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ABSTRACT

The vision of the Smart Grid includes demand-side peak shaving
strategies, such as real-time pricing or profile’s based tariffs, to en-
courage consumption such that the peaks on demand are flattened.
Up to date, most works along this line focused on optimising via
scheduling of home appliances or micro-storage the individual user
consumption. Alternatively, in this paper we propose to exploit the
consumer social side by organising them into coalitions of energy
consumers with complementary needs. To this end, we propose the
concept of virtual energy consumer (VEC) to capture the notion of
a number of energy consumers, coming together to buy electric-
ity, as an aggregate. To create such VEC’s we consider that each
consumer looks for potential partners for its coalitions through its
contacts in a social network. In more detail, we propose a network-
restricted coalitional game, where: (i) each feasible VEC is evalu-
ated with a metric that estimates the expected joint payment of the
coalition of consumers within the electricity markets; (ii) the set
of most efficient VEC’s are identified (by solving the correspond-
ing Coalition Generation Problem); and (iii) the joint payment of
each VEC is divided among its members in such a way that any
consumer can not be better off by deviating and forming a new
VEC (i.e., we compute a core-stable payoff distribution if this ex-
ists or alternatively detect core emptiness). Moreover, we evaluate
our approach on consumption data for a set of households located
in UK. Our analysis provides interesting insights into the relation-
ship between structure and stability of VEC’s and prices within the
electricity markets.
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1. INTRODUCTION

Since energy cannot be stored efficiently on a large scale, the
electricity grid must perfectly balance the demand of all customers
at any instant with supply. In all current electricity grids this bal-
ance is achieved by varying the supply-side to continuously match
demand. The amount of demand required on a continuous basis is
usually carried by the baseload stations owing to low cost genera-
tion, efficiency and safety. However, these stations are slow to fire
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up and cool down, so they are not able to match the peakload pe-
riods that exceed this baseload that, in contrast, require expensive,
carbon-intensive, peaking plants generators. Although only run-
ning when there is high demand, these peaking plants generators
are responsible for most part of consumers electricity bill.

Along this line, the vision of the Smart Grid includes demand-
side peak-shaving strategies such as real-time pricing or profile’s
based tariffs to encourage consumption such that the peaks on de-
mand are flattened [1]. A flattened demand results in a more effi-
cient grid not only with lower carbon emissions but also with lower
prices for consumers. Hence, some works [13, 15] focused on tech-
niques that flatten individual consumer demand by automatically
controlling home domestic or micro-storage devices. Unluckily,
since each consumer independently optimises its own consump-
tion, the effectiveness of this approach has a clear limit on the con-
sumer’s restrictions and comfort (e.g. it will be unavoidable to get a
consumption peak in the non-working hours of consumers). Even
more worrying, demand-side management technologies based on
individual price reaction have shown tendency to reduce the natu-
ral diversity of consumers’ peak demands leading to the shifting of
current peaks to new specific periods [14].

Against this background, in this paper we aim at improving the
grid efficiency from a social perspective by promoting the forma-
tion of coalitions among energy consumers with near-complementary
consumption restrictions. Then, a coalition of consumers can act in
the market as a single virtual energy consumer (VEC) with a flat-
tened demand for which it gets much better prices. As we analyse
in this work, several challenges arise in the formation and manage-
ment of these energy coalitions. On the one hand, from the Grid’s
perspective, it is important to ensure that negotiations among in-
dividuals energy consumers converge in such a way that the most
efficient VECs are formed (i.e., achieving the maximum social wel-
fare). On the other hand, consumers are rational utility maximizers,
and convergence is only achieved when all the members of the VEC
agree on their share of the coalition’s payment. Moreover, con-
sumers may not want to join coalitions with unknown consumers
for which they do not have any source of trust regarding their re-
ported profiles or their capacity to meet their payment obligations.

In this paper we address the above-identified requirements by
proposing a game-theoretical model for VEC formation that finds
the most efficient VEC’s to form and splits each total VEC payment
among its members. Our solution is based on modeling the energy
consumer coalition formation problem as a coalitional game [10],
where: (i) the set of coalitions with maximum collective value, that
is, an optimal coalition structure, has to be identified; and (ii) each
coalition’s value has to be distributed among its members in such a
way that coalition members have no incentive to break away from



the identified optimal structure. Moreover, we restrict the coalitions
membership using consumer’s acquaintances in a social network to
provide some form of trust among coalition members. Thus, in
more detail, this paper makes the following contributions:

e We formally define the concept of VEC along with a met-
ric that, given an estimation of the aggregated coalition con-
sumption, computes the total payment optimizing the buying
strategy within the electricity markets.

