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Abstract

For almost five years we have continually operated a
simulation testbed exploring a variety of strategies for
the TAC Travel game. Building on techniques devel-
oped in our recent study of continuous double auc-
tions, we performed an equilibrium analysis of our
testbed data, and employed reinforcement learning in
the equilibrium environment to derive a new entertain-
ment strategy for this domain. A second iteration of this
process led to further improvements. We thus demon-
strate that interleaving empirical game-theoretic anal-
ysis with reinforcement learning in an effective method
for generating stronger trading strategies in this domain.

Introduction

Because it encompasses a variety of trading mechanisms and
reasoning tasks, the TAC Travel game presents a plethora of
strategy problems for trading agents [Wellman et al., 2007].
Agents buy flights at stochastically varying fixed prices, buy
hotels at prices set by multiunit ascending auction, and buy
as well as sell entertainment tickets through continuous dou-
ble auctions (CDAs). Based on our recent successful ef-
fort to derive stronger strategies for trading in generic CDAs
[Schvartzman and Wellman, 2009a], we sought to employ
this method to trading entertainment in TAC Travel.

The TAC entertainment trading problem differs from that
typically studied in the generic CDA trading literature in
several essential respects. First, there are actually 12 simul-
taneous CDAs operating in TAC Travel, and interdependent
values among the goods. Second, agents in the generic setup
are typically specialized to buyer or seller roles, whereas in
TAC Travel an agent may both buy and sell in the same auc-
tion. Third, valuations are not fixed and generated up front,
but rather are determined indirectly by the surrounding mar-
ket context (e.g., flight and hotel prices and holdings), which
vary dynamically as the game progresses.

For these reasons, it is not straightforward to translate
existing CDA strategies to entertainment trading in TAC,
and indeed, to our knowledge, no previous entrants have re-
ported attempting to perform simple adaptations from the
CDA literature. Nevertheless, the methods by which we
learned improved strategies for generic CDAs are quite ap-
plicable to this TAC problem, as we describe herein.

Background: EGTA/RL

One of the main difficulties of analyzing TAC strategies ex-
perimentally is that the performance of an agent’s strategy
can be greatly affected by the decisions of other agents.
As a result, studies on strategy performance need to prop-
erly define the context of other-agent strategies under which
the evaluation takes place. In the empirical game-theoretic
analysis (EGTA) approach [Wellman, 2006], games are es-
timated by employing computer simulations. EGTA meth-
ods systematically compile information about strategy per-
formance, and iteratively add strategies to a set of candidates
to build a comprehensive model covering a broad strategy
space, amenable to game-theoretic analysis.

A key issue that EGTA studies need to address is the
strategy exploration problem [Schvartzman and Wellman,
2009b], which focuses on the basic step of adding a new
strategy to a set of candidates, enlarging the profile space.
This decision is significant because the typical problems that
we study with EGTA have very large or infinite strategy
spaces, and computational constraints restrict our analysis
to finite sets. Since adding strategies expands the size of
the problem exponentially, the decision to introduce a new
strategy needs to be considered carefully.

In our CDA study [Schvartzman and Wellman, 2009a], we
approached the strategy exploration problem by interleaving
EGTA with reinforcement learning (RL) [Sutton and Barto,
1998]. The central idea of this interleaved approach is to
focus learning effort on the contexts supported by equilib-
rium reasoning over the data collected thus far. Given the
large amount of training data required for effective RL, it
would not be practical to learn a best response to any but a
tiny fraction of other-agent strategy profiles. By focusing on
finding a deviation from a current equilibrium, we concen-
trate the training on the most promising regions of profile
space. By definition, a new strategy that succeeds at devi-
ating will qualitatively change the empirical game analysis,
effectively producing a new equilibrium. By introduction of
relevant strategies at successive EGTA/RL iterations, we in-
crease our confidence in the ultimate results of analyzing the
cumulative empirical game.

Other researchers have used a similar process to search for
equilibrium profiles, starting from a few basic strategies and
iteratively finding (exact) best-response profiles until reach-
ing a fixed point. The process, when it converges, results in



a strategy profile that is a best response to itself, and conse-
quently a Nash equilibrium (NE). Our EGTA/RL approach
is similar in spirit to iterated best response, except that RL
will typically provide approximate best responses for the
scenarios that we are interested in.

The EGTA/RL approach can be summarized by the fol-
lowing broad stages:

1. Implement game simulator.
. Select set of candidate strategies S.
. Estimate the empirical game.

. Find a Nash equilibrium s*.

A W

. Derive a new bidding strategy L using RL, applied in a
context where other agents play s* and the learning agent
attempts to deviate.

6. Evaluate the learned policy. If L provides a positive devi-
ation from s*, add L to S, and extend the empirical game
by continuing with stage 3. Otherwise, if learning has
converged and the RL model cannot be improved further,
the process ends.

Stages 1 through 4 are part of the standard EGTA process.
Our EGTA/RL approach adds stages 5 and 6, and repeats
the cycle until convergence. The entire process is outlined
in Figure 1.
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Figure 1: Interleaving empirical game-theoretic analysis
with reinforcement learning.

