and the transfer of semantic informa-
tion from outputs to inputs, we approach automatic com-
position. When the user requests some novel piece of in-
formation not currently available, a search of valid possible
data-flow connections could result in an evaluator or chain
of evaluators which, if added to the network, would produce
the desired information.

While our model provides details of an agent’s execution
and an ability to precisely modify it, some issues remain un-
addressed. Many of our services maintain internal informa-
tion and therefore cannot be added or modified mid-game.
Information identifying such services is not currently within
the semantic model and would need to be included to re-
strict the interface in these cases. Also, our model does not
handle anytime algorithms elegantly. Our model would be
well-served by a scheduling problem solver with knowledge
of each service’s required and ideal computating times that
could allocate processing time to each service efficently. By
allocating processing time we could provide users with a
timer to when their changes must be made for any given
portion of the network.

Human Agent Interaction

In this section we discuss architectural elements that allow
for Human Agent Interaction (HAI) within the MinneTAC
agent. To support HAI, we add the HAIController that pro-
vides an interface between the agent and the dashboard. Fig-
ure 5 shows the architecture that supports HAIL

HAI Controller The HAIController component of the
MinneTAC agent has four responsibilities:

Relay data from sources and evaluators to the dashboard:
Once data is available from a source or an evaluator, the
HAIController obtains its semantic description, decorates
it and relays it to the dashboard for display.

Save data modification to sinks : Once a dashboard user
submits data to the agent, the HAIController stores the
users data into its appropriate sink for use by the evaluator.

Present agent configuration details : In the Ontology is
information on the agent configuration. This information
is made available for visualization by the HAIController
through the HAlInterface.

Persist agent configuration details : Through the Dash-
board users can made changes to the agent configuration.

Changes to Repository data will only occur during runtime
for data that has been identified as modifiable. Once modifi-

DataType V5

a
SimplifiedService)1

<~
SimplifiedServiceUniqueldentifier

HumaninteractiveService

. IR . AAD

StrategicOpportunities
SpotAvailability

DataStructure

Figure 4: Top-level ontology for describing the MinneTAC agent.

tcp socket

Server: TAC SimulationServer

Simulation Engine Database
TACInterface =

MinneTAC: Trading Agent o —— - -
! Communication
P g |
Repository Oracle

A T

v \/

L \'
HAIController Ontology Reasoner

HAIInterface Q ------- Y,

Dashboard: HAI Dashboard Client: Client PC

I i Browser

HAlServlet

tcp socket

tcp socket

Figure 5: MinneTAC architecture with Human Agent Interaction.

able data is made available in the Repository, the HAICon-
troller is notified. Modifiable data can only be used after
an approval has been received from the a user, however if
a user does not provide an approval within a specified time
interval, an automatic approval is provided by the controller.

Dashboard Human agent interaction occurs through the
dashboard. Our dashboard can be configured to support a
variety of dashboards for different purposes and stakehold-
ers. The main component of the dashboard is the HAIS-
ervlet which provides communication services between the
dashboard and the agent. Through the servlet data is trans-
mitted back and forth between the browser and the agent.
Below we describe three examples of dashboards that can be
composed and provide details on their visuals and allowed
user actions. A strategic dashboard can be configured to
track agent performance against strategic objectives. Strate-
gic objective are stored as configurations in the Ontology.
See figure 6. Visualizations on the strategic dashboard in-

clude: (1) Market summary reports, (2) Evaluator scorecard,
(3) Market projection reports, (4) Economic regime predic-
tion. We describe the “economic regime” model in (Ketter
et al. 2007).

Modifications on the strategic dashboard are executed in
terms of configuration changes. These changes include: (1)
Modifying an evaluator name, (2) Modifying an evaluator
dependencies, (3) Determining whether an evaluator human
interaction.

A tactical dashboard can be configured to track evaluators
that need approvals from a user; configuration of this option
is provided on the strategic dashboard. Through this dash-
board, users are able to make changes and approve informa-
tion that is available on a given evaluator or source. Modi-
fied evaluator and source data is stored into a sink. While in
the tactical view active alerts are sent to users to help them
better control the agent. See Figure 7. Visualizations on the
tactical dashboard include, but are not limited to: (1) Daily
factory allocation and usage, (2) Daily simple price values,
(3) Daily predicted price densities, (4) Daily recommended

Tactical

Operational Last Updated: 06:24:00 | Settings | Logout

Predicted Product Prices

a.nsl"' MMMCUMD&H e

+' | Macmum np
0045, ¥ /u @

o
b

g ! 3 ‘ | | Lo Mimeren o
& 0.03s| i 4 3
> §/8 E Ll
§ 003 f ' E ;‘. '
I 4

i‘u.ozsr ; 3 L
5 2 & o
§ " ? fo
£ 0.015] \ -

0.01

0.008|

st Ve w! .,
o 02 0.4 06 08 1 12

Py
L I S PP
: . 20 40 60 B0_100 120 140 160 180 200 220
Mormalized Price [np] Time in Days

Current Settings
Name : Predicted Price Density Uses : Economic Regimes
Human Interaction : Yes Market Report Data

Require Approval : Unavailable Used by : Sales
= Default Horizon : 20 days

Figure 6: Strategic dashboard showing output and editable configuration parameters for the Predicted Product Prices evaluator.