e We propose an algorithm that allows consumers in a social
network to distributedly generate and evaluate the network-
feasible energy coalitions.

e We use linear programming approaches to identify the most
efficient VEC’s and to subsequently allocate core-stable pay-
ments to individual consumers (if the core is not empty).
When such core-stable allocation exists the total payment of
each VEC is split among its members such that the formed
VEC are stable (i.e. consumers can not be better off leaving
their current VEC and forming a new one).

e We evaluated our model on a real dataset based on the elec-
tric consumption of households in the UK. The results are
analyzed in terms of the structure and stability of the formed
coalitions as well as the gain obtained by consumers as a re-
sult of engaging in the coalition formation process. Results
show that stability of most efficient VEC’s is significantly
affected by the density of the social network and the mar-
ket prices conditions. Moreover, the structure of the VEC’s
formed is highly depending on the ratio between different
market prices: close prices between electricity markets does
not incentivize the formation of coalitions whereas as the dis-
tance between prices is increased larger coalitions appear in
the market (until after some limit parameter value the grand
coalition always emerge).

This paper is structured as follows. In Section 2, we review the
literature and in Section 3, we describe our model for coalition for-
mation among energy consumers as a coalitional game. Section 4
presents our empirical evaluation. Finally, Section 5 concludes and
outlines some paths for future research.

2. BACKGROUND

2.1 Today’s electricity markets

In most European countries, the current operation of the ex-
change electricity market is composed of multiples markets avail-
able for trading electricity, each with different operation and pur-
pose [3, 2] . In particular, most countries define and distinguishes
between, at least, two different kinds of markets: the spot electricity
markets and the forward electricity markets. The main goal of spot
markets lies in the facilitation of the trading of short-term energy
delivery. Thus, in a spot market, energy is traded independently for
each time slot and hence, each time slot may have a different price
(e.g. the day-ahead market is a spot market where hourly blocks
of electricity are negotiated for the next day). In contrast, forward
markets are the venue where forward electricity contracts for long
periods (e.g. month, quarter or year) with delivery and withdrawal
obligation are negotiated. Thus, the contract in a forward market
specifies a single quantity that will be delivered at constant rate for
the contract period and a single price. Finally, any real-time excess
or shortfall in supply and demand (with respect to the contracted
volume) is reconciled in the balancing market. The balancing mar-
ket is cleared just before the actual power is delivered by producers.

13

2500

(kw)

K
3
g

1500

1000

500 W

o

Load/Demand

7

Hours of a day
Figure 1: A sample of a hourly load energy profile and the dif-
ferent quantities to buy in the forward market given different
forward over day-ahead market prices ratios.

To date, although in many countries (e.g. the US, UK and most
of European countries) the electricity market is deregulated, market
operation and conditions restricts explicitly or implicitly the par-
ticipation to wholesale companies who subsequently sell the elec-
tricity to final consumers in form of standard products (i.e. fixed
contracts and tariffs). However, with the advent of the smart grid
this is expected to change. The vision of the smart grid involves
significant changes in the way energy is bought and sold including
a two-way communication between the grid and consumers that
allow a more active role of the latter. For example, as part of the
smart grid community, electricity consumers have already access to
smart meters that allow them to monitor its (load) energy profile in
an hour-day basis. Figure 1 shows an example of an energy profile
as a graph that plots the variation in the electrical load (measured
in kW) versus time (measured in hours). Formally, we define the
energy profile of a consumer a; as a vector E; = {e},...,eN}
where e} is the amount of energy consumed at time slot .

2.2 Coalitional games

A coalitional game is traditionally defined as follows. Let A =
{a1,...,an} be a set of agents. A subset S C A is termed a
coalition. However, depending on the domain not all coalitions
may be feasible. In particular, here we are interested on restrict-
ing coalitions by a graph G: (i) each node of the graph represents
an agent; and (ii) a coalition S is allowed to form iff every two
agents in S are connected by some path in the subgraph induced
by S. We denote the set of graph feasible coalitions as F'(G).
Then, a coalitional game CG is completely defined by its char-
acteristic function v : F(G) — R, which assigns a real value
representing (transferable) utility to every feasible coalition [10].
Agents in a coalition are then permitted to freely distribute coali-
tional utility among themselves. Given a game CG, a coalition
structure C'S = {S1, ..., Sk} is an exhaustive disjoint partition of
the space of agents into feasible coalitions. We refer to the coali-
tion composed of all agents as grand coalition and to the coalition
composed by a single individual agent as singleton coalition. We
overload notation by denoting by v(C'S) the (intuitive) worth of a
coalition structure: v(C'S) = > .5 v(5).