One of the most basic trading scenarios is an abstract mar-
ket based on the continuous double auction (CDA) mech-
anism [Friedman, 1993]. The CDA is a simple and well-
studied auction institution, employed commonly in com-
modity and financial markets. Numerous strategies for trad-
ing in generic CDA environments have been proposed over
the years, and analyzed experimentally in various combi-
nations [Cliff, 1998, Rust et al., 1994, Tesauro and Bredin,
2002, Vytelingum et al., 2008]. In a recent work [Schvartz-
man and Wellman, 2009a], we analyzed a strategy set in-
cluding representatives of the major strategies from this lit-
erature. We exhaustively sampled profiles over this set,
and iteratively derived new strategies using our combined
EGTA/RL process. When this converged, the equilibria of

the final empirical game were supported exclusively with
learned strategies. This study demonstrated the effectiveness
of RL interleaved with EGTA for deriving stronger CDA
trading strategies, and inspired our present work.

TAC Travel Overview

TAC Travel is a game in the domain of travel shopping, in
which eight autonomous travel agents assemble trip pack-
ages of hotel rooms, flights, and entertainment tickets on
behalf of their clients. During a 9-minute game, agents at-
tempt to maximize total client satisfaction (utility summed
over eight clients) minus expenditures, by trading goods in
three different markets. Flights are sold at fixed prices that
vary according to a stochastic process. Hotel rooms are sold
in multiunit ascending auctions, that close periodically in a
random order. Entertainment ticket trading, our focus in this
work, is mediated by CDAs.

More specifically, there are three different entertainment
events across four days, and clients specify a fun bonus
(f1, f2, f3) ~ U[0,200] for attending each of them. There
are 8 tickets available for each event type and day (96 tickets
in total), and all agents receive an initial random endowment
of 12 tickets. Game rules allow clients to attend at most one
event per night of the trip, and do not provide additional
utility for having a client attend the same type of event more
than once. Tickets are traded throughout the entire 9-minute
game via 12 standard CDAs (one per day and event type).

The game comprises 28 simultaneous auctions in total,
with interdependencies dictated by market rules, client pref-
erences, and trip feasibility constraints. Clients accrue utility
1000 for a feasible trip, minus a penalty for deviating from
their preferred day, plus bonuses for staying in the premium
hotel or consuming entertainment. At the end of a game
instance, the TAC game server calculates the optimal alloca-
tion of goods to clients for each agent, and computes agent
score as total client utility minus net expenditures. Agents
holding negative balances of entertainment tickets are as-
sessed a penalty of 200 per ticket owed.

Walverine’s Architecture

The architecture of Walverine, the TAC Travel entry from
the University of Michigan, is depicted in Figure 2. Trad-
ing logic is divided into two main modules, one to purchase
hotel rooms and flights, and another to trade entertainment
tickets. A centralized optimizer computes optimal packages
and marginal valuations, answering queries requested by the
trading modules. All optimizations are based on transactions
and prices (both actual and predicted) reflecting the state of
both traders, turning the optimizer into an implicit link that
allows trader coordination. A proxy mediates communica-
tions between the trading components and the game server,
routing all bids and queries.

The optimizer provides an interface that allows trad-
ing components to set parameters (e.g., good holdings and
prices) and issue queries, communicating with them through
sockets. The optimization problem is modeled as an inte-
ger linear program [Wellman et al., 2007, Appendix B] writ-
ten in AMPL [Fourer et al., 1993], and computed using the



Flight and
Hotel Buyer
TAC

Optimizer
B Server

Proxy €=
Entertainment

Trader

Figure 2: Walverine’s architecture.

CPLEX solver. It answers two basic queries.

Optimal package. Optimal bundle of goods, given good
holdings and predicted prices.! Our implementation actu-
ally considers only opportunities to purchase goods, and ne-
glects the possibility of selling entertainment tickets. This is
an instance of the acquisition problem, a special case of the
completion problem [Boyan and Greenwald, 2001] compris-
ing a core subtask for bidding in simultaneous markets.

Marginal values. Incremental value of each additional
unit of available goods. Let v*(g,x) denote the value of
the optimal package, assuming current holdings and price
predictions, except that the agent holds x additional units of
good g and that no further units of g can be purchased. The
marginal value of the kth unit of g is

MVk:U*(g7k)_v*(g7k_1)' (1)

The optimizer provides marginal values for open hotel
auctions and 1 < k < 8. For entertainment, the optimizer
provides the marginal value of buying (M V) and cost of
selling (M V) a single unit of each event type and day.

Empirical Game

Our research team at the University of Michigan has been
conducting an ongoing EGTA study of TAC Travel based on
parametric variations of Walverine since 2004, with over
200,000 game instances in its data set as of April, 2009. The
experiment runs on a testbed comprising a total of five ded-
icated workstations (one running the TAC game server, one
running all eight agents, and three running the optimizers),
plus a shared workstation that controls experiment genera-
tion and data gathering.

All experiments and results described in this paper ad-
dress the reduced four-player version of the game, denoted
TAC| 4, where each player controls the strategy of two TAC
agents [Wellman et al., 2005]. This reduction, coupled with
symmetry, shrunk the profile space from more than 10%* to
270725 distinct profiles, given 49 strategies introduced to
date. Table 1 shows our data set divided among the 1-, 2-,
and 4-player versions of the game. The unreduced 8-player
game, due to its size, remains mostly unevaluated.

We reduce sample variance by adjusting scores, using the
method of control variates [L’Ecuyer, 1994]. The control

'Walverine predicts hotel prices by calculating the competitive
equilibrium of the TAC economy [Wellman et al., 2004]. Enter-
tainment and flight prices are given by the price quote.

