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Abstract

We introduce the TAC Ad Auctions game (TAC/AA),
a new game for the Trading Agent Competition. The
Ad Auctions game investigates complex strategic issues
found in real sponsored search auctions that are not
captured in current analytical models. We provide an
overview of TAC/AA, introducing its key features and
design rationale. TAC/AA will debut in summer 2009,
with the final tournament commencing in conjunction
with the TADA-09 workshop.

Introduction

Since 2000, the Trading Agent Competition (TAC) series of
tournaments has spurred researchers to develop improved
automated bidding techniques for an array of challenging
market domains. The original TAC game presented a travel-
shopping scenario [Wellman et al., 2001, 2007], and subse-
quent games have addressed problems in supply chain man-
agement [Arunachalam and Sadeh, 2005, Eriksson et al.,
2006] and market design [Niu et al., 2008]. By continually
introducing new games, the TAC series engages the commu-
nity in an expanded set of strategic issues bearing on trading
agent design and analysis. For 2009, we have developed a
fourth major game in the TAC series, in the domain of Inter-
net advertising through sponsored search.'

The emergence of Internet advertising, specifically ad
auctions, as a significant commercial success over the past
decade [Fain and Pedersen, 2006] has led to increasing in-
terest among academic researchers, manifest in a growing
literature and a popular regular workshop on the topic. Both
the commercial importance and academic interest were ma-
jor motivations of introducing a new TAC game in this area.
Given that bidding in keyword auctions (employing essen-
tially the same mechanism we incorporate in the game) is a
widespread current activity, the prospects for real-world im-
plementation of ideas developed in the research competition
are more direct than previous TAC games.

Despite considerable academic interest, many interesting
algorithmic, bidding, and mechanism-design problems re-
main open [Muthukrishnan, 2008]. Designing a realistic
simulator [Feldman and Muthukrishnan, 2008] is a central
component in many of these problems. Yahoo! researchers

'http://aa.tradingagents.org

[Acharya et al., 2007] developed the Cassini simulator in
this vein. The system simulates low-level query and click
behavior, publisher ranking and budget enforcement, and
other aspects of the sponsored search environment. Cassini
allows a rich simulation of user interaction, however the au-
thors report some of its limitations in terms of the advertiser
strategy space. For instance, advertisers were not allowed to
adaptively change their bids in response to new market con-
ditions. Perhaps most importantly, the Cassini system is not
publicly accessible to the research community at large.

Another early predecessor to TAC/AA was the Pay Per
Click Bidding Agent Competition,” designed and organized
by Brendan Kitts as part of the ACM EC-06 Sponsored
Search Workshop. Participants in this competition managed
a live Microsoft AdCenter campaign for a given set of key-
words over a 24-hour period. Running the competition with
real money and real users over actual sponsored-search in-
terfaces provides a maximal level of realism. In our design,
however, we follow the precedent of previous TAC games
in developing a simulated environment, where participants
interact via a specified interface with a game server running
the auctions and generating simulated market events (in this
case, search user behavior). This approach provides advan-
tages of repeatability and transparency, which are particu-
larly important for supporting the research goals of this en-
terprise.

Sponsored Search

Ad auctions are used by Internet publishers to allocate and
price advertising channels. Internet advertising provides a
substantial source of revenue for online publishers, amount-
ing to billions of dollars annually. Sponsored search is
a popular form of targeted advertising, in which query-
specific advertisements are placed alongside organic search-
engine results (see Figure 1). The placement (position) of an
ad for a given query, along with the cost (to the advertiser)
per click (CPC), is determined through an auction process.
Under cost-per-click pricing, both the publisher and adver-
tiser bear some of the risk associated with uncertain user
behavior. The use of automated auctions addresses the com-
binatorial problem of quoting an appropriate price (CPC) for
each display slot for each distinct query. Advertisers bid for
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the family of keywords of interest, and competition among
them determines the going CPC for each of the available
slots on a query-by-query basis.