Then, the coalition formation process can generally be consid-
ered to include three differentiated activities: Coalitional Value
Calculation, Coalition Structure Generation and Payoff Distribu-
tion. First, on coalitional value calculation, agents enumerate and
evaluate all possible feasible coalitions that can be formed. Next,
given the values of feasible coalitions, the key challenge addressed
in coalition structure generation is to identify the coalition struc-



ture C'S™ that maximizes social welfare - i.e. the coalition struc-
ture with maximal value. Finally, Payoff Distribution determines
the utility that each agent in a coalition should obtain as a result
of the actions taken by the coalition as a whole. A vector p =
{p1,- .., pn} assigning some payoff to each agent a; € A is called
an allocation. We denote ) . ¢ pi by p(S). An allocation p is an
imputation for a given C'S, if it is efficient (p(S) = v(S) for all
S € C9), and individually rational (that is, p; > v({3}) for all
a;). Note that if p is an imputation for C'S, then p(A) = v(CS).
A game outcome is a (C'S, p) pair, assigning agents to coalitions
and allocating payoffs to agents efficiently. However, in a self-
ish environment, agents are only concerned with maximizing their
own payoffs. Thus, with the presence of selfish agents we need
to determine stable allocations. Here, stability requires agents to
have no incentive to deviate from the coalitions to which they be-
long. Cooperative game theory provides several stability concepts,
here we focus on the core which is arguably the most well-studied.
The core is composed of all coalition structure-imputation tuples
(CS, p) such that no feasible coalition has any incentive to deviate.
Formally:

Core(CG) = {(CS,p) : p(A) =v(CS) & p(S) >v(S)VS € F(G)}

The core is a strong solution concept, as it is empty in a plethora
of games. Moreover, notice that only optimal coalition structures
might admit an element in the core. Intuitively, if the current struc-
ture is suboptimal then a subset of agents can be made strictly bet-
ter off by moving to an optimal coalition structure. Hence, for any
core-pair allocation C'S is an optimal coalition structure, C'S™, and
the allocation p is efficient with respect of the value of the optimal
coalition structure (p(A) = v(CS™)). In this work, we are inter-
ested on the question of how to compute a core member: this in-
cludes to solve the CSG problem to get the optimal coalition struc-
ture C'S™ and compute the stable payoff allocation over C'S™ or
detect the emptiness of the core.

3. THE MODEL

In this section, we model the problem of demand-side coalition
formation among energy consumers as a coalitional game. Let A =
{a1,...,an} be the set of agents, each one representing an energy
consumer with its associated energy profile F;. Agents can form
energy coalitions S C A, where an energy coalition .S stands for
the set of consumers S acting as a VEC in the market along with
their joint consumption.

The first issue to be addressed is which coalitions consumers are
going to consider and which is the metric they are going to use to
evaluate them. In particular, we propose that consumers use social
networking tools as free available technologies to support the dis-
cover, formation and restriction of their energy coalitions. From
a game point of view, the metric simply represents the character-
istic function of the coalitional game whereas the social network
constrains the set of feasible coalitions (as defined in Section 2.2).

Now, the process of forming VECs at a technical level require
of mechanisms and strategies that allow energy consumers to come
with the most efficient coalitions (i.e. if some consumers only con-
sume at specific times of the day, they will want to choose those
partners they can complement better at those times) and to an eco-
nomical agreement (i.e. how they share the payments generated by
the total consumption the VEC). From a game theoretic point of
view, this involves to solve the CSG problem and find a core-stable
payoff distribution (as defined in Section 2.2). In our model, we
use a linear programming approach to solve both the CSG problem
and to find the core-stable payments that divides the payments of

optimal coalitions among its members (or alternatively, detects the
inexistence of such payments).

In the next sections, we specify in more details how we solve the
three main activities that underline the coalition formation process
for this particular domain.

3.1 Coalitional Value Calculation

In this section we formalize coalitional value calculation, namely
the generation and evaluation of feasible coalitions, for the VEC
formation. First, in Section 3.1.1, we define a metric to evaluate
coalitions that computes the total payment that coalition of con-
sumers S will need to carry out to get their aggregated demand.
Next, we address the problem of enumerating and evaluating all
energy coalitions in the social network in Section 3.2.

3.1.1 Coalition value metric

To determine the value of a coalition, we define a metric that
computes, for each coalition, the total payment estimated for the
coalition. In more detail, this metric optimises the buying strategy
across energy markets taken, to meet the expected VEC aggregate
consumption.