Profiles Samples/Profile
p Total | Evaluated | % | Min [ Mean
1 49 49 | 100.0 35 92.9
2 1225 998 | 81.5 22 41.1
4 | 270725 7254 2.7 19 27.8

Table 1: Evaluated profiles in TAC Travel for each reduction
TAC|,,, and sampled games per profile.

variables combine premiums for good hotels and entertain-
ment, initial flight quotes, and demand based on preferred
arrival and departure dates. The specifics of this adjustment
are provided by Wellman et al. [2007].

Existing Strategies

The strategies included in our EGTA study consist of differ-
ent versions of Walverine, generated through fourteen pa-
rameters that control its behavior. One such parameter, for
example, controls bid shading, the amount that hotel bids
get reduced below Walverine’s value estimate. Thirteen pa-
rameters control behavior for flights and hotels bidding, with
a single parameter selecting the strategy used to trade enter-
tainment tickets. Th full parametrization produces a large
space of 864,000 possible strategies, given the individual pa-
rameter values tested to date. Of course, we never intended
to test all these combinations. Over the course of the EGTA
analysis, new strategies have been introduced one-by-one,
each manually selected after carefully considering interme-
diate results from empirical equilibrium analyses.

We provide a list of strategies explored to date in Ta-
ble 2.2 For the purposes of this study we ignore the de-
tails about flights and hotels, and focus on the entertainment
strategy only. Consequently, we assign uninterpreted labels
to flight/hotel parameters, except for setting “H3” which is
the base of our new (learned) entertainment strategies.

The entertainment strategies that we tested are:

E10/E14: derived using RL for TAC-02

E11/E15: derived using RL for TAC-03

E12/E13: based on livingagents

e E16/E17: based on WhiteBear

e E19/E20: derived using our EGTA/RL methodology

As discussed below, E14 is the same as E10 except for a bug
fix that updates the optimizer’s view of entertainment hold-
ings properly. Similarly, E15 fixes E11, E13 fixes E12, and
E17 fixes E16. In actuality, for any given case the “fixed”
version is not necessarily better than the “bug” version, as
other elements of the strategy may compensate for the unin-
tended failure to update holdings. Therefore, we treat these
as simply different strategies, and evaluate them empirically
in our experimental testbed.

2Strategy IDs shown here do not necessarily correspond with
labels employed in previous studies based on our testbed.



Strategy ID Samples Ent. Tarilrggf /;Sligh T
1 7,698 | Ell
2 7,092 | E12
3-7 237,776 | EI1
8 13,478 | E12
9 33,840 | El1
10 25,164 | E12
11-18 277,350 | EI1
19 18,376 | E15
20 46,780 | E17
21 5,264 | El4
22 55,412 | El11
23 19,018 | EI5
24 52,140 | El11 Various
25 30,062 | E10 | combinations
26 50,734 | El11
27 21,280 | E12
28 15,318 | E13
29-30 36,626 | E15
31 85,512 | E17
32-35 39,994 | EI1
36 4,990 | E15
37-39 60,762 | El1
40 24,570 | E12
41 5,354 | E16
42 126,830 | E17
43 31,172 | El1
44 57,250 | E17
45 24,838 | E12
46 9,766 | E13
47 106,686 | E17 H3
49 61,954 | E19
50 34,762 | E20
Total | 1,627,848

Table 2: Strategies in TAC Travel empirical game. Samples
are per game and agent, out of 203,481 games. Strategy 48 is
not part of the empirical game, as it is only used temporarily
for online learning purposes.

Walverine 2002 (E10/E14)

The idea of applying Q-learning to TAC strategies was pro-
posed by Boadway and Precup [2001], and employed in
their TAC-01 entry. This agent attempted to learn a pol-
icy for the entire TAC game, but this proved too ambitious
given the time available for development and training. In-
spired by their example, we sought to pursue this approach
for the more limited task of entertainment trading.

The original entertainment trader used for TAC-02 em-
ployed Q-learning to derive a bidding policy. The Q func-
tion was encoded in two standard lookup tables, one for
days {1, 4} and the other for days {2, 3}. The agent con-
sidered each auction independently, and approximated their
state using six parameters: BID, ASK, number of tick-
ets held, game time, marginal value M V) of an additional
unit, and marginal cost MV} of selling a unit (1). To keep
the state space manageable, we discretized these dimensions
into value sets of size 6, 6, 3, 3, 7, and 7, respectively.

Actions were defined as offsets from marginal value. We
used sixteen discrete offset values, half for buying and half

for selling decisions. On each bidding iteration, the agent al-
ternated between buy and sell decisions, treating them inde-
pendently and sequentially to avoid considering all buy/sell
combinations. The agent submitted only single-unit enter-
tainment bids on each bidding iteration.

Rewards were given in both intermediate and terminal
states. Intermediate rewards comprised cash flow originated
from trading, resulting in positive rewards for sales and neg-
ative ones for purchases. Terminal rewards comprised fun
bonus accrued to clients, based on the optimal allocation of
goods at the end of a game.

We trained our agent by employing offline Q-learning on
a training set consisting of batches of games against other
TAC participants and instances of self-play, a total of more
than 1800 games. Walverine employed a variety of en-
tertainment trading policies while gathering experience, in-
cluding a hard-coded strategy based on the one reportedly
employed by livingagents [Fritschi and Dorer, 2002]. Once
we had accumulated sufficient data, we ran some instances
of Walverine based on preliminary learned policies, with
various exploration-exploitation control methods.

