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ABSTRACT

Sustainable energy domains have become extremely important due
to the significant growth in energy usage. Building multiagent sys-
tems for real-world energy applications raises several research chal-
lenges regarding scalability, optimizing multiple competing objec-
tives, model uncertainty, and complexity in deploying the system.
Motivated by these challenges, this paper proposes a new approach
to effectively conserve building energy. This work contributes to a
very new area that requires considering large-scale multi-objective
optimization as well as uncertainty over occupant preferences when
negotiating energy reduction. There are three major contributions.
We (i) develop a new method called HRMM to compute robust
solutions in practical situations; (ii) experimentally show that ob-
tained strategies from HRMM converge to near-optimal solutions;
and (iii) provide a systematic way to tightly incorporate the insights
from human subject studies into our computational model and al-
gorithms. The HRMM method is verified in a validated simulation
testbed in terms of energy savings and comfort levels of occupants.

Categories and Subject Descriptors

1.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence—Multiagent systems

General Terms

Algorithms, Experimentation, Human Factors

Keywords

Energy, Sustainable Multiagent System, Multi-objective Optimiza-
tion, Model Uncertainty, Human Subject Study

1. INTRODUCTION

The rapid growth in energy usage from commercial buildings in
the U.S. has made the need for systems that aid in reducing en-
ergy consumption a top priority. Commercial buildings in the U.S.
spent 18.5 QBtu in 2008, representing 46.2% of building energy
consumption and 18.4% of U.S. energy consumption [1]. To that
end, this work studies an innovative multiagent system to conserve
building energy, specifically focusing on new algorithms to be de-
ployed in commercial buildings (e.g., Ralph & Goldy Lewis Hall
(RGL) at the University of Southern California (Figure 1(a))).

The purpose of a sustainable energy system is to efficiently con-
serve energy in the real-world, which raises three major technical
research challenges. First, there are inherently multiple compet-
ing objectives like limited energy supplies, demands to satisfy oc-
cupants’ comfort levels, and additional costs to maintain the sys-

(a) Educational Building (RGL)

(b) Simulation Testbed

Figure 1: The actual research testbed at USC and our simulator

tem. This makes the problem harder as we need to explicitly con-
sider multi-objective optimization techniques. Second, in such a
complex domain, precisely knowing the world model is very chal-
lenging. Furthermore, as human occupants are directly involved in
the optimization procedures, we must understand human behavior
models and simultaneously reason about such model uncertainty in
the domain. In addition, we should address novel scenarios that re-
quire agents to negotiate with groups of building occupants to con-
serve energy; previous work has typically focused on agents’ ne-
gotiation with individual occupants in residential buildings. Third,
this system should actually be deployed and verified in real testbed
buildings, which adds another layer of complexity.

Researchers have been developing multiagent systems to con-
serve energy for deployment in smart grids and buildings [8, 10, 12,
17, 18]. However, their work has been done with a particular focus
on residential buildings and has not considered the combination of
the above research challenges in sustainable energy domains. In
addition, although human occupants in commercial buildings play
a key role to effectively save energy, there has been little effort to
conduct human subject studies and tightly incorporate fundamental
understandings regarding human behaviors into the computational
models. To overcome the weaknesses of prior work, we have pro-
posed a new approach to efficiently compute robust policies for
sustainable energy problems. In particular, we provide three ma-
jor contributions in this paper. First, we develop a new method
called HRMM (Heuristics for Robust Multi-objective optimiza-
tion under Model uncertainty) to compute the MINIMAX and MI-
NAVG strategies for Bounded-parameter Multi-objective Markov
Decision Problems (BM-MDPs) that were proposed in [9] to op-
timize multiple competing objectives under uncertainty. Second,
the MINIMAX and MINAVG strategies are experimentally shown to
converge, which gives an insight into finding the solution bounds.
Third, we provide a systematic way to tightly connect human sub-
ject studies from social psychology and our computation model
and algorithm. Specifically, we suggest a new modeling method



to understand the underlying human behavior models for negotia-
tions and construct more refined models for an input to BM-MDPs,
which are used to compute robust strategies. We show that the gen-
erated solutions from HRMM substantially reduce the overall en-
ergy consumption compared to the existing control method while
achieving comparable average comfort levels for occupants.