Search Results Page

Paid Ads

Organic Results

Figure 1: Typical search engine results page.

Given the salience of ad auction mechanisms, a growing
number of researchers have started to investigate the mech-
anism design problem faced by search publishers, as well
as the strategic problems faced by advertisers. Common to
many of the early approaches are stylistic restrictions on the
scenario or the full strategic space. Most of the foundational
models for sponsored search analysis construct a static game
of complete information for a single keyword auction [Ag-
garwal et al., 2006, Borgers et al., 2007, Edelman et al.,
2007, Varian, 2007]. This type of analysis has provided a
solid conceptual base for researchers to build upon. Signif-
icant results include equilibrium characterizations and the
discovery that the auctions currently in use by publishers are
not truthful. From the static models, extensions have consid-
ered dynamic variations, often evaluated through simulation
[Cary et al., 2007, Lahaie and Pennock, 2007, Vorobeychik
and Reeves, 2008]. TAC/AA continues in this vein by build-
ing a richer model of the environment, and follows the ex-
ample of previous TAC scenarios by employing a research
competition to attract experimental effort.

Designing an Ad Auction Game

The TAC/AA design attempts to include many of the inter-
esting strategic aspects of sponsored search auctions, in a
simulation framework supporting repeatability and empir-
ical analysis. In this framework there are three types of
agents as shown in Figure 2: users, advertisers, and pub-
lishers. The user and publisher agents are controlled by the
server, while the advertiser agents are controlled by tourna-
ment participants. We discuss the behavior of each in turn
below, as well as the underlying market that drives the be-
havior of the user and advertiser agents.

Some important elements of managing an ad campaign
are not considered, such as exploration of a large keyword
space for high profitability keywords, or optimizing land-
ing page content to improve the advertiser’s quality score.
These issues are sacrificed not for lack of interest or value,
but rather because we lack useful models to represent them.
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Figure 2: TAC/AA agent interaction overview.

In the process of developing TAC/AA, we identified three
interesting modeling problems, not currently resolved in the
sponsored search literature, central to the design of our sim-
ulation environment:

o What drives query generation?
e How do advertisers derive value?
o Why might keyword auctions be interdependent?

The process that generates queries is a fundamental com-
ponent of ad auctions (see Query behavior). In addition
to defining the query space, we include query bursts, large
shifts in the number of queries, which advertisers observe in
real markets. Uncertainty in the volume of queries is an im-
portant consideration for both the publishers and advertisers.

TAC/AA introduces an underlying retail market scenario
(see Defining the Market). This market scenario defines
the value of retail purchases to the advertisers. Unlike many
of the earlier models, the advertiser value-per-click is not
constant (see Conversion Behavior). This formulation im-
poses a keyword-value interdependency based on the query
and conversion processes of user behavior. In most other
models, interdependency is achieved by exogenous budgets.
In reality, short-term budgets are typically not (or should not
be) hard constraints. Query bursts or, in general, uncertainty
in search volume are often used as justification for advertis-
ers imposing spend limits on their campaigns. Thus, in this
way spend limits can be viewed as a protectionary device
that advertisers use to reduce their exposure to a large influx
of low-value clicks.

A full description of the TAC/AA scenario is provided in
the specification document [Jordan et al., 2009]. Here, we
discuss some of the key modeling choices used in TAC/AA,



providing design rationales and comparing to related litera-
ture where applicable.

Defining the Market

In the TAC/AA scenario, users search for and potentially
purchase components of a home entertainment system.
There is a set M of manufacturers in this market, each of
whom produce a set of component types C. The manufactur-
ers and components found in TAC/AA are shown in Table 1.
The set of products P is simply M x C, therefore there are
nine distinct products p = (m, ¢) that are uniquely identified
by their manufacturer m and component c. Advertisers rep-
resent retailers who deal in these products. Each user has an
underlying preference for one of the nine products. The ad-
vertisers use the ad auctions to attract user attention to their
offerings, in an attempt to generate sales.