During the actual finals, our learned strategy obtained an
average reward nearly 400 over the no-trading strategy, but
still below the livingagents baseline. Since we conducted
this training while preparing our agent for the actual TAC
tournament, our agent was subject to many changes dur-
ing the learning process. These changes included substan-
tial modifications of all main modules, including the op-
timizer and all trading components (entertainment, flights,
and hotels), which undoubtedly confounds the results. In
the present learning study we avoided these pitfalls, by fol-
lowing the more methodical approach described below.

One change in particular involved switching from one
to two mirror optimizers for efficiency purposes, and hav-
ing these handle queries of hotels and entertainment sepa-
rately. The change required that our two trading compo-
nents updated holdings and price information (for the goods
they were in charge of) on both optimizers. An unfortunate
bug, however, prevented the entertainment trader from up-
dating entertainment holdings in the optimizer used for hotel
queries. Consequently, our trading components were not in
synchrony, and the flight/hotel buyer behaved as if no enter-
tainment trading occurred throughout the games (including
those in TAC finals). This bug was introduced while we were
already in our training period, and was discovered in 2004
from experiments conducted in our EGTA studies. Strate-
gies E10 and E14 both implement the policy derived from
this learning experiment, but E14 includes a bug fix to up-
date holdings in the optimizer properly. Note that E14 is not
necessarily better than E10 because a large fraction of the
bidding policy was learned from experience acquired while
playing games with the bug.

Walverine 2003 (E11/E15)

In 2003 we tried Q-learning again, but this time using neural
networks to represent the value function. This effort was
short-lived and not particularly successful, but nonetheless
we included the resulting policy in our testbed as part of



our EGTA study. Settings E11 and E15 implement the same
policy, except that E15 updates optimizer holdings properly.

livingagents (E12/E13)

The top-scoring agent of the TAC competition held in 2001,
livingagents [Fritschi and Dorer, 2002], chose all client
itineraries at the beginning of a game, placing very high ho-
tel bids (to secure the rooms) and purchasing appropriate
flights immediately. The choice was made by calculating
the optimal package of goods, assuming that flights could
be purchased at their actual cost, hotels at their average (his-
toric) cost, and all entertainment tickets at the average (his-
toric) price of $80. For the rest of the game, the agent traded
entertainment tickets in order to match its optimal alloca-
tion. For the first seven minutes of a game, entertainment
bidding was conditional on having an ASK price lower than
$80 or a BID price higher than $80, for buy and sell offers,
respectively. After the seventh minute, livingagents simply
placed necessary bids to meet its optimal package, without
any conditions. All bids, buy or sell, were priced at $80
during the entire game.?

Our implementation of EI12/E13 is limited to livinga-
gents’ entertainment strategy specified above, leaving the
purchase of flights and hotels to our parameterized version
of Walverine. Since Walverine does not initially commit
to client itineraries, the optimal package of goods usually
varies throughout the game. Consequently, our implemen-
tation attempts to buy (sell) tickets with a marginal value
higher (lower) than 80, as indicated by the optimizer on ev-
ery bidding opportunity. E12 and E13 implement the same
policy, except that E13 updates optimizer holdings properly.
Note that, in this case, we would expect E13 to be better than
E12, as there is no learning involved.

WhiteBear (E16/E17)

WhiteBear [Vetsikas and Selman, 2003] was the top scoring
agent in the Trading Agent Competitions held in 2002 and
2004, and obtained the third and second positions in 2003
and 2003, respectively. The creators of WhiteBear devoted
most of their effort to dealing with hotels and flights. For
entertainment, they used a simple but effective approach.

WhiteBear develops an overall plan for entertainment
holdings, and makes offers to buy or sell accordingly at a
price equal to the current price offset by a small amount.
At the beginning of a game the agent also tries to buy low-
priced tickets, either to allocate them to clients or potentially
sell them for a profit later in the game. The agent limits the
prices it bids in order to avoid very profitable deals for other
agents, even if such deals were beneficial for WhiteBear.
Price limits are relaxed somewhat during the last minute of
the game.

Our implementation is based on the source code shared
by the authors of WhiteBear, adapted to work within the
framework used by Walverine. Specifically, the agent sub-

3This description is adapted to the current 9-minute game. TAC
Travel games ran for 15 minutes in 2000, 12 minutes from 2001 to
2003, and 9 minutes thereafter.

mits single-unit offers on each bidding iteration based on
following rules:

e During the first minute of a game, the agent attempts to
purchase tickets depending on current holdings. If it holds
at most one unit of the specified ticket, WhiteBear at-
tempts to buy for a price of 30. If it holds two or three
tickets, it offers 20, and if three or more, the offer is 5.

e Between the second and eighth minutes, the agent queries
the optimizer to determine the ticket quantities it needs to
buy or sell in order to match the optimal package. The
agent then bids min(ASK + 10, 66).

e During the last minute of a game, WhiteBear submits buy
bids at price min(ASK + 10, 100).

e Sell offers needed to match the optimal package are set to
max(BID — 2, 66) throughout the entire game.

Despite the simplicity of this strategy, WhiteBear ob-
tained the highest entertainment score (as measured by the
sum of fun bonus and cash flow obtained through trading)
of all participants in the 2002 competition. This score was
about 10% higher than that of the second highest scoring
agent, and about 15% above the results obtained by Walver-
ine-02. Walverine adopted E17 as its entertainment strat-
egy for TAC-05, and this was likely the most important con-
tributor to its improved performance [Wellman et al., 2006].