In Section 2, we describe our domain problems and testbeds. In
Section 3, we describe a general problem formulation to achieve the
desired goal in our domain, and detailed approaches are presented
in Section 4. Section 5 provides evaluations and discussions.

2. MOTIVATING DOMAIN & TESTBEDS

Jointly performed with the university facility management team,
this research is based on actual occupant preferences and sched-
ules, actual energy consumption and loss data, real sensors and
hand-held devices, etc. Figure 1(a) shows one of the real testbed
buildings (Ralph & Goldy Lewis Hall) in which this work is to be
deployed and the floor plan of the 37¢ floor. This campus build-
ing has three floors in total and is composed of classrooms, offices
for faculty/staff, and conference rooms for meetings. Each floor
has a large number of rooms and zones (a set of rooms that is
controlled by specific equipment). The building includes compo-
nents such as HVAC (Heating, Ventilating, and Air Conditioning)
systems, lighting systems, office electronic devices like computers
and AV equipment, and human occupants are classified either per-
manent (faculty, staff, researchers, etc.) or temporary (students or
faculty attending classes/meetings, etc.).

In this domain, there are two types of energy-related occupant
behaviors that this work can influence to conserve energy use: indi-
vidual and group behaviors. Individual behaviors only affect an en-
vironment where the individual is located, and group behaviors lead
to changes in shared spaces and require negotiation with a group of
occupants.

As an important first step in deploying this work in the actual
building, we have constructed a realistic simulation testbed (Fig-
ure 1(b)) based on the open-source project OpenSteer ' and vali-
dated the simulation testbed using real building energy and occu-
pancy data. This validated simulation environment has been used
to evaluate novel models and algorithms in terms of energy savings
and occupants’ comfort levels. Readers are referred to [9] for a
more detailed description regarding the testbed.

3. BACKGROUND & PROBLEM STATE-
MENT

The desired goal in this work is to optimize multiple criteria,
i.e., achieve maximum energy savings without sacrificing the com-
fort level of occupants in commercial buildings. This objective is
achieved by two types of agents: room agents and proxy agents
(Figure 2). There is a dedicated room agent per office and con-
ference room, in charge of reducing energy consumption in that
room, focusing on group negotiations with occupants. A proxy
agent [19, 20] is on an individual occupant’s hand-held device and
it has the corresponding occupant’s models. Proxy agents commu-
nicate on behalf of an occupant to the room agent based on their
adjustable autonomy — when to interrupt a user and when to act
autonomously.

The room agent is responsible for planning simple and complex
tasks. These tasks include negotiating with groups of individuals
to relocate meetings to smaller rooms to save energy, negotiating
with multiple occupants of a shared office to reduce energy usage

"http://opensteer.sourceforge.net/
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Figure 2: Agents & Communication Equipment. An agent
sends feedback including energy use to occupants.

in the form of lights or HVACs, and others. We model this planning
problem using BM-MDPs [9], which are a hybrid of Multi Objec-
tive MDPs (MO-MDPs) [5, 13] and Bounded MDPs (BMDPs) [7].
To achieve the given goal, BM-MDPs must reason with multiple
objectives, but simultaneously must reason with given model un-
certainty, as precisely knowing the model is very challenging in
a complex domain. Before explaining BM-MDPs, we first briefly
explain MO-MDPs on which BM-MDPs are built.

The negotiation scenarios require us to consider multiple objec-
tives simultaneously: energy consumption and the comfort level of
multiple individuals. To handle multiple objectives, MDPs have
been extended to take into account multiple criteria assuming no
model uncertainty. MO-MDPs are defined as an MDP where the
reward function has been replaced by a vector of rewards. Specif-
ically, MO-MDPs are described by a tuple (S, A,T,{R:},p),
where S is a finite set of world states, A is the finite set of actions of
an agent, 7' is the transition function, R; is the reward function for
objective ¢ and p denotes the starting state distribution (p(s) > 0).
In particular, the multiple reward functions, { R;}, include energy
consumption (e.g., the reduction in energy usage in moving from a
conference room to a smaller office), and comfort level defined sep-
arately for each individual based on her/his preferences. The key
principle we rely on, given the current domain of non-residential
buildings is one of fairness; we wish to reduce energy usage, but
we cannot sacrifice any one individual’s comfort entirely in service
of this goal. To meet this requirement, we focus on minimizing
the maximum regret instead of maximizing the reward value based
on a min-max optimization technique [14] to get a well-balanced
solution across objectives under given model uncertainty.