M C

) Flat } . . TV
% Lioneer H[ E Audio

PG

DVD

Table 1: Manufacturers and components in the retail market.

Adpvertisers each have a distribution process that con-
strains their ability to deliver products to purchasing users in
a timely manner. A user’s decision to purchase is influenced
by how constrained the advertiser is in making its deliver-
ies. This induces a non-linearity in the value of a click (see
Conversion Behavior) to the advertiser.

User Search Behavior

Aggarwal et al. [2008] suggest a framework for analyzing
sponsored search auctions in which the search user takes a
central role. The authors describe the need for a rich prob-
abilistic model of user behavior, specifically once the ads
are presented to the user. This corresponds to the click and
conversion behavior presented in the sections that follow.
We go even further and suggest that the entirety of user be-
havior should form the basis for analysis. This includes the
definition of the query space over which that users generate
queries and the frequency at which they do.

Query behavior

Search queries trigger the ad auctions that are built around
them and, thus, understanding and modeling the user query
process is of fundamental importance. Much of the early
research in ad auctions looked at an instance of a single ad
auction or a sequence of auctions all associated with a sin-
gle query class. This abstracts away the interrelation among
queries and the implications this has for bidding.

For instance, advertisers often use keywords that match
multiple queries. Advertisers must reason about their val-
ues for each type of query that a single keyword matches.

Moreover, the relative frequencies of queries changes dy-
namically over time, thus the value of the keyword changes
with the distribution. This implies that query dynamics is
an important consideration as well, when designing an ad
auction simulation.

TAC/AA uses a state-based user model to generate this
dynamic behavior (see Figure 3). Users progress through
various states in order to satisfy their underlying product
preferences. The user’s state determines the type of query
the user generates. At any given time, the population of
users is divided into three broad classes: non-searching
(NS), searching, and transacted (T). This is similar in na-
ture to the query classifications of Jansen et al. [2008]. Non-
searching users are currently inactive, generating no queries.
The searching users are further divided into informational
(IS) and shopping searchers. The informational searchers
seek to gather information about their desired product but
not to purchase. The shoppers navigate available ads and
possibly transact. Shopping users are further divided by lev-
els of search sophistication® (focus): low focus (level 0), in-
termediate (level 1), and high focus (level 2). The transacted
users have satisfied their preferences and thus do not search.

Searching ([ Fo

Figure 3: User state transition model. Each state also has an
implicit self-loop (not shown).

A query consists of a collection of words. In our model,
we consider only the six words corresponding to manufac-
turers and components in the home entertainment market.
Each query contains at most two of these words: the user’s
desired manufacturer and component. For instance, a user
with preference (Lioneer, TV) may generate a query men-
tioning: Lioneer; TV; both Lioneer and TV; or neither. Men-
tioning neither a component nor manufacturer is denoted an
FO level query. Mentioning one or the other, but not both, is
denoted an F1 level query. Mentioning both component and
manufacturer is denoted an F2 level query. In total, there
are 16 distinct queries: 1 FO query, 6 F1 queries and 9 F2
queries. A user with a given product preference will gen-
erate one of four queries: two possible F1 queries, and one
possibility each at FO and F2.

Each user in a searching state generates a single query per

3We can also think of these levels as reflecting their degree of
knowledge about their own preference.



day. An FO, F1, or F2 user submits a query pertaining to its
level of focus. An informational user selects among the three
query types uniformly at random. If an F1 query is selected,
the informational user selects between the manufacturer and
component with equal probability.

Each user sub-population is modeled as a Markov chain.
Most transition probabilities are stationary, with the follow-
ing exceptions. To model bursts of search behavior, we pro-
vide stochastic spikes in the NS — IS transition. The tran-
sition probabilities from focused search states to state T are
also non-stationary, governed by the click and conversion
behavior of the user.