E16 and E17 implement the same policy, except that E17
updates optimizer holdings properly. As with livingagents,
we would expect E17 to be generally better than E16.

Other Entertainment Strategies

Years of TAC Travel tournaments yielded various different
entertainment strategies, many of which are not included
in our testbed. ATTac [Stone et al., 2001, 2003], a top-
scoring agent in TAC-00/01, calculated marginal values for
each ticket and submitted linearly increasing (decreasing)
buy (sell) bids as a function of game time, settling for
smaller profits as the game progressed. TeamHarmony
[Onodera et al., 2003], a participant in TAC-03/04, also sub-
mitted buy (sell) prices that increased (decreased) with time.
SouthamptonTAC [He and Jennings, 2003], the second-
highest scoring agent in TAC-02, calculated its optimal al-
location of goods throughout the game, and employed fun
bonus to value entertainment tickets (instead of marginal
values). The agent defined a reservation price consisting of
ticket value and a margin that decreased with time, and sub-
mitted buy (sell) bids whenever the ASK (BID) price ap-
proached the reservation price. Thalis [Fasli and Poursani-
dis, 2003], which achieved third and fourth places in TAC-
02 and TAC-03, respectively, traded entertainment tickets
seeking to meet its optimal allocation. This agent submit-
ted sell bids after the first minute of the game, restricting
prices to the range 81-125. Buy bids were restricted to
the range 30-101, but were only submitted after the sixth
game minute in order to exploit lower historical average
trade prices. Another participant of TAC-02, 006 [Aurell
et al., 2002], submitted bids at prices that approached the
agent’s estimated marginal value exponentially. LearnA-
gents [Sardinha et al., 2005], the agent achieving third place



in TAC-04, submitted bids at prices indicated by its optimal
allocation, offset by a fixed amount. Metarcor [Kehagias
et al., 2006], the highest scoring agent in TAC-05, employed
a set of bidding rules seeking a predefined average profit per
auction per game. This agent determined profit by the differ-
ence between cash flow and ticket value, and its actual bids
varied throughout the game based on time elapsed and other
heuristic rules. RoxyBot, the highest scoring agent in TAC-
06 [Lee et al., 2007], predicted future ticket prices based on
trades from past games, deciding whether to submit bids at
current prices or wait for future stages of the game.

Learning Framework

The learning model employed for entertainment strategies
E19 and E20 is related to that of E14, and is also similar to
the one used for our generic CDA study. We employ online
Q-learning, and tile coding to represent the value function
[Sutton and Barto, 1998]. The model is defined by a stan-
dard formulation of states, actions, and rewards.

Tile Coding

We partition state and action features into tiles, which com-
bine to form a multidimensional tiling. Each tile maintains
a weight representing the approximate Q-value of a (dis-
cretized) state-action pair. Given a training tuple, the method
finds the containing tile ¢, calculates the standard Q-learning
update, and adjusts the weight of ¢ accordingly. We control
generalization across each feature independently through a
parameter b; denoting generalization breadth, the farthest
neighbor of ¢t across feature ¢ that gets updated. Neighbor
tiles that are d; (0 < d; < b;) tiles away from ¢ across fea-
ture 7 get a fraction of such update equal to [ [, (1 — bl‘]ﬁ),
where F' is the set of features encoded in the tiling.

State Space

The following observable features are used to describe a
state and condition actions:

e Role: binary feature (buy or sell), encoded by two tiles
(generalization not applicable).

e Day: binary feature to distinguish between events on days
{1, 4} or {2, 3}, encoded by two tiles.

e Value: marginal value provided by the optimizer (1),
based on the role (M V) if buying, MV} if selling). This
is encoded by 101 tiles and generalization breadth of five.

e Time: time elapsed in the game, encoded by 18 tiles and
generalization breadth of two tiles.

As with entertainment strategy E14, here we also treat each
auction independently, and alternate between purchase and
sell decisions on each bidding iteration. Unlike E14, we ig-
nore market quotes, ticket holdings, and one marginal value
(depending on the role) — but use far greater fidelity to en-
code value and time. Unlike the generic CDA game, we
do distinguish buying and selling roles. The (marginal) val-
ues for buying and selling goods are not symmetric in this
case, and other strategies employ asymmetric bidding rules
as well. We are also not considering features that encode
price history explicitly, as we did for the CDA game.

Actions

An action A is a positive offset from the marginal value pro-
vided by the optimizer at the time the bid gets computed.
Sell bids are submitted for MV, + A, and buy bids for
MV — A. These actions are encoded by 40 tiles, and a gen-
eralization breadth of two tiles. This configuration is similar
to that of E14, with greater fidelity.

Rewards

Rewards are defined for both intermediate and terminal
states. Intermediate rewards are assigned to states includ-
ing a transaction, based on marginal value calculations (1).
In contrast to the prediction-based marginal values provided
dynamically during a game by the optimizer, however, we
assign rewards based on marginal values calculated with re-
spect to the agent’s actual holdings of flights and hotels at
the end of a game, assuming that no additional goods can
be traded. We traverse the sequence of transactions, set en-
tertainment holdings in the optimizer to those that the agent
had during the game (before each transaction occurred), and
compute marginal values accordingly. For ticket sales, the
reward is given by the cash amount obtained from the trade
minus M V. Similarly, for ticket purchases, the reward is
given by MV} minus the amount paid.