BM-MDPs [9] now extend MO-MDPs to add capability to ex-
plicitly handle model uncertainty, and they are described by a tuple

= (S, A, T,{R;},p), where R; represents the reward function
for objective i. The transition (') and reward functions ({Ri}) in
BM-MDPs have closed real intervals similar to BMDPs, which are
limited to optimizing a single objective case (i.e., the BMDP model
requires one unified reward function).

In BM-MDPs, to minimize the maximum regret, we first need
to compute the optimal value for each objective ¢ using the MDP
framework relying on the following formulation:



min V;*(s) )]
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where V;* is an optimal value for objective i, and v is a discount
factor.
We define the regret in BM-MDPs as follows:

Definition Let H/ (s) be the regrer with respect to a policy 7 for
objective ¢ and state s. Formally,

HY (s) =V, (s) = Vi" (s), @)
where Viﬁi* () is the value of the optimal policy, 7} , pre-calculated
by (1)-(3) of the MDP formulation, and V;™(s) is the value of the
policy 7 for objective ¢ and state s.

The objective is to find an optimal 7, minimizing the maximum
regret over all objectives given a noisy model M, U, ().
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where [ is a set of objectives, and 7 is a randomized policy.

4. APPROACH

This work is driven by challenges of multi-objective optimiza-
tion as well as model uncertainty, leading to two main ideas. First,
we describe a novel approach to solve BM-MDPs to compute a ro-
bust and near-optimal policy. Second, we propose a new modeling
method to build realistic human behavior models, which reduces
the degree of model uncertainty in BM-MDPs so that we can ob-
tain practical, applicable strategies to real-world situations.

4.1 Algorithm

Two previous heuristics have been proposed to compute opti-
mistic and pessimistic BM-MDP policies in [9], however, those
methods are limited to provide only two extreme solutions and they
do not provide any solution bounds and/or show the convergence
of computed solutions. To overcome these two limitations, we pro-
pose a new algorithm called HRMM based on the formulation de-
scribed in Section 3, which provides a generic solution framework
for BM-MDPs and empirical solution bounds. The HRMM method
relies on two major features: i) sampling and ii) policy selection us-
ing cross-validation.

Algorithm 1 describes the overall flow of HRMM to solve BM-
MDPs. The HRMM method is general and universal to solve BM-
MDPs where each function in the algorithm can be independently
replaced without affecting other parts.

We first generate BM-MDPs as an input considering refined hu-
man behavior models, which will be discussed in the next section

Algorithm 1 HRMM

1: BM-MDP < GETREFINEDMODEL()

2: {Considering model uncertainty and multiple objectives; This function
is defined based on the math model considering more realistic human
behavior functions described in Section 2}

3:

4: form=1...N € Mdo

5: { M is a set of sampled models. }

6: M,,, < GETRANDOMMOMDPSAMPLE(BM-MDP)

7. mwm + SOLVEMOMDP(M,,,)

8: {7m is an optimal policy computed from M,,,, a sampled MO-MDP
model, based on the min-max formulation. }

9.

10: 7 < POLICYSELECTION({r}, {M})

11: {Given a set of sampled models and their corresponding policies,
choose the final BM-MDP policy using various heuristics. }

12: return 7

Table 1: Cross Validation Matrix

M1 M2 .. MN
w1 | Unr, (m1) | Upg,(m1) Unry (1)
2 Ufc[l (m2) UJT/IQ (m2) U;CIN (m1)
N | Uspy () | Uigy (7o) Uniy (7n)

(line 1). We then randomly generate N MO-MDP samples from the
given BM-MDPs using a probability distribution over model uncer-
tainty and solve each sampled model to compute policies based on
the multi-objective optimization formulation presented in Section 3
(lines 4-8). For sampling, we assume a uniform distribution as a
default option. In line 10, we compute an optimal BM-MDP policy
7 using cross-validation, details will be presented below.