Click behavior

Many models have been proposed to model click behavior
in users. The functional forms of the models vary, but in
essence each model returns the probability that an ad at a
given position will be clicked. Examples of initial models
include the Edelman et al. [2007] model that assumes each
position has an ad-independent click-through effect, in con-
trast with the Borgers et al. [2007] model that allows for an
independent probability for each advertiser-position pair.
Even the Borgers et al. model is not completely general.
For instance, it may be that the click probability is dependent
on the other advertisers and the position of the other adver-
tisers that are allocated slots. Most existing research (im-
plicitly) adopts one of the following models for click proba-
bility:
e Separability: For each query, the click probability is
the product of a position and advertiser effect [Aggarwal
et al., 2006, Edelman et al., 2007, Borgers et al., 2007,
Varian, 2007];

e Cascade (Markovian): For each query, each ad has a
click probability given that the ad is viewed, as well as a
continuation probability that the user will view the sub-
sequent slot [Aggarwal et al., 2008, Kempe and Mahdian,
2008].

The decomposition given by the separability model yields
a convenient form for the optimization problem the pub-
lisher solves (see Ranking ads), however this model does
not appear to be the best predictor of click probabilities. For
organic (non-sponsored) links, Craswell et al. [2008] find
the cascade model to be the best predictor of click probabil-
ities and argue for applicability of their results to sponsored
links. The dependency of click probability on the other ad-
vertisers is termed an externality effect. Gunawardana and
Meek [2008] analyzed these effects and found a significant
contextual effect when ad aggregators were present. In gen-
eral, Gunawardana and Meek’s results suggest that signifi-
cant externality effects exist and that the assumptions of the
separability model do not hold in practice.

In contrast to the cascade model, Das et al. [2008] propose
an extension of the separability model in which the user will
convert from at most one of the advertisers. Like the cascade
model, this also introduces a dependence on the advertisers
in the higher slots.

The click model we employ in TAC/AA is a hybrid of
the cascade model and the model proposed by Das et al.,

and also incorporates the underlying product preferences of
individual search users. Users in our model proceed as in the
cascade model, but stop clicking on subsequent ads when a
purchase is made.

In practice, one important focus of search engine market-
ing (SEM) is selecting the ad copy or the text that is dis-
played in the ad. This process usually involves creating
a series of ads and then testing the click-through rates of
those ads, known as split testing. The TAC/AA click model
does not incorporate text directly, however it does include
a rudimentary form of ad selection. Ads take one of two
forms: targeted and generic. Targeted ads emphasize a spe-
cific product, whereas generic ads do not. Ghose and Yang
[2008] discuss the effects of brand and product keywords
on click probability. The TAC/AA model incorporates sim-
ilar effects, but in terms of ad targeting. Compared to the
generic ad, users with preference matching the target of a
targeted ad click with higher probability, and non-matching
users are less likely to click.

Specifically, the click behavior of searching users is mod-
eled by the following parameters:

e an advertiser effect eg for each combination of advertiser
a and query class q,

e a targeting effect TF which modifies the probability of
clicking targeted ads depending on whether the user’s
preferences match the ad target,

e a promotion bonus modifying the click probability for
promoted slots, and

e a continuation probability ~, for query class g.

Given a search engine results page for query ¢, the user
proceeds to sequentially view ads, starting from the first po-
sition. For a generic ad viewed from advertiser a, the base-
line probability that the user clicks is given by eg. This
probability can be modified by two factors. First, the rar-
geting factor, fireet, applies the targeting effect positively or
negatively depending on whether the targeted ad selection
matches user preference:

1+ TE if targeted ad, matches
Jtarget = {1 if generic ad
1/(1+ TFE) if targeted ad, does not match.

Second, the promotion factor fur applies a promotion slot
bonus PSB if the ad position is a promoted slot. Promoted
slots are placed in a premium location on the page (see Slot
positions), and therefore enjoy an enhanced click rate. For
a regular slot, f,, = 1, and for a promoted slot, f,, =
1+ PSB.