The first issue that arises in this context is how a coalition of
agents predict their aggregated consumption over time. Although
predicting the joint demand of a coalition is a topic of relevance it-
self, in this work we do not tackle this problem. Thus, for the sake
of clarity, we simply take the joint average energy profile of the
coalition as a predictor of the daily coalition consumption. Sim-
ilarly to singleton consumer coalitions, the (expected) demand of
any coalition of consumers S is represented by their joint energy
profile Es = {e§,...,eq } wherees = >, s ei.

Now, following the operation of the current grid, we consider
that consumers buy directly their electricity in two different mar-
kets: the day-ahead market (that forms part of the spot electricity
markets) and the forward electricity market. Let pr be the unit en-
ergy price in the forward market and pp the average unit energy
price among daily hours in the day-ahead market (prices are neg-
ative values to denote the direction of payment). The value of the
expected payment for the coalition S is given by:

N
v(S) =" qb(S) pp + N qr(S) pr (1)
t=1

where gr (S) stands for the time unit amount of energy to buy in the
forward market and g%, () for the amount of energy to buy in the
day-ahead market at time slot ¢. Notice that whereas the amount of
energy bought in the day-ahead market can vary at each time slot,
the quantity to buy in the forward market has to be continuous for
all the period (i.e. the same quantity for all N time slots). Also,
to guarantee that the demand for each time slot is covered, these
quantities must satisfy the following constraints:

ah(S)+qr(S)>es Vt=1...N 2)

Hence, to compute the value of a coalition in this domain agents
face the decision problem of determining the quantities to buy in
the forward and the day-ahead market such that Equation 1 is max-
imised (i.e. the payment regarding their joint consumption is mini-
mized) whereas satisfying constraints in Equation 2 that guarantee
that these quantities meet the coalition energy needs.

Next, we describe a procedure (outlined in Algorithm 1) that
allows agents to optimally solve the above-defined optimization
problem. This procedure takes as input the coalition energy profile,
E's, and the ratio between prices among the two available markets,
g—g. Intuitively, in order for agents in a coalition to be advanta-
geous to buy a certain continuous quantity ¢ in the forward market



Algorithm 1 computeCoalitionBuyingStrategy(Es, £)

PD

1: Sort Es in descending order;
2: qr(S) « Es[round(7E - N + 0.5)]; /The amount of en-
ergy that is covered at least the 2E of the time interval is the
continuous quantity that coalition should buy in the forward
market*/
fort=1...Ndo

p(8) = maz(es — qr(S),0);

end for
return (gr(5),qp(S),...,q5(S))

AN

(instead of buying the individual ¢° quantities necessary for each
time slot), this continuous amount should be used at least g—g of
the time interval. Figure 1 shows how different ratios between the
forward/day-ahead market lead to different buying strategies within
electricity markets for the same coalition profile. Horizontal lines
stand for different quantities to be bought in the forward market
given the market ratios as labeled at the end of the line. To compute
such quantity given the discretization of the profile in N elements,
we first order the coalition profile values in descending order (line
1). Then the quantity to buy in the forward market is simply the
energy consumption value at position 5—2 - N (assuming the profile
array values starting at 1 to get the value on such position we need
to round adding one half, line 2). Observe that in the particular
case when there is no economical incentive to buy in the forward
market (pr = pp), the forward quantity represents the safer base
load corresponding to the minimum quantity that is expected to be
continuously consumed along hours. Thus, in the load profile of
Figure 1 if the ratio between markets is 1 over 1 the amount to buy
in the forward market is exactly the minimum among the hours con-
sumption (corresponding to time slot 3). Finally, given the forward
energy quantity to be bought in the forward market, the day-ahead
quantity for a time slot ¢ is simply computed as the amount of de-
manded energy that exceeds the forward quantity (line 3). Notice
that as the incentive to buy in the forward market increases, agents
increases the quantity bought in the forward market, in detriment
of this bought in the day-ahead, by buying continuous amount even
when they are not expect to used it all hours of the day. Thus, in
Figure 1 if the ratio between markets is 1 over 2 the amount to buy
in the forward market is exactly the 12th measure in magnitude
among all the hours consumption (corresponding to time slot 4) al-
though for half of the day the consumption is expected to be less
than this amount.

It is worth noting that the computation of coalition’s values has the
primary objective of maximizing agent’s profits, since pr < pp
it indirectly encourages the formation of flattened profiles, captur-
ing the synergies that exist between consumers to improve the effi-
ciency of the grid.