Now we focus on two main ideas in HRMM, i) sampling and
ii) policy selection, and explain them in detail. To handle model
uncertainty, we first sample N MO-MDP models from the given
BM-MDPs built upon such model uncertainty. In particular, for
the reward functions, the value is randomly drawn from a given
range based on the probability distribution over model uncertainty
for each objective. The transition function is selected by a similar
way based on the notion of Order-Maximizing MDPs [7], which
selects the transition probabilities from the given intervals. More
specifically, we randomly generate an order of states based on the
probability distribution and take this order as an input to construct
the transition function. To give some intuition behind this opera-
tion, we provide the following simple example to show how transi-
tion values are assigned from their intervals using the given order.

Sampling Example Consider a BM-MDP with three states: si,
s2, s3. The transition ranges are T(sl, a,s1) = [0.2, 0.9],
T(sl, a, s2) =[0.1, 0.3], T(sl7 a, s3) =[0.2, 0.8]. Let us assume
that the given order of states is sa—s3—s1. The high-level idea is that
we require movement to s2 as much as possible within the given
range of transition probability, and sz next, and so forth. There-
fore, the transition probabilities would be T'(s1, a, s2) = 0.3 and
T'(s1,a,s3) = 0.5 because T'(s1, a, s1) should be at least 0.2, and
T(s1,a,s1)=(1-03-0.5).

For each sampled model M,,, we solve equations (5)—(9) with
M,,, and compute an optimal policy 7,,, for the given model. For
each model, we iterate this procedure and construct the matrix as
shown in Table 1. In Table 1, Uy, (7y,) is the maximum regret
value when 7,, is evaluated against a model M,,.

The final step to compute a BM-MDP policy is policy-selection
using Table 1. We provide a method to choose the MINIMAX and



MINAVG policies.

MINIMAX: MINIMAX finds an optimal policy, 7, minimizing the
worst-case maximum regret over models. Formally, we compute
the policy as following:

7 <+ argminmax Uy, (mm), Vm,n € M, (10)
m n

where M is a set of sampled models.

MINAVG: MINAVG finds a policy, 7, minimizing the average max-
imum regret over models. Thus, we consider the average perfor-
mance of each policy and choose the best one among them.

m + argminavg, U, (Tm),Vm,n € M (11

4.2 Refined Human Behavior Modeling

One of the central challenges in a complex domain such as ours
is to obtain/construct a correct model of the problem we try to
address. More specifically, as human occupants actively engage
in reasoning (e.g., negotiations to conserve energy in commercial
buildings), understanding the underlying human behavior models
becomes crucial. Thus, in this work, jointly performed with so-
cial psychologists, we propose a sophisticated modeling procedure
to construct more realistic models of human behavior. We then
leverage insights and expertise from these models as input to BM-
MDPs.”

There is significant related literature in social psychology on
understanding human behavior models with respect to negotiation
processes [3, 4, 11, 16]. Among them, we specifically focus on the
effects of repeated exposure (i.e., irritation factor), which funda-
mentally explains the phenomenon that agreement with advocacy
would increase, then decrease as exposure frequency increases.
There are multiple properties we need to consider regarding this
effect including the complexity of stimuli, message exposure fre-
quency, heterogeneity of the message, and the degree of learning
(or recall), etc. Among those properties, the primary factor is the
message complexity. In general, a complex message contains more
heterogeneous and stronger arguments than a simple one, but is not
necessarily lengthy.

The objective of this study is i) to understand what types of mes-
sages are most effective to affect occupants’ energy-related deci-
sions, and ii) to figure out the most effective means to convey those
messages considering different occupants’ preferences. This study
can be investigated via a survey to collect responses of actual oc-
cupants. The analyzed results are eventually used to construct a
refined BM-MDP model, which will be used as an input to com-
pute an optimal policy in Algorithm 1.

We designed a survey to assess individual differences and pref-
erences.’ In this study, we measured participants’ compliance rates
to given energy suggestions within either a simple or complex mes-
sage and corresponding comfort levels while varying lighting, tem-
perature and meeting relocation/reschedule conditions in a com-
mercial building. In particular, the survey is composed of four
separate sections to assess individual characteristics, the lighting
preference, the temperature preference, and the meeting reloca-
tion/reschedule preference. For each section, to measure prefer-
ences, the message type (either simple or complex) shown to sub-
jects is randomly selected. For instance, while measuring the light-
ing preference, some participants are repeatedly exposed to a sim-

*Note that we only focus on modeling in this paper and leave the
validation as future work.