Terminal reward is the difference between the final agent
score and the sum of all intermediate rewards.

This scheme differs from that used for the CDA game,
which did not need a final reward and had fixed (given) val-
ues for each unit being traded. It is also different from the
scheme used for E14, as it attempts to better allocate rewards
to actions by taking into account the marginal contribution
of each trade with regards to the final allocation of goods.

Experiments

Our search for (approximate) equilibria in the empirical
TAC Travel game focuses on two-strategy symmetric mixed
profiles. Restricting attention to symmetric equilibria with
small support simplifies the search, and enables us to con-
firm or reject equilibria with evaluations of only a relatively
limited number of neighboring profiles. Given a symmet-
ric four-player game, there are only five pure profiles over
two strategies, and only four profiles required to evaluate
deviation by a single player to a third candidate strategy.
As noted in Table 1, despite years of continual simulation
we have evaluations for only 2.7% of profiles of the 49-
strategy game. This includes 359 pairs of strategies (out of
(“J) = 1081 possible pairs) for which we have all five pro-
files involving that pair. Each of these has been “challenged”
to a different extent, as measured by the fraction of deviating
profiles explored. We define the regret bound of a profile as
the maximum gain from deviation by one player to another
strategy, based on evaluated neighbor profiles. It is a lower
bound on actual regret because potential deviations not yet
evaluated could only increase the maximum gain.

Before we began our learning process, the two-strategy
symmetric profile with lowest regret bound in TAC |4 was



a mixture of strategies 31 and 47,* played with probabil-
ities .181 and .819, respectively. Such determination was
based on an exhaustive search among the 359 available two-
strategy combinations. Figure 3 presents a sensitivity anal-
ysis of these mixtures for 10,000 sampled payoff functions.
Most curves in the figure are grayed and excluded from the
legend, as they are essentially dominated.” Note that mix-
ture probabilities shown in the legend are slightly different
from .181 (31) and .819 (47) because the figure is based
on the latest data set at this writing, which includes addi-
tional samples taken since identifying this best pre-learning
approximate equilibrium. Note also that there are other un-
dominated mixtures with relatively low regret bounds. Be-
cause all potential deviations of the 31/47 mixture have been
evaluated, .02 is the estimated actual regret of 31/47 (with
respect to strategies 1-47 only), not just a lower bound.
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Figure 3: Distribution of regret bounds for 359 two-strategy
mixtures of strategies 1-47. The legend shows mixture pro-
portions, expected payoff and regret bound based on the
maximum likelihood payoff matrix, mean regret bound over
10,000 sampled payoff matrices (also indicated by the mark-
ers on each curve), and probability-weighted percentage of
potential deviations evaluated (count of evaluated neighbor
profiles over all neighbor profiles, weighted by the probabil-
ity of each profile of being played). Dominated mixtures are
shown in gray.

In order to improve upon this 31/47 mixture and the enter-
tainment strategies described earlier, we derived entertain-
ment strategy E19 (strategy 49) by employing our EGTA/RL
methodology. Since we are working on a four-player version

“Both 31 and 47 employ entertainment strategy E17 (based on
WhiteBear), with different parameters for flights and hotels.

SPayoff function samples were generated based on mean and
variance estimates of profile payoffs from the empirical game. Our
criterion to test dominance is to compare regret bounds at discrete
cumulative probabilities {.001,.002,...,.999}. A mixture that
provides equal or higher regret bound than another mixture for ev-
ery discrete point (with at least one strict inequality) is considered
essentially dominated.

of the game, we set three players (six agents) to play the
31/47 mixture, while one player (two agents) attempted to
deviate by learning a new policy. Our learning approach was
similar to that used for the CDA study. Training was con-
ducted online, repeatedly cycling over the experience col-
lected during the last 200 games played (out of more than
900). Agents explored new actions with a linearly decreas-
ing probability, using softmax action selection. The learn-
ing rate was fixed at .005, and the discount factor at .99.
The payoff of a learned strategy was evaluated by playing
all successive games with no further adaptation.

Figure 4 shows the learning curve of E19. At the time
we conducted this training, mixture 31/47 provided a payoff
of 3915.06 (now 3914.41, given additional samples). The
evaluation of strategy 49, when other players adopt the 31/47
equilibrium, results in a payoff of 3976.24, or a deviation
gain of 61.83.
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Figure 4: Learning curve of entertainment strategy E19
(strategy 49). Six agents (shown in blue) adopt the 31/47
mixture, while two agents (shown in black) seek to deviate.
In order to deviate, 49 needs a payoff above 3914.41 (i.e.,
payoff obtained if all agents adopted the 31/47 mixture). The
dashed diagonal line (right axis) shows the probability of ex-
ploring new actions.

Based on the deviation results of strategy 49, we incor-
porated it to the set of existing strategies and extended the
empirical game. By evaluating some of the new profiles, we
determined that strategy 49 was actually a pure-strategy NE.

Given this result, we set our learner to derive entertain-
ment strategy E20 (strategy 50). We conducted training over
950 games, also decreasing the probability of exploring new
actions linearly (but starting from a smaller initial value).
The learning curve is shown in Figure 5.