The overall click probability starts with the baseline and
gets adjusted based on these factors.

PI‘(CliCk) = n(ega ftargelfpm)v
where b
= (1
pr+(1—p)
If the ad is not clicked, or clicked but no purchase is made,
then the user will proceed to the next ad with continuation
probability ~,.

n(p, x)



Conversion behavior

The purchase or conversion behavior of users can arise from
various processes [Chen and He, 2006, Athey and Ellison,
2007, Cary et al., 2008, Kominers, 2008]. For example,
there may be some cost associated with search for the users
and the advertisers may have differentiated products and
prices. In any case, these models induce some probability
that the user will convert.

In TAC/AA, we describe this conversion probability in
terms of inventories and backorder delays. This story is
meant merely to be suggestive, just one causal explanation
for the ultimate effect, which is to impose a diminishing
marginal value on clicks. Our conversion model is com-
posed of three factors. One factor is attributed to the state
or type of the user. The other two factors are associated with
the state of the advertiser and its product specialty, respec-
tively.

Once an ad has been clicked-through, the shopping users
will convert at different rates according to their focus lev-
els. The probability is a function of several parameters.
The baseline conversion probability is given by 7, for | €
{F0,F1,F2}. Higher focus level queries convert at higher
rates: gy > TMF] > TEQ-

The second factor captures an effect of constrained distri-
bution capacity. The story is that if the advertisers sell too
much product in a short period, their inventories run short
and they have to put items on backorder. As a result, shop-
pers will be less inclined to purchase, and conversions suffer.
All product sales contribute to the distribution constraint,
thus rendering the queries interdependent. Let ¢4 be the to-
tal number of conversions over all products on day d, and
W the aggregation window for distribution capacity. The
distribution constraint effect is given by

d—w +
(5 e
I, = A \i=d—1

where C°*? is the critical distribution capacity, beyond
which conversion rates decrease. In our scenario, adver-
tisers are assigned one of three discrete capacity levels:
cap € {HIGH, MED,LOW}.

Finally, we consider the effect of component specializa-
tion. For users with preference for a component matching
the advertiser’s specialization, the odds of converting are in-
creased by a component specialization bonus (CSB), using
the formula for odds adjustment (1). If the user matches
component specialty, fopecializaion = 1 + CSB, otherwise
fspecializaion = 1. In sum, the overall expression for con-
version probability becomes

)

Pr (COIIVGI'SiOIl) =N (ﬂ'l Id 5 fspecialization ) .

Publisher Behavior

Publishers provide the mechanism through which advertis-
ers interact in sponsored search auctions. This includes
defining the slots over which that advertisers bid, the mech-
anism that ranks and prices the displayed ads given the bids,
and reserve prices that constrain the bids of displayed ads.

The value of the slots to the advertisers and the publisher is
largely determined by user behavior. This in turn requires
advertisers and publishers to construct a model of user be-
havior in order to optimize their respective objectives. Each
of these components of publisher behavior and the associ-
ated existing research are discussed subsequently.

Slot positions

When a user queries a publisher, the publisher returns a set
of ads. In typical sponsored search auctions, the ads are re-
turned in some significant order (see Figure 4). The position
of the ad connotes some relative value. This relative value
is inferred from the disparity in click-through rates across
positions. For example, ads positioned towards the top of
the results page usually have higher click-through rates, all
else considered. Some search engines divide slots into two
regions. One region is considered premium and is somehow
set apart from the other ad slots. In TAC/AA, we distinguish
two types of slots: regular and promoted. Ads in promoted
slots receive an odds bonus in click-though rate.

TAC /AA - SERP

P . M <«—Promoted

Regular

Figure 4: TAC/AA search engine results page with promoted
slots.

Ranking ads

In general, each ad auction matches ads with available slots.
This type of generality is appealing and general matching
mechanisms have been applied to sponsored search by Ag-
garwal et al. [2009]. However, given the natural ordering of
slots (see Slot positions), mechanisms that fundamentally
incorporate this order are often used in practice as well as
research.