3http://www-scf.usc.edu/ junyounk/survey2/index.php

Given the above meeting room condition, please consider the following message.
If you change your meeting room to a smaller room, the average annual energy savings
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Figure 3: Survey Screenshot

ple message (and others are exposed to a complex message) for
a fixed number of times (e.g., if you reduce your lighting for the
hours you work, the annual energy savings at the building level
is equivalent to the reduction of CO2 emissions for 1.6 homes for
one year. Will you dim the lighting level in your office?) and the
compliance rates and irritation levels caused by the provided mes-
sages are measured as message frequency increases. Changes in
their comfort level are also measured as the lighting level changes.
Likewise, for the meeting relocation/reschedule preferences, some
participants are repeatedly exposed to a complex message, includ-
ing heterogeneous environmental motives and tailored individual
energy rates (and again, others are exposed to a simple message).
Their comfort level changes are also measured with various meet-
ing relocation options, specifically focused on the degree of dis-
placement (i.e., how much difference between the original meeting
and new meeting in terms of location and time) and occupant den-
sity in the room (i.e., #-ofmeeting participants ) * A¢ the end of the
survey, each participant is asked how much of the conveyed mes-
sages they are able to recall. Figure 3 shows an actual screenshot
of the online survey we have conducted, and the preliminary results
will be provided in the evaluation section.

4.3 Constructing BM-MDPs

We now elaborate how to incorporate the survey outcomes into
our computational model (i.e., BM-MDPs) for a more robust pol-
icy computation. In short, the measured compliance rate is used
to construct the transition function (77), and vafious comfort lev-
els are incorporated into the reward function ({ R; }). To give more
concrete ideas on how to construct the BM-MDP model, we illus-
trate the following simple example.

Consider a meeting that has been scheduled in a medium meeting
room (II in Figure 8(c)) that has more light sources and appliances
than smaller offices. Assuming the meeting has few attendees, the
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Figure 4: Value distribution from the survey of the example
scenario described in Section 4.3

room agent will persuade an attendee (P ) to relocate the meeting
to nearby small, sunlit offices (III in Figure 8(c)), which can lead
to significant energy savings. The room agent specifically provides
the following simple suggestion repeatedly: “If you change your
current meeting room to a smaller room, the average annual energy
savings are equivalent to CO2 emissions from 6.2 barrels of oil con-
sumed. Will you change the meeting room (II) to a smaller room
(II)?” Then, P; responds to the given energy suggestion to decide
whether or not (s)he will agree to relocate the meeting. We assume
that the above simple message was provided to P; two times on
that day, the maximum capacity of a small office is 5, the current
number of meeting attendees is 2 (including P ), and the distance
between a medium meeting room (II) and a small office (III) is less
than 10 minutes by foot. The reward scale is [0, 100].

This situation is captured as follows: The current state (s1) in-
dicates a medium meeting room (II in Figure 8(c)), the message
frequency is 2, the message complexity is simple and the sugges-
tion type is the meeting relocation. The only change in the target
state (s}) from s; is the meeting room change to a small office
room (III in Figure 8(c)). The basic idea to choose a range for the
transition probability and reward value is to select the minimum
and maximum values that have a higher relative frequency than a
given threshold (k1 for T & kr for R *). In this example, we set
kT t0 20% and kg to 15%. Then, Pl’s transition probability of
complying to the given suggestion (7'(s1, Relocate, s7)) is [0.33,
0.67] since the minimum and maximum values exceeding xr are
“Not likely” (raw value is 1 out of 3: 0.33) and “Likely” (raw value
is 2 out of 3: 0.67) as shown in Figure 4(a). P;’s reward function
considers multiple factors: 1) irritation level (v1) by the provided
message (Figure 9(c)), ii) comfort level change (v2) according to
occupant density of the target room (Figure 9(e)), and iii) com-
fort level change (v3) by the degree of displacement (Figure 9(f)).
Then, vy is [0.0, 50.0] since the minimum and maximum values
exceeding kg are O (out of 6: 0.0) and 3 (out of 6: 0.5) (see Fig-
ure 4(b)). vz is [66.67, 100.0] as the minimum value is 4 (out of
6: 0.67) and the maximum value is 6 (out of 6: 1.0) as shown in
Figure 4(b). Similarly, v3 is [50.0, 83.33] since the distance is less
than 10 minutes by foot, the minimum and maximum values are 3
and 5 (out of 6), respectively as shown in Figure 4(b). Assuming
that P;’s weight values over these factors are 20%, 50%, and 30%,
R(sl, Relocate, s’l) = —0.2%v1 +0.5*%xvy +0.3xwvs =[38.34,
74.99]. In this way, we complete the baseline BM-MDP model
considering all possible states and actions. For future work, we
will consider machine learning techniques to refine the constructed
model further based on real-world signals.