Strategic

Operational Last Updated: 06:24:00 | Settings | Logout
Current Recommended Product Sales Prices

Please approve the recommended prices below.

SKU Description Price (%)

1 Pintel 2GHz, 1Gb Mermory, 200 Gb Hard disk
2 Pintel 2GHz, 1Gb Memory, 500 Gb Hard disk
3 Pintel 2GHz, 2Gb Memary, 300 Gb Hard disk 1750

4 pintel 2GHz, 2Gb Memory, 500 Gb Hard disk
5 Pintel 5GHz, 1Gb Memory, 300 Gb Hard disk
6 Pintel 5GHz, 1Gb Memory, 500 Gb Hard disk
7 Pintel 5GHz, 2Gb Memory, 300 Gb Hard disk
8 Pintel 5GHz, 2Gb Memary, 500 Gb Hard disk

Figure 7: Tactical dashboard displaying current recommended product sales prices from a source that need to be approved.

price values, (5) Daily procurement summary, (6) Low pro-
curement alerts.

(4) Making procurement orders and updates.

An operational dashboard can be configured to allow
users track the daily outputs of evaluators. In this dash-
board modification and approval options are not available.
Unlike the tactical dashboard, this dashboard makes avail-

Changes made in the tactical dashboard generate sink data
that is used by other evaluators in the agent. Users are re-
quired to provide approvals within a specified time period

from the time the data is made available to them. If an ap-
proval is not provided within the allotted time, the agent as-
sumes an automatic approval. This helps prevent the user
from holding up agent transactions. Changes in this dash-
board include but are not limited to: (1) Modifying Rec-
ommended Prices, (2) Modifying the planning horizon for
predicting the price density, (3) Controlling factory usage,

able data from all evaluators. See Figure 8. Visualizations in
this dashboard include but are not limited to: (1) Time series
graphs for evaluator outputs, (2) Table displaying maximum,
mean mid-range, smoothed and minimum price of good sold
in a given day.

Procurement Parts Prices

Pintel CPU 2.0 GHz

Last Updated: 06:24:00 | Settings | Logout

Pintel CPU 5.0 GHz

Mverage Price Sold A

] = 50 7S 100 125 150 175

Date Components Were Ordered

IMD CPU 2.0 GHz

Average Price Sold &

o 25 50 7S 100 15 150 s

Date Companents Were Ordered

IMD CPU 5.0 GHz

15

1o

oy

uerage Price Sold &t

0.0 L s ! L
o FL ESl FLy 100 18 130 17

Date Components Were Ordered

Today's Sale Prices

SKU Description
1 Pintel 2GHz

5 Pintel 5GHz

12 IMD 2GHz

13 IMD 5GHz

Mverage Price Scld A

15

L] 25 50 75 o0 175 150 17

Date Components Were Ordered

Inventory Price (%)
1500 Q0
500 70
1260 70
100 A

Figure 8: Operational dashboard displaying time series of procurement parts prices from a source with a table of today’s prices.

Client Users access the dashboard through a client ma-
chine. The dashboard is accessible through a web browser
interface. The Browser enables a user to view and interact
with the dashboard visualizations. The presentation of data
relies on JavaScript to dynamically update the visualizations
with real-time data. Modifications made to the data are sent
back to the dashboard via a POST request through the TCP
socket between the client and the dashboard. One dashboard
can support multiple clients at once.

Conclusion and Future Work

While TAC SCM is currently concentrating on the au-
tonomous agents, business school games are focusing only
on human interaction. We envision an agent-assisted human
decision support paradigm that extends and bridges both ap-
proaches, so that humans may work in concert with agents
to solve complex real-world problems. In the following we
give an overview of the pressing research challenges which
we are and will be working on.

Ontology-driven composition Given a set of services
that are described in terms of our ontology, how do we com-
pose them to produce useful results?

Service discovery How do we find services? This is prob-
ably not a UDDI problem. Do we need some sort of direc-
tory service? How simple could it be? How does it hook
into the ontology?