Two ranking mechanisms have been dominant in the anal-
ysis of sponsored search:

e Rank by Bid: advertisers are ordered according to their
bid b, for a given query.

o Rank by Revenue: advertisers are ordered according to
the product of their click-through rate and bid, e, b, for a
given query.

Lahaie and Pennock [2007] introduce a family of rank-
ing algorithms that can interpolate between rank-by-bid and



rank-by-revenue. The family is parameterized by a squash-
ing parameter x. Advertisers are ranked according to
(eq)Xbg, which we term an advertiser’s score. Notice that
a setting of xy = 0 is equivalent to rank-by-bid and a set-
ting of y = 1 is equivalent to rank-by-revenue. The ranking
method in TAC/AA uses the Lahaie and Pennock parame-
terization. The squashing parameter is announced at the be-
ginning of the simulation, so that advertisers can condition
their strategy on it.

Pricing clicks

In sponsored search, a slot is assigned a cost per click (CPC)
that is determined by an auction. When a user clicks on the
ad in the slot, the advertiser is charged the CPC amount.
Edelman et al. [2007] describe the two basic pricing mecha-
nisms used in sponsored search auctions.

o Generalized first-price (GFP): the CPC for a slot is set
to the price bid by the winner of that slot.

e Generalized second-price (GSP): the CPC for a slot is
set to the minimum price the winner of that slot needed to
pay to keep the slot.

Let b() be the bid of the winner of the i position and e(*)
be the click-through-rate of advertiser i. Using the Lahaie
and Pennock parameterization, the bidder pays

(1) eli+1)\ X
e(?)
under GSP.

The auctions introduced by Overture in 1997 used GFP.
Edelman et al. report one of the effects of GFP to be
volatile prices. Under GFP, advertisers inevitably want to
change their bid given the current setting of other-agent bids,
which produces a price instability actually observed in such
auctions. In practice, most publishers now use GSP, and
TAC/AA adopts this pricing rule as well. With GSP, ad-
vertisers have less cause to frequently adjust prices, because
they are already paying the minimum price for the slot given
the other advertisers’ bids.

Setting reserve prices

Reserve prices in ad auctions are used for revenue maximiza-
tion and ad quality control. Abrams and Schwarz [2008]
develop a framework based on the hidden costs advertisers
impose on users. In their model, hidden costs are related
to the change in future revenue due to a user clicking on
an advertiser’s ad. Abrams and Schwarz construct an effi-
cient mechanism by modifying the bids by the hidden costs.
Even-Dar et al. [2008] describe a set of VCG payment mod-
ifications that incorporate advertiser-specific minimum bids.
One of the payment modifications offsets bids by the mini-
mum reserve prices. Using the Abrams and Schwarz mech-
anism, Even-Dar et al. show that the auction is efficient and
truthful. The other efficient and truthful VCG payment ad-
justment Even-Dar et al. introduce is virtual values. These
virtual values essentially become reserve scores, where an
advertiser’s score is the product of its bid and click-through
rate. Unlike the more general Even-Dar et al. model, the

reserve price model of TAC/AA applies a uniform reserve
score across advertisers for a given query. The reserve score
can be converted into an advertiser-specific reserve price by
adjusting for the advertiser’s individual click-through rate.

Unknown user behavior

The behavior of users is not known a priori to publishers or
advertisers. For instance, publishers may view the number
of each query per day as a stochastic variable. The distri-
bution may be influenced by many latent variables. Dealing
with this type of uncertainty is an important part of a pub-
lisher’s mechanism.

Recent research has explored various online algorithms
for selecting allocating ad slots to advertisers given a ran-
dom sequence of queries. This problem has been considered
with advertiser budgets [Mehta et al., 2007, Mahdian et al.,
2007, Muthukrishnan et al., 2007, Goel and Mehta, 2008]
and without [Mahdian and Saberi, 2006, Abrams and Gosh,
2007].