3.2 Network-based coalitions

As discussed above, in our model we consider that each consumer
looks for potential partners for its coalitions through its contacts in
a social network. In this way, coalition membership is restricted to
coalitions composed of friends of friends, being always somebody
in the coalition responsible for the introduction of a new mem-
ber. From the game perspective this restriction implies that feasi-
ble coalitions are restricted by a graph. More formally, a coalition
among agents is feasible if its members form a vertex-connected in-
duced subgraph. Here, we observe that this problem can be cast to
the problem of connected induced subgraph enumeration, for which
several algorithms have been proposed on the literature [4, 7]. Ex-
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Figure 2: Example of (a) a network with a cycle (G); (b) a pseu-
dotree PT of G and (c) the set of G-restricted coalitions parti-
tioned in leading coalitions per agents.

ploiting similar procedure we propose a distributed algorithm that
allows agents organised into a network to list all network-restricted
coalitions and compute their values.

Let G be a connected (undirected) graph with vertex set A(G) =
{a1,a2,...,a,} and let E be the set of edges among agents. An
example of a 4-agents network with a cycle that defines a graph G
is given in Figure 2 (a). For an agent a; € A let N (-) be a function
that returns the set of neighbours of a; in G, thatis, N (i) = {j €
A(G),j #14,(i,4) € E(G)}. Thus, in Figure 2 (a), the neighbours
of agent a, is the set N(1) = {0, 2}. Tables in Figure 2 (b) list the
set of feasible coalitions restricted by the graph in Figure 2 (a).
Thus, a3 can form an energy coalition with agents ap and a1 (S =
{013}) but not a coalition with a; without ap (S = {13} & F(QG)).

Instead of using a linear ordering as in [7], we propose to use
the partial ordering that defines a pseudotree arrangement of the
agent’s graph [S]. A pseudotree PT of G is a rooted tree with
agents A(G) as nodes and the property that any two agents that
share an edge in G are on the same branch in PT'. Pseudotrees are
a common structure used in search and inference procedures given
their ability to exploit independencies between nodes in a graph,
allowing parallel processing of independent branches. Figure 2(b)
shows a pseudotree, rooted at agent ao, of the cyclic graph G in
Figure 2(a). A PT has two kinds of edges: tree-edges (bold lines)
that link parent with children (e.g. a2 is child of a;); and pseu-
doedges (dashed lines) that link pseudoparents with pseudochil-
dren (e.g. a2 is pseudochild of ag). Let’s denote A(PT) the set
of agent’ nodes in PT and PT; the subtree of PT rooted at a;.
Thus, in Figure 2(b), P77 is a tree rooted at a; composed of agents
a1, az. Finally, given an agent a; € A(PT) we will denote as
Ch; its children, An; its ancestors (the set composed of its parent
and its pseudoparents), and D; its descendants (the set composed
of its children and pseudochildren) in PT'. Then, in Figure 2(b),
Chz = Dy = 0 and Anz = {ao, a1}. Then, given a game on a
graph CG = (A(G),v, F(G)) and a pseudotree PT over G, the
partial ordering that P71’ defines among agents allows us to partition
the set of feasible coalitions into | A| disjoint sets {L;|a; € A}, one
per agent. The set of (leading) coalitions Li; contains all the feasible
coalitions in which a; is the leader (precedence position in the or-
dering), that is all coalitions that include agent a; but no agent up a;
in PT,L; = {S € F(G)|t € S,Vj € S: level(i) < level(j)}).
Figure 2(c) shows the different sets of agents leading coalitions for
the pseudotree in Figure 2(b).

Next, we describe the main steps of a distributed procedure that
allow agents to compute the set of leading coalitions on a graph.
Thus, at the end of this process, each agent will know its set of
leading coalitions L;.

Each agent a; uses the PT partial ordering to order its descen-



dants D; = {d',...,d™} from higher to lower. For example, in
Figure 2(b), a can order its descendants as a1,a2,a3 (as far as a; is
placed before a2 the order is valid). Then, a; will proceed to gen-
erate its set of leading coalitions L; into two steps: first, generating
a set of basic coalitions, and second, generating a set of composed
coalitions, that result from combination of basic ones.

Step 1. (Basic coalitions). In this step, each agent a; will gen-
erate the set of basic coalitions. For each descendant d’ :1”'m, a;
generates all coalitions S such that {d’} C S C A(PT;) \ {E}
where E = {di|k < j} stands for all descendants placed before
d’ in the ordering. To generate these sets of coalitions we use a
distributed version of a recursive connected induced subgraph enu-
meration algorithm proposed in [7] (for further details see [7], sec-
tion 5). For example, in Figure 2(b), agent ao will generate the set
of coalitions that include: (i) a1 and other agents reachable from
ay in PTy ({1},{12}); (ii) a2 and other agents reachable from as
in PT excluding a1 ({2}); and (iii) as and other agents reachable
from a3 in PT} excluding a1 and as ({3}). Each agent a; records
for each coalition S a set of frontiers nodes, F’, these are nodes that
are reachable from S but not included in S. For example, in Figure
2(b) the set of frontiers for {1} is {2} since a2 is reachable from
a1 but not included. Finally, a; stores each generated coalition .S,
adding a;, (S U {i}), as well as a;’s singleton coalition ({i}), as
part of its leading coalitions L.

