
Provenance Challenge 3: VisTrails

University of Utah

David Koop
Tommy Ellkvist
Juliana Freire
Cláudio Silva

Monday, July 27, 2009

Workflow Implementation

2

Monday, July 27, 2009

Workflow Implementation

2

Monday, July 27, 2009

Workflow Implementation
• Rewrote LoadAppLogic code python and MySQL

• Wrapped functions as modules and placed in a new VisTrails
package; also added new modules that encapsulate multiple fns

• If-error-then-halt steps automatically handled through ModuleErrors
raised by the workflow

• Loops, conditionals supported by VisTrails Control Flow package

3

Monday, July 27, 2009

Workflow Implementation
• Rewrote LoadAppLogic code python and MySQL

• Wrapped functions as modules and placed in a new VisTrails
package; also added new modules that encapsulate multiple fns

• If-error-then-halt steps automatically handled through ModuleErrors
raised by the workflow

• Loops, conditionals supported by VisTrails Control Flow package

3

Monday, July 27, 2009

Workflow Implementation
• Rewrote LoadAppLogic code python and MySQL

• Wrapped functions as modules and placed in a new VisTrails
package; also added new modules that encapsulate multiple fns

• If-error-then-halt steps automatically handled through ModuleErrors
raised by the workflow

• Loops, conditionals supported by VisTrails Control Flow package

3

Monday, July 27, 2009

Workflow Implementation
• Rewrote LoadAppLogic code python and MySQL

• Wrapped functions as modules and placed in a new VisTrails
package; also added new modules that encapsulate multiple fns

• If-error-then-halt steps automatically handled through ModuleErrors
raised by the workflow

3

Monday, July 27, 2009

Workflow Implementation
• Rewrote LoadAppLogic code python and MySQL

• Wrapped functions as modules and placed in a new VisTrails
package; also added new modules that encapsulate multiple fns

• If-error-then-halt steps automatically handled through ModuleErrors
raised by the workflow

3

Monday, July 27, 2009

Workflow Implementation
• Rewrote LoadAppLogic code python and MySQL

• Wrapped functions as modules and placed in a new VisTrails
package; also added new modules that encapsulate multiple fns

• If-error-then-halt steps automatically handled through ModuleErrors
raised by the workflow

3

Monday, July 27, 2009

Workflow Implementation
• Rewrote LoadAppLogic code python and MySQL

• Wrapped functions as modules and placed in a new VisTrails
package; also added new modules that encapsulate multiple fns

• If-error-then-halt steps automatically handled through ModuleErrors
raised by the workflow

• Loops, conditionals supported by VisTrails Control Flow package

3

Monday, July 27, 2009

Control Flow
• New package (Fernando Seabra and Rafeal Dahis, UFRJ)

• Fold operations: generalize map-reduce (input collecton +
subworkflow)

• Combine operation and list of inputs

• Given finite data collections, workflow will not have infinite loops

• Conditionals: two subworkflows as well as a boolean input

• Control flow modules execute subworkflows as part of their own
execution

4

Monday, July 27, 2009

Control Flow
• New package (Fernando Seabra and Rafeal Dahis, UFRJ)

• Fold operations: generalize map-reduce (input collecton +
subworkflow)

• Combine operation and list of inputs

• Given finite data collections, workflow will not have infinite loops

• Conditionals: two subworkflows as well as a boolean input

• Control flow modules execute subworkflows as part of their own
execution

4

Monday, July 27, 2009

Control Flow
• New package (Fernando Seabra and Rafeal Dahis, UFRJ)

• Fold operations: generalize map-reduce (input collecton +
subworkflow)

• Combine operation and list of inputs

• Given finite data collections, workflow will not have infinite loops

• Conditionals: two subworkflows as well as a boolean input

• Control flow modules execute subworkflows as part of their own
execution

4

Monday, July 27, 2009

Control Flow
• New package (Fernando Seabra and Rafeal Dahis, UFRJ)

• Fold operations: generalize map-reduce (input collecton +
subworkflow)

• Combine operation and list of inputs

• Given finite data collections, workflow will not have infinite loops

4

Monday, July 27, 2009

OPM Implementation
• VisTrails produces layers of provenance: workflow evolution,

workflow instantiation, and workflow execution

• Execution information is hierarchical (groups, loops)

• OPM is translated from this provenance by combining information
from these layers