In addition to online algorithms, publishers may try to de-
sign optimal mechanisms that use various parameterizations
of user behavior. In real markets, these parameters must be
learned. This learning process affects the dynamics of the
auctions, which in turn affects revenue and efficiency. Wort-
man et al. [2007] studied the effects of this process and de-
signed learning algorithms that maintain equilibrium during
exploration.

Learning parameters is an especially important part of the
publisher mechanism when the query space is large and data
is sparse. In TAC/AA this is not the case, the query space is
relatively small and users generate a large number of queries
for each query each time period. For this reason and simplic-
ity’s sake, we just assume the publisher in TAC/AA knows
advertiser-specific click probabilities, thus eliminating the
need to learn click-through rates. We further assume that
the ranking mechanism is fixed, so that learning more de-
tailed user behavior is not relevant to publisher behavior. It
is, of course, quite relevant to advertiser behavior.

Advertiser Strategy Space

Adpvertisers in sponsored search auctions face a complex
problem in optimizing their ad campaigns. They contend
with dynamic user behavior, uncertainty in publisher poli-
cies, and the effects of other competing advertisers. Adver-
tisers control the content of the ads, which ads to display, the
bids they place for the ads, and spend limits that bound the
cost they can incur. Other aspects of campaign management
are also important. For instance, optimization of the landing
page, the page users are directed to when the click on an ad,
can dramatically affect conversion rates. This has given rise
to fields such as information architecture (1A) and human-
computer interaction (HCI) that are devoted to improving
user experience.

All of these features define the advertiser strategy space,
however the TAC/AA advertisers reason over only a subset
of these. Part of the motivation for excluding some features
(in addition to simply limiting scope), such as landing page
optimization, is that we expect them to be approximately



strategically independent and can be studied in a decision-
theoretic context apart from other strategic considerations.
Features that we believe are strategically dependent include
setting bids, choosing ads, and setting spend limits. We dis-
cuss each of these in turn over the remainder of the section.

Bidding

In TAC/AA, advertisers are given an expressive bidding lan-
guage over which they are allowed to select bids. Ad-
vertisers may set a bid for any possible query. This con-
trasts with bidding languages that are actually employed by
search engines where advertisers bid on keywords. Even-
Dar et al. [2009] identify the bidding language used by
TAC/AA as a query language and those used by the search
engines as a keyword language.* In the case of a keyword
language, advertisers are forced to implicitly reason about
their values over a set of queries. Thus, the selection of
keywords becomes a major component of the advertiser’s
strategy. Various natural language processing and machine
learning models have been proposed that attempt to gen-
erate or select profitable keywords [Rusmevichientong and
Williamson, 2006, Bartz et al., 2006, Abhishek, 2007, Chen
et al., 2008]. To avoid the complexity of incorporating such
concerns, we adopt a query language over the restricted do-
main of TAC/AA queries.

Choosing ads

In actual sponsored search auctions, advertisers generate the
ads that are displayed. The content of the ad relative to the
user query can have a dramatic effect on the click-through
rate of the ad. Advertisers, or SEM firms managing cam-
paigns on their behalf, typically develop ad content in an
iterative manner. First, a set of candidate ads is created and
submitted to the publisher for display. Then, some method
of testing is used to prune ads that perform poorly. Based on
the surviving ads, the advertisers generate additional candi-
date ads for testing and the process recurs.

The ad content in TAC/AA is specified by the inclusion,
or lack thereof, of a specific product. This restricts the set
of possible ads and eliminates the content creation aspect
of the advertisers’ strategies. However, the exploration and
exploitation problem of selecting which ad to display for a
given query remains.

Setting spend limits

Currently, most publishers allow advertisers to specify an
advertising budget by which an advertiser can limit the ad-
vertising cost or spend for some period of time. Once the ad-
vertiser exceeds the limit, the constrained ads will no longer
be shown.