*Since the transition and reward functions often have different
scales, we define a separate threshold parameter for each function.
However, we can set the same value for both parameters for the
convenience.

S. EVALUATION

In this section, we evaluate the performance of the HRMM
method and experimentally show that its policies converge to near-
optimal solutions. At the end of this section, we provide prelimi-
nary results in a validated simulation testbed (Figure 1(b)) and sur-
vey results that we have conducted. The experiments were run on
Intel Core2 Duo 2.53GHz CPU with 4GB main memory. All tech-
niques were evaluated for 100 independent trials throughout this
section and we report the average values. For the sampling, we
assumed a uniform distribution.

5.1 Evaluation of HRMM

We first compared the performance of the MINIMAX and MI-
NAVG policies with other competitors’ policies. Figure 5 shows
the average maximum regret on the y-axis of different strategies.
As we plot the regret, the lower value on the y-axis indicates bet-
ter performance. Each policy was evaluated against 10000 sam-
ples. In the figure, BEST-AVG and WORST-AVG are the lowest
and highest average maximum regret when all sampled policies are
evaluated against 10000 samples, respectively. Assuming we do
not explicitly consider model uncertainty in the world (i.e., MO-
MDPs), we get one single policy computed from the given MO-
MDP model that is essentially identical to one of sampled mod-
els from BM-MDPs when the number of samples is large enough.
Thus, the BEST-AVG and WORST-AVG policies indicate the best
and worst possible MO-MDP policies when being evaluated in the
real-world under such model uncertainty. We also compare with
the standard MDP with a unified reward based on the weighted
sum method [24]. The uniform weight distribution was applied to
the weighted sum method.

As shown in Figure 5,
both MINIMAX  and
MINAVG showed very
good performance, which
were close to the average

ideal case that we can

assume in the world under

given model uncertainty.

This means the strategies I I I

from HRMM outperform e - - - -

almost all MO-MDPs
and the standard MDP. In
addition, MINAVG showed
better performance than
MINIMAX on average,
but MINIMAX had lower
variance when being evaluated, which means it reliably reacts to
the worst possible case.

We then experimentally show that two strategies computed by
HRMM converge as the number of samples increases. The y-axis
in Figure 6 shows the average maximum regret of each MINIMAX
and MINAVG policy, and the x-axis indicates the number of samples
from 10 to 5000. Figure 6 shows that both policies converged when
the number of samples increased (particularly from around 1000
samples). This result also confirms that MINAVG shows generally
better performance than MINIMAX on average.

Lastly, we tested the MINIMAX and MINAVG policies in terms of
energy consumption (kWh) and average comfort level of occupants
(%). Figure 7(a) shows that the cumulative total energy consump-
tion on the y-axis in kWh measured during 24 hours for all con-
trol strategies and time on the x-axis. We report the average total
energy consumption measured over 30 sample weekdays through-
out different seasons (3 weekdays in 2011 Spring, 10 weekdays in

#of samples: 2000

Average maximum regret
s 2 ® 3 B E B3
& 8 8 8 8 & 8

N
3

MINIMAX ~ MINAVG ~ BEST-AVG WORST-AVG Standard MDP

Figure 5: Performance Com-
parison
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2011 Summer, 17 weekdays in 2011 Fall). In the figure, the man-
ual strategy represents the current strategy operated by the facility
management team in RGL. The reactive strategy has an additional
automatic operation feature based on the presence of occupants,
which can be easily implemented using cheap sensors in the real
building.

The MINIMAX achieved energy savings of 30.03% with an actu-
ally measured compliance rate (68.18%) from [9] and up to 41.35%
with the ideal compliance rate (i.e., occupants always accept the
suggestions provided by the room agents) when compared to the
manual control strategy, and 16.64% compared to the reactive con-
trol strategy. On the other hand, the MINAVG achieved energy sav-
ings of 33.44% and 20.71% compared to the manual and reactive
control strategies, respectively.