Evaluating strategy 50 resulted in a deviation gain of
20.04 from the all-49 equilibrium. Consequently, we added
strategy 50 to our data set, and extended the empirical
game with further samples. This resulted in an approximate
mixed-strategy NE (regret of .03) consisting of strategies
49/50, played with probabilities .295/.705. Figure 6 shows
a sensitivity analysis of 385 two-strategy mixtures evaluated
to date, considering our entire database up to strategy 50.
Note that we have evaluated all potential deviations from
the 49/50 equilibrium, and so far no other mixture provides
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Figure 5: Learning curve of entertainment strategy E20
(strategy 50).

a comparable regret. Except for the 49/50 approximate equi-
librium and the all-49 profile, all other 383 mixtures are es-
sentially dominated.

The results of all these experiments are summarized in
Table 3.
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Figure 6: Distribution of regret bounds for 385 two-strategy
mixtures of strategies 1-47 and 49-50. Bounds are based on
10,000 sampled payoff matrices.

EGTA Learning
Strategies | Equil. Mix Payoff PI;I(:E]&;S Strat. PE;’(\)/'ff
147 i; 8;% 3914.41 | 230300 49 | 3981.54
49 49 1.000 | 3974.59 | 249900 50 | 3994.63
50 gg 8:3(9)2 3964.25 | 270725

Table 3: Results obtained by interleaving EGTA with RL.

We also evaluated a version of TAC] 4 restricted to strate-

gies {45, 46, 47, 49, 50}, for which we have evaluations of
all combinations of profiles (70 in total). These strategies
use identical settings for flight and hotel parameters® and
only differ by their entertainment strategies—which makes
them good candidates to evaluate our learned strategies E19
and E20. Using this restricted game, we performed a sensi-
tivity analysis on strategy mixtures, sampling 100,000 pay-
off matrices and computing equilibria via replicator dynam-
ics. The results indicate that strategies 49 and 50 are played
most frequently in most of the samples, though strategy 47
(entertainment E17) appears in equilibrium occasionally.

As a final test, following the approach of Jordan et al.
[2007], we elaborated a ranking of strategies by comparing
deviation gains from equilibrium. We performed this anal-
ysis for the equilibrium prior to learning new entertainment
strategies (31/47), and the one obtained afterwards (49/50).
With respect to the pre-learning equilibrium, 49 (the strat-
egy learned in exactly this context) is best with a gain of
almost 62, statistically better than the next group (p < .01):
31 and 47, which have statistically indistinguishable gains
close to zero. With respect to the current 49/50 equilib-
rium, no strategies are close to deviating (each worse at
p < .01). Strategies 49 and 50 have statistically indistin-
guishable gains close to zero, statistically better than the
next strategy, 42, which has a gain of —66.

Discussion

Two iterations of our interleaved EGTA/RL process pro-
duced two new TAC entertainment strategies, which com-
prise an equilibrium in the cumulative empirical game. The
deviation benefit decreased from the first iteration to the sec-
ond, and we expect that little gain would have been produced
by a third iteration.

It is difficult to make broad claims about the superiority
of our new strategies for TAC entertainment strategy, for
several reasons. First, although we did include a diverse
sample of known approaches, this was not exhaustive. Sec-
ond, it is impossible to completely separate entertainment
strategy from the rest of the TAC Travel agent, as policies
for flight and hotel trading significantly influence entertain-
ment values. We controlled for this to some extent in our
study, by coupling our new strategies with the best ranked
flight and hotel strategy parameters, based on our previ-
ous empirical game analysis. Moreover, in a population of
agents identical except for the entertainment strategies, the
new learned strategies emerged as most prominent in equi-
libria under sensitivity analysis. Nevertheless, past success
in entertainment trading by WhiteBear and the 2005 version
of Walverine that uses WhiteBear’s entertainment strategy
suggest that our baseline comparison is highly salient.

It may be surprising that the learned entertainment strate-
gies do not condition on price quote or history information
(except indirectly as the marginal value for one ticket may
depend on price quotes on others). In fact, many of the previ-

SThe specific setting is labeled “H3”, the best known combina-
tion of flight and hotel parameters. This is based on results from
a linear regression that fitted parameter settings to score results
against the best known equilibrium mixture up until strategy 47.



ous strategies from the TAC literature make little or no use of
price quotes. Given the importance of such observations in
generic CDA bidding, additional EGTA/RL iterations with a
state space reformulated to include price features may be a
promising approach to further improvements.

Acknowledgments

We thank Ioannis Vetsikas for sharing the WhiteBear source
code with us. Kevin Lochner and Daniel Reeves assisted sig-
nificantly in the operation of the TAC Travel testbed over the
years. This work was supported in part by the US National
Science Foundation.

References

E. Aurell, M. Boman, M. Carlsson, J. Eriksson, N. Finne,
S. Janson, P. Kreuger, and L. Rasmusson. A trading agent
built on constraint programming. In Eighth International
Conference of the Society for Computational Economics:
Computing in Economics and Finance, Aix-en-Provence,
2002.

J. Boadway and D. Precup. Reinforcement learning applied
to a multiagent system. Presentation at TAC Workshop,
2001.

J. Boyan and A. Greenwald. Bid determination in simultane-
ous auctions: An agent architecture. In Third ACM Con-
ference on Electronic Commerce, pages 210-212, Tampa,
FL, 2001.

D. Cliff. Evolving parameter sets for adaptive trading
agents in continuous double-auction markets. In Agents-
98 Workshop on Artificial Societies and Computational
Markets, pages 38—47, Minneapolis, MN, May 1998.