Much of the published work on advertiser bidding strate-
gies in dynamic, multi-keyword sponsored search auctions
focuses on optimizing return while being constrained by
an exogenously specified budget [Kitts and Leblanc, 2004,
Zhou and Lukose, 2007, Muthukrishnan et al., 2007, Zhou

*Equivalently, one can view the TAC/AA query language as fix-
ing a coarse partition over a large set of implicit keyword expres-
sions.

et al., 2008, Zhou and Naroditskiy, 2008]. It may be the
case that some advertisers do actually have a hard constraint,
however we believe that in most situations the “budgets”
submitted by advertisers to publishers are actually soft con-
straints on spending. These daily spend limits can be used
by the advertisers to protect against a large influx of unprof-
itable clicks or to guard against the advertisers’ uncertainty
about the value of those clicks.

TAC/AA allows advertisers to specify two types of spend
limits. The first type is an aggregate limit that binds the daily
amount that an advertiser may be charged. This constrains
the ads for each query class in an advertiser’s campaign. The
second type is a query-class limit, in which the daily amount
charged for a specific query class is bound. Once an adver-
tiser’s daily spend amount exceeds a daily spend limit, the
ad is no longer considered for inclusion in an auction.

Simulating an Advertising Campaign

The TAC/AA game simulates the daily campaigns of a set
of advertisers over a horizon of two simulated months. A
high level depiction of the game interaction is show in Fig-
ure 5. The game flow can be described by considering the
game initialization phase and the daily tasks performed by
the agents after initialization.

Initialize,
disseminate
private info

ﬁ Inform advertisers of

day d-1 results

Advertisers bid on
keywords, select ad
types for day d+1

Publisher ranks ads
for each keyword

Daily cycle

Users issue queries,
view and click on
ads, buy products

Update user

population

Figure 5: Cycle of activities for day d of a TAC/AA game
instance.

At the beginning of a game instance, the instance-varying
user, advertiser, and publisher parameter settings are drawn
from their associated distributions. All users are initialized
to the non-searching state, and the server simulates virtual
days of user activity without advertising, to spread the pop-
ulation across various states. The virtual day initialization is
an attempt to reduce the impact of any cold start anomalies.
Adpvertisers learn their product and manufacturer specializa-
tion as well as their distribution capacity parameter (they
are not told the specialties and capacities of competitors).
Finally, the publisher determines and reveals the squashing
parameter y and reserve scores.

At the beginning of each day d, the daily reports summa-
rizing day d — 1 activity are delivered to the advertisers. The
publisher executes an ad auction for each query class to de-
termine the ad rankings and click prices. Users then issue



queries, receive results, consider clicking on ads and pur-
chasing products. The publisher monitors spend limits and
reruns ad auctions as necessary. After all searching users
have acted, the server updates the population based on the
results of the queries, ads, and purchases. Finally, the adver-
tisers submit their bid and ad selection updates to the pub-
lisher, for the auctions determining placement on day d + 1.

At the conclusion of a game, log files are produced that
trace the interaction of the agents during the simulation. We
provide a log file parser that allows for further post-game
analysis of the traces.

TAC/AA Tournament

The TAC/AA competition will have three basic rounds:
qualifying, seeding, and finals. During the qualifying round
agents will participate in a round-robin style tournament.
Agents pass the qualifying round by meeting a minimal stan-
dard for agent competence. During the seeding round agents
are ranked by their average profits in a round-robin tourna-
ment. These rankings determine the bracket assignment for
the finals.

The TAC/AA tournament finals will be held during the
Trading Agent Design and Analysis (TADA) workshop as
well as the main IJCAI conference in July 2009. The tour-
nament will consist of multiple stages, with the particular
elimination structure to be determined based on the number
of entries. Following the tournament, we will release source
code for the TAC/AA server, and encourage all participants
to post binary versions of their agents in the TAC reposi-
tory. We look forward to learning about how different teams
address the strategic questions posed by TAC/AA.
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