Step 2. (Composed coalitions). In this step, each agent a; will

generate the set of composed coalitions. For each descendant ¢/~

a; will combine all coalitions reachable from d’ with all compati-
ble coalitions reachable from d’*1, from d’*2, ..., and until d™,
storing at each step the new coalitions as reachable from d’. Thus,
in Figure 2(b), ao will combine coalitions reached from a1 with
coalitions from az (storing any new coalition as reachable from
a1) and coalitions reachable from a; with coalitions from as. Two
coalitions, S reachable from d”, and S’ reachable from d*>7, are
compatible if S’ does not contain any agent in .S or in its frontiers
(S’ N SN Fs # 0). Thus, in Figure 2(b), a1 will not combine
{1} from a; and {2} from a» because as is a frontier for {1}. A
composed coalition is generated as {S U S’} with frontier agents
{Fs U Fs}. Thus, in Figure 2(b), ao the result of combining {2}
from ag with {3} from as is a composed coalition {2, 3} reachable
from az with F' = {2} U 0.

3.3 Coalition Structure Generation

To solve the CSG problem, which is known to be NP-Hard, we
use an integer programming (IP) approach (see [11], pages 38-39).
Compared with with other state-of-the-art CSG algorithms [8, 12],
this approach has the important advantage that can be applied given
any set of feasible coalitions as an input and hence, it can directly
model network-based coalitions as the ones we are interested in.
The CSG problem is formulated as a binary integer programming
problem containing a set of binary decision variables xs € {0, 1},
one per feasible coalition S € F(G). Then, solving the CSG
amounts to solving the following IP:

max Z v(S) - zs
SeF(@)

Subject to:

(1) Each energy customer can join at most one coalition:

Va; € A : Z

SEF(G)|S>i

rs =1

where having a variable xs = 1 corresponds to coalition S being
selected in the optimal coalition structure C'S™.

3.4 Core-Stable Payoff Distribution

Given the optimal coalition structure, we can compute a core ele-
ment (or alternatively, detect that no core allocation exist) by solv-
ing a linear program (LP). Linear programs can be solved in poly-
nomial time in the number of variables and constraints. Our aim is
to find a set of negative real values that stand for agent’s payments
p,one p; € pforeachagenta; € A. Finding such stable payments,
once C'S™ has been found, amounts to solving the following LP:

min p(A)

Subject to:

(1) There are no deviating coalitions for these payments:
VS € F(G): p(S) > v(S)

(2) Agents payments are equal or lower than O (i.e. agents do not
make a positive profit exploiting other agents)

Va; € A : pigo

Then, if the value of the objective function of this LP yields to the
value of the optimal coalition structure, p(A) = v(CS™), then the
problem has a non-empty core and the values p define an allocation
in the core. Otherwise, the problem has an empty core. It should
be emphasized that the optimal coalition structure C'S™ is a given
parameter which means that although this program can be solved
in polynomial time it needs as input the outcome of the IP program
defined in Section 3.3 which is NP-Hard. The LP defined above
has a number of variables equal to the number of agents, |A|, and
a number of constraints linear to the number of feasible coalitions
(again in the worst case represented by a complete graph this num-
ber is exponential to the number of agents).

It is worth noting that several techniques have been developed to
solve IP and LP problems such as the ones defined in Section 3.3
and 3.4 (e.g. the dual simplex method, and the interior-point al-
gorithm, linear relaxation coupled with branch-and-bound). Thus,
next in the experimental section, we use standard, off-the-shelf-
software such as CPLEX to solve them.

4. EMPIRICAL EVALUATION

In this section we provide an empirical evaluation of the coalition
formation model among energy consumers introduced in Section
3. The IP and the LP problems defined in Sections 3.3 and 3.4
for computing the optimal coalition structure and the core-stable
payments are solved using implementations on CPLEX 12.3. First,
we explain the details of our experimental setup in Section 4.1.
Next, we analyse our empirical results in Section 4.2.

4.1 Empirical settings

4.1.1 Problem generation

To analyse the sensitivity of the coalition formation process with re-
spect to the underlying network topology, we evaluate our model on
three different network models with different density levels. For-
mally, the density of a graph is defined as the ratio between the
number of links and the number of agents in the graph (%). In
more detail, in our experiments we test our model on the following
network configurations:

Random Networks. Graphs are created by randomly adding a
number of links d for each agent. Densities used in this case are:
d =1 (low), d = 2 (medium) and d = 3 (high).