Test support Semantic descriptions can presumably be
used to generate test cases. Can we prove it with code?

Information visualization How do we best present com-
plex decision attributes, and so tackle information rich envi-
ronment?

Adjustable autonomy Determining if and when transfers
of human control to the agent should occur.

We are currently working to create a web service wrap-
per around the evaluators, and integrate it in a real business
network, such as the Dutch Flower auction (Kambil & van
Heck 1998). Finally, we are planning to use our decision
support system in teaching students about dynamic supply-
chain management.

References

Azvine, B.; Cui, Z.; Nauck, D.; and Majeed, B. 2006.
Real time business intelligence for the adaptive enter-
prise. In IEEE Computer Society (Hrsg.): Proceedings
of the Sth IEEE International Conference on E-Commerce
Technology and the 3rd IEEE International Conference
on Enterprise Computing, E-Commerce, and E-Services
(CEC/EEE’06), IEEE Computer Society, Los Alamitos,
29-39.

Collins, J.; Arunachalam, R.; Sadeh, N.; Ericsson, J.;
Finne, N.; and Janson, S. 2005. The supply chain manage-
ment game for the 2006 trading agent competition. Tech-
nical Report CMU-ISRI-05-132, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

Collins, J.; Ketter, W.; and Gini, M. 2002. A multi-agent
negotiation testbed for contracting tasks with temporal and

precedence constraints. Int’l Journal of Electronic Com-
merce 7(1):35-57.

Collins, J.; Ketter, W.; and Gini, M. 2008. Flexible deci-
sion support in a dynamic business network. In Verwest,
P.; van Liere, D.; and Zheng, L., eds., The Network Experi-
ence — New Value from Smart Business Networks. Springer
Verlag. 233-246.

Collins, J.; Ketter, W.; and Gini, M. 2009. Flexible de-
cision control in an autonomous trading agent. Electronic
Research Commerce and Applications in publication.

Eckerson, W. W. 2005. Performance Dashboards: Mea-
suring, Monitoring, and Managing Your Business. Wiley.

Gregg, D., and Walczak, S. 2006. Auction advisor: an
agent-based online-auction decision support system. Deci-
sion Support Systems 41(2):449-471.

Hevner, A.; March, S.; Park, J.; and Ram, S. 2004. Design
science in information systems research. Management In-
formation Systems Quarterly 28(1):75-106.

Kambil, A., and van Heck, E. 1998. Reengineering
the dutch flower auctions: A framework for analyzing

exchange organizations. [Information Systems Research
9(1):1-19.

Ketter, W.; Collins, J.; Gini, M.; Gupta, A.; and Schrater,
P. 2007. A predictive empirical model for pricing and re-
source allocation decisions. In Proc. of 9th Int’l Conf. on
Electronic Commerce, 449—458.

Ketter, W.; Batchu, A.; Berosik, G.; and McCreary, D.
2008. A Semantic Web Architecture for Advocate Agents
to Determine Preferences and Facilitate Decision Making.
In Proc. of 10th Int’l Conf. on Electronic Commerce, 1-10.

Maes, P. 1994. Agents that reduce work and information
overload. Communications of the ACM 37(7):30—40.

Montgomery, A.; Hosanagar, K.; Krishnan, R.; and Clay,
K. 2004. Designing a better shopbot. Management Science
189-206.

Myers, K.; Berry, P.; Blythe, J.; Conley, K.; Gervasio, M.;
McGuinness, D.; Morley, D.; Pfeffer, A.; Pollack, M.; and
Tambe, M. 2007. An intelligent personal assistant for task
and time management. Al MAGAZINE 28(2):47.

Ontrup, J.; Ritter, H.; Scholz, S.; and Wagner, R. 2009. De-
tecting, assessing and monitoring relevant topics in virtual
information environments. [EEE Transactions on Knowl-
edge and Data Engineering 21(3):415-427.

Orlikowski, W., and Iacono, C. 2001. Research commen-
tary: desperately seeking the ” IT” in IT research-A call
to theorizing the IT artifact. Information Systems Research
12(2):121-134.

Sandholm, T.; Suri, S.; Gilpin, A.; and Levine, D. 2005.
Cabob: A fast optimal algorithm for winner determi-

nation in combinatorial auctions. Management Science
51(3):374-390.

Stone, P., and Greenwald, A. 2005. The first international
trading agent competition: Autonomous bidding agents.
Electronic Commerce Research 5(1):229-64.

Wurman, P.; Wellman, M.; and Walsh, W. 1998. The
Michigan Internet AuctionBot: A configurable auction
server for human and software agents. In Proceedings

of the second international conference on Autonomous
agents, 301-308. ACM New York, NY, USA.