M. Fasli and N. Poursanidis. Thalis: A flexible trading
agent. Technical Report CSM-388, University of Essex,
Department of Computer Science, 2003.

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Mod-
eling Language for Mathematical Programming. Boyd &
Fraser, 1993.

D. Friedman. The double auction market institution: A sur-
vey. In D. Friedman and J. Rust, editors, The Double Auc-
tion Market: Institutions, Theories, and Evidence, pages
3-25. Addison-Wesley, 1993.

C. Fritschi and K. Dorer. Agent-oriented software engineer-
ing for successful TAC participation. In First Interna-
tional Joint Conference on Autonomous Agents and Multi-
Agent Systems, Bologna, 2002.

M. He and N. R. Jennings. SouthamptonTAC: An adaptive
autonomous trading agent. ACM Transactions on Internet
Technology, 3:218-235, 2003.

P. R. Jordan, C. Kiekintveld, and M. P. Wellman. Empirical
game-theoretic analysis of the TAC supply chain game.
In Sixth International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pages 1188—1195, Hon-
olulu, 2007.

D. Kehagias, P. Toulis, and P. Mitkas. A long-term profit
seeking strategy for continuous double auctions in a trad-
ing agent competition. In Fourth Hellenic Conference on
Artificial Intelligence, Heraklion, Greece, 2006.

P. L’Ecuyer. Efficiency improvement and variance reduc-
tion. In Twenty-Sixth Winter Simulation Conference,
pages 122—-132, Orlando, FL, 1994.

S. J. Lee, A. Greenwald, and V. Naroditskiy. RoxyBot-06:
An (SAA)? TAC travel agent. In Twentieth International
Joint Conference on Artificial Intelligence, pages 1378—
1383, Hyderabad, 2007.

M. Onodera, H. Kawamura, M. Yamamoto, K. Kurumatani,
and A. Ohuchi. Design of adaptive trading strategy for
trading agent competition. In International Technical
Conference on Circuits/Systems, Computers and Commu-
nications, pages 337-340, 2003.

J. Rust, J. H. Miller, and R. Palmer. Characterizing effective
trading strategies: Insights from a computerized double

auction tournament. Journal of Economic Dynamics and
Control, 18:61-96, 1994.

J. A. R. P. Sardinha, R. L. Milidid, P. M. Paranhos, P. M.
Cunha, and C. J. P. Lucena. An agent based architecture
for highly competitive electronic markets. In Eighteenth
International FLAIRS Conference, pages 326-331, Clear-
water Beach, FL, 2005.

L. J. Schvartzman and M. P. Wellman. Stronger CDA strate-
gies through empirical game-theoretic analysis and rein-
forcement learning. In Eighth International Conference
on Autonomous Agents and Multi-Agent Systems, pages
249-256, Budapest, 2009a.

L.J. Schvartzman and M. P. Wellman. Exploring large strat-
egy spaces in empirical game modeling. In AAMAS-09
Workshop on Agent-Mediated Electronic Commerce, Bu-
dapest, 2009b.

P. Stone, M. L. Littman, S. Singh, and M. Kearns. ATTac-
2000: An adaptive autonomous bidding agent. Journal of
Artificial Intelligence Research, 15:189-206, 2001.

P. Stone, R. E. Schapire, M. L. Littman, J. A. Csirik,
and D. McAllester. Decision-theoretic bidding based on
learned density models in simultaneous, interacting auc-
tions. Journal of Artificial Intelligence Research, 19:209—
242, 2003.

R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT
Press, 1998.

G. Tesauro and J. L. Bredin. Strategic sequential bidding in
auctions using dynamic programming. In First Interna-
tional Joint Conference on Autonomous Agents and Multi-
Agent Systems, pages 591-598, Bologna, 2002.

I. A. Vetsikas and B. Selman. A principled study of the de-
sign tradeoffs for autonomous trading agents. In Second
International Joint Conference on Autonomous Agents
and Multi-Agent Systems, pages 473—480, Melbourne,
2003.



P. Vytelingum, D. Cliff, and N. R. Jennings. Strategic
bidding in continuous double auctions. Artificial Intel-
ligence, 172:1700-1729, 2008.

M. P. Wellman. Methods for empirical game-theoretic anal-
ysis (extended abstract). In Twenty-First National Confer-
ence on Artificial Intelligence, pages 1552—1555, Boston,
2006.

M. P. Wellman, D. M. Reeves, K. M. Lochner, and Y. Vorob-
eychik. Price prediction in a trading agent competi-

tion. Journal of Artificial Intelligence Research, 21:19—
36, 2004.

M. P. Wellman, D. M. Reeves, K. M. Lochner, S.-F. Cheng,
and R. Suri. Approximate strategic reasoning through hi-
erarchical reduction of large symmetric games. In Twen-

tieth National Conference on Artificial Intelligence, pages
502-508, Pittsburgh, 2005.

M. P. Wellman, D. M. Reeves, K. M. Lochner, and R. Suri.
Searching for Walverine 2005. In Agent-Mediated Elec-
tronic Commerce: Designing Trading Agents and Mecha-
nisms, number 3937 in Lecture Notes on Artificial Intelli-
gence, pages 157-170. Springer, 2006.

M. P. Wellman, A. Greenwald, and P. Stone. Autonomous
Bidding Agents: Strategies and Lessons from the Trading
Agent Competition. MIT Press, 2007.