Market | pr Ppbp s
M1 70 80 1
M2 70 80 70/80
M3 1 2 12

Table 1: Different market conditions explored in the experi-
ments varying the prices of forward (pr), day-ahead ( pp) and
market ratios (ry;).

Scale Free Networks. Graphs are created by using an implemen-
tation of the Barabasi-Albert model. At each step, a node is added
and attached to d neighbours using a biased random selection giv-
ing more chance to a node if it has a high degree. Graphs are gen-
erated using three different densities: (d = 0.92, low), (d = 1.75,
medium) and (d = 3.17, high).

Small-World Networks. Graphs are created by following the Watts
and Strogatz model. This model generates a ring of graph where
each node is connected to its k£ nearest neighbours in the ring (k/2
on each side, which means k must be even). Then it process each
node on the ring "rewiring" each of their edges toward the not yet
processed nodes. The rewiring process chooses a node randomly
among the ones not yet processed and takes place according to a
rewiring probability of 0.1. Graphs are generated using three dif-
ferent values for parameter k: k = 2 (d = 1, low), k =4 (d = 2,
medium) and k = 6 (d = 3, high).

Notice that whereas scale free and small-world networks are known
to capture some characteristics of social networks [9], random net-
works constitute a more synthetic model for our domain. All exper-
iments are run using networks of 12 nodes. For each instance, the
energy profile of each node is randomly selected from a real dataset
composed of energy profiles characterizing the real domestic elec-
tricity consumption of 5000 households in the United Kingdom.
Each consumer has been monitored for a time period of a month
(December 2009), recording the power consumption every half an
hour, for a total of 48 daily time slots'.

4.1.2 Market’s parameters

As described in Section 3.1.1, the value of a coalition in our model
depends on two market parameters: the price of the electricity in
the forward, pr, and the day-ahead market, pp (although the price
of electricity in the day-ahead market varies on each time slot, we
consider here that pp is calculated by averaging the hourly price
of a day). In our experiments, we explore three different markets
conditions, denoted as M1, M2 and M3 and detailed in Table 1, to
evaluate how the coalition structure formation process will respond
to price signals.

Notice that whereas in M1 agents follow a naive buying strategy
in which the market price ratio is set to buy in the forward market
the minimum continuous consumption, in M2 and M3 the market
ratio price (ry = %) is the one corresponding to market prices
and thus the buying strategy minimizes the amount to be paid by the
coalition. Regarding market prices, in M1 and M2 prices used are
those of current electricity markets in Italy> whereas M3 explores
a different scenario in which buying in the forward market is more
incentivized with better prices.

!The initial data contained some corrupted entries due to a problem
with a sensor, so before running any experiment, the data has been
filtered keeping only valid entries.

ZAvailable at: http://www.mercatoelettrico.org/
En/Default.aspx

4.2 Results

We evaluate our model by performing repeated simulations (50 in-
stances) for each possible configuration detailed in section above.
Next sections provide an analysis of our results in terms of individ-
ual consumer gain and the structure of the formed coalitions.

4.2.1 Consumer’s social gain

In this section we analyse the consumers’ effective gain obtained
by adopting the coalitional approach proposed with respect to the
non-coalitional one, composed of singleton coalitions. Figure 3
show the results for 12 agents on a random, scalefree and small-
world networks in the three different market scenarios respectively.
Only instances for which empty core was not detected are consid-
ered in these results. Let p; be the payment of agent a; € A in
a coalition and v({i}) the payment of the agent in its singleton
coalition. Then, the average percent consumer gain is assessed as
Yazeari—v{i}) 3

Ya;eav{i})
as a measure of the variance in each graph. Results show that in all
configurations, although as expected the average percent consumer
gain is increased with density (more links among agents lead to
more feasible energy coalitions among them) this increment is not
significant. Regarding different market conditions, the average per-
cent consumer gain is much higher (around 10%) in M3 that in M1
and M2 (around 1%). Thus, the economical incentive to join coali-
tions is directly proportional to the economical incentive to enroll
in the forward market.

Table 2 shows the percentage of instances under each configu-
ration for which the core was detected as empty. Notice that in
all network topologies, the number of instances for which the core
is empty increases with the density of the network. These results
are coherent with the well-known results that any acyclic network
(which has by definition the lowest density) is guarantee to have
a non-empty core [6]. As we increase the density the number of
cycles also increase and results show that the probability of core
emptiness is higher (i.e. a higher number of instances show the
inexistence of an stable economical agreement among consumers).
Regarding different network topologies, we observe that the num-
ber of instances with core emptiness is higher in scale free net-
works, where the links are concentrated on hubs, than not on ran-
dom and small-world networks, where each node in average have
the same degree. Finally, we also observe that the number of in-
stances with core empty is much higher on M1 and M2 than not
in M3. Although we need to perform a deeper analysis on these
results, they lead to the hypothesis that the larger the distance of
prices in the market the less the probability of having an empty
core in the coalitional game.