• OPM is captured as XML using Southampton’s XML Schema

• value elements store VisTrails entities

5

Monday, July 27, 2009

OPM Graph

6















































  





Monday, July 27, 2009

OPM
• Module executions map to processes

7

 <process id="p2">
 <value>
 <moduleExec cached="0" completed="1" error="" id="3" machine_id="1"
moduleId="2" moduleName="GetCSVFiles" tsEnd="2009-05-14 16:51:46"
tsStart="2009-05-14 16:51:46">
 <annotation id="1" key="used_files" value="['/vistrails/pc3/
SampleData/J062945/csv_ready.csv']" />
 </moduleExec>
 </value>
 <account id="acct0" />
 <account id="acct1" />
 <account id="acct2" />
 </process>

Monday, July 27, 2009

OPM
• Input Parameters (functions) map to artifacts

8

 <artifact id="a0">
 <value>
 <function id="4" name="value" pos="0">
 <parameter alias="" id="17" name="<no description>" pos="0"
type="edu.utah.sci.vistrails.basic:String" val="J062945" />
 </function>
 </value>
 <account id="acct0" />
 <account id="acct1" />
 <account id="acct2" />
 </artifact>

Monday, July 27, 2009

OPM
• Annotations map to artifacts

- Save extra information (ie database connection, table names)

9

 <artifact id="a35">
 <value>
 <function id="-1" name="dbEntry" pos="0">
 <parameter alias="" id="-1" name="" pos="0"
type="edu.utah.sci.vistrails.basic:String" val="..." />
 <parameter alias="" id="-1" name="" pos="0"
type="edu.utah.sci.vistrails.basic:String" val="J062945_LoadDB" />
 <parameter alias="" id="-1" name="" pos="0"
type="edu.utah.sci.vistrails.basic:String" val="P2Detection" />
 </function>
 </value>
 <account id="acct0" />
 <account id="acct1" />
 <account id="acct2" />
 </artifact>

Monday, July 27, 2009

OPM
• Connections can be mapped to artifacts

- Transient data: not persisted but exists to show that data was
generated and used

- Output port information captured in provenance

10

 <artifact id="a1">
 <value>
 <portSpec id="8" name="value" optional="0"
sigstring="(edu.utah.sci.vistrails.basic:String)" sortKey="-1" type="output" />
 </value>
 <account id="acct0" />
 <account id="acct1" />
 <account id="acct2" />
 </artifact>

Monday, July 27, 2009

OPM
• Subworkflow executions captured as more specific accounts

11

 <process id="p17">
 <value>
 ...
 </value>
 <account id="acct2" />
 </process>

Monday, July 27, 2009

OPM
• Dependencies are generated from workflow specification

- module functions connected to modules via used

- modules connected to output ports via wasGeneratedBy

- output ports connected to modules via used

- annotations connected to modules via used or
wasGeneratedBy

12

Monday, July 27, 2009

OPM Queries
• Querying OPM XML was implemented via XQuery.

• Use three transitivity functions:

- derivedFrom: determine all upstream processes that may have
contributed the given artifact

- triggeredBy: determine all upstream processes that may have
triggered the given process

- triggers: determine all downstream processes that may have
been triggered by the given process

• Use database to determine links between existing data and
provenance information about that data

13

Monday, July 27, 2009

Query Example

14

declare namespace opm='http://openprovenance.org/model/v1.01.a';
let $d := doc('workflow_opm2.xml')

(: The user must find the detection value in the DB. Then we find the table artifact :)
let $a := $d//artifact[value/function/parameter/@val = 'P2Detection']

(: return all artifacts upstream containing a P2Detection.csv file :)
return local:derivedFrom($d, $a)[ends-with(value/function/parameter/
@val,'P2Detection.csv')]

Monday, July 27, 2009

http://openprovenance.org/model/v1.01.a'
http://openprovenance.org/model/v1.01.a'

Importing OPM
• Have XQuery methods to deal with OPM XML data

• Try to make queries the same across systems

• Tested with SDSC OPM in XML with success

• Changes:

- Identifying processes, artifacts

15

Monday, July 27, 2009

Discussion
• Locating OPM entities can be difficult

- No standard naming to define ids with meaningful names

- value field is not easily searched without understanding the
schema of that element

• Queries involved database provenance or attempts to obtain
granularity finer than the workflow

• Side effects: database entry is provided as input but the function
specification shows no change to the underlying database

• Workflow evolution in OPM

16

Monday, July 27, 2009