. We also plotted the standard error of the mean

4.2.2  Structure of energy coalitions

In this section we analyse the structure of the energy coalitions
obtained in the experiments. For each configuration, we plot the
mean of the minimum, average and maximum size of coalitions
formed. Figure 4 plots the results for networks of 12 agents on a
random, scale free and small-world networks in two different mar-
ket scenarios. We also plotted the standard error of the mean as
a measure of the variance in each graph. Market scenario M3 is
omitted because we detected that the grand coalition was formed in
all tested instances. In contrast we observe that for markets M1 and
M2, the market conditions lead to coalitions of middle size in all

*Notice that since consumers payments are an imputa-
tion of the optimal coalition structure this is equivalent to
v(C5*) =%, ca —v({i})

2a;eav({i})
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Figure 3: Graphs showing the average percent gain of consumers on different topologies and densities under market conditions M1

(a)-(c), M2 (d)-(f) and M3 (g)-(i).

network structures. Therefore, our results show that larger differ-
ences between prices in the two markets, leads to larger coalitions
sizes and that the structure of the coalitions formed is very sensi-
tive to these market conditions. Finally, we also observe that as we
increase the density of the network, more coalitions of middle size
are formed since the size of the maximum coalition decreases with
density whereas the average size increases. In contrast, low density
networks tend to lead to larger coalitions.

. % Empty Core

Topology Density il N 3
Low 8% 0% 0%

Random Medium | 50% | 26% | 6%
High | 56% | 44% | 10%

Low 0% 0% 0%

ScaleFree Medium | 52% | 22% | 2%
High | 46% | 38% | 12%

Low 8% 6% 2%

SmallWorld | Medium | 46% | 18% | 8%
High | 46% | 48% | 6%

Table 2: Percentage of instances with empty core under differ-
ent configurations.

S. CONCLUSIONS AND FUTURE WORK

In this work we proposed a novel demand-side peak strategy
that promotes the formation of coalitions among energy consumers
with complementary energy needs. On so doing, we addressed the

challenges that arise in the formation and management of these en-
ergy coalitions, the so-called virtual energy consumers (VEC’s), by
modeling the VEC formation process as a coalitional game. We de-
fined a metric to evaluate coalitions taking into account that mem-
bers of a VEC are typically motivated to minimize their joint pay-
ment within the electricity markets, while capturing the synergies
that exist between consumers to improve the efficiency of the grid.
Our model uses social networking as a tool for consumers to pro-
vide member engagement and trust on energy coalitions. Thus, we
defined an algorithm that allows agents organised into a network
to list all network-feasible coalitions and compute coalition values
in a distributed fashion. We used linear programming techniques
to efficiently identify the most efficient VEC’s and to allocate the
payments to individual members of VECs while taking into ac-
count that each consumer is typically motivated to maximize its
own profit (as defined by core-stable solution concepts).

Secondly, we tested our model on a real dataset varying the topol-
ogy and density of the social network and the market conditions.
Our results show that whereas the density of the social network
does not affect significantly consumer’s coalitional gain, it affects
the stability of the economical agreement among consumers (in
many dense networks such stability simply does not exist). We
also show that, as the distance between the price of energy in the
forward market and the day-ahead market decreases, not only the
coalition formation process yields to higher gains, but coalitions are
more likely to be stable (this effect is observed even in very dense
networks). Finally, depending on the economical incentive to buy
in the forward market, we show that the game process converges
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Figure 4: Graphs showing the minimum, average and maximum size of coalitions formed on different topologies and densities under

market conditions M1 (a)-(c), M2 (d)-(f).

from singleton coalitions to the absorbing state of the grand coali-
tion, through a wide variety of middle size coalitions (i.e. as the
distance between prices in the forward and the day-ahead market
increases, the sizes of the coalitions formed also increases).

As a future work, we plan to explore multiple lines. First, given
the decentralisation nature of this domain, it would be desirable
to provide a decentralised solutions for the coalition structure gen-
eration and payoft distribution activities instead of the centralised
linear programming one used in this paper. Second, considering
the scale and dynamism of the optimisation problem, it would be
important to explore approximate solutions to the proposed model
that provide more scalability. Finally, it is left as future work to
test the proposed model with more sophisticated metrics to predict
coalition consumption that explicitly model the risk associated with
the decisions made by the agents.
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