In addition to energy savings, we compared the average comfort
level of human occupants under different control strategies in the
simulation testbed. Figure 7(b) shows the average comfort level in
percentage on the y-axis and time on the x-axis. As shown in the
figure, both MINIMAX and MINAVG reliably showed higher aver-
age comfort level (about 70% or higher) than other control strate-
gies as it plans ahead of the schedules considering uncertainty using
BM-MDP policies.

5.2 Preliminary Survey Results

In this section, we provide preliminary results from the survey
designed as described in Section 4.2. While conducting the sur-
vey, we provided concrete contextual information as shown in Fig-
ure 8. From this experiment, we answer the following questions by
comparing change in energy behavior patterns and corresponding
comfort levels.

HYPOTHESIS 1. As exposure frequency increases, more com-
plex feedback will shift “the effects of repeated exposure” and si-
multaneously lead to higher compliance rates to energy conserva-
tion suggestions than simpler feedback.

HYPOTHESIS 2. As exposure frequency increases, more com-

1. Maximum lighting level Il. Medium lighting level [II. Minimum lighting level

(a) Lighting preference

I1l. 80-90F

(b) Temperature preference

111. Small office

| Large conference room

Il. Medium meeting room

(c) Meeting relocation preference

Figure 8: Survey Test Conditions

plex feedback will make the message less irritating and thus miti-
gate the overall irritation level compared to simpler feedback.

We tested the hypotheses above as follows: we first recruited
220 participants on Amazon Mechanical Turk who work or have
worked in an office (either at a company or school) regularly. We
conducted this study for one week in the spring of 2012 and col-
lected data from human subjects.

Table 2 shows that the average compliance rates to energy sug-
gestions regarding the lighting, temperature, and meeting reloca-
tion/reschedule conditions. In the table, for the lighting condi-
tion, I—1I represents the message suggesting that occupants dim
the lighting level from the maximum level to the medium level and
[I—1II indicates from the medium level to the minimum level. For
the temperature condition, we provided the message to assess the
likelihood of adjusting the desired temperature to a higher-level.
Similarly, we measured how willing occupants are to relocate a
meeting from a large conference room to a smaller office for the
meeting preference condition. The values in the parentheses indi-
cate the ratio of people who are exposed to specific type of message
(simple vs complex).

The results shown in the table did not strongly support Hypothe-
ses 1 as the overall compliance rate according to different types
of messages did not show a significant difference except for some
cases in lighting level and meeting relocation. However, in general,
with the complex message, participants indicate stronger intentions
when they agree to the given suggestions. In addition, for the meet-
ing relocation, subjects agreed to relocate the meeting to a smaller
space with a high compliance rate (about 78%) without suffering
from a high degree of irritation, which means that there is a huge
potential to effectively save energy use in buildings by leveraging
this type of energy suggestion. As we described before, these com-



Table 2: Compliance Rates (%)

Lighting Temperature Meeting
C S C S C S
(49.0) | (51.0) | (52.8) | (47.2) | (43.6) | (56.4)

I—II | 6022 | 61.83 | 59.62 | 61.21 | 77.89 | 78.32
II—III | 47.62 | 40.51 | 51.44 | 52.77 | 56.22 | 50.0

(C: complex message, S: simple message, I, II, and III are test con-
ditions as shown in Figure 8.)

pliance values are directly used to construct the transition function.

Figure 9 shows comfort levels measured under various condi-
tions, which includes irritation level change while repeating the
energy suggestion message to human subjects. Figures 9(a)-9(c)
show the average irritation level on the y-axis while varying the
message frequency (x-axis). In the graph, the lower irritation level
indicates the better result. As shown in these irritation results, as
claimed in Hypothesis 2, the complex message either led to a lower
irritation level or converged faster than a simple message, which
means that a simple message might reach much higher irritation
levels as we repeat the message further. On the other hand, Fig-
ures 9(d)-9(f) show the average comfort level (y-axis) while vary-
ing current conditions on the x-axis.> These results give more con-
crete ideas about how to model human occupants’ comfort level
change while handling various types of energy suggestions. Specif-
ically, these outcomes are incorporated into the reward function.

Although we only provided a subset of results from the survey in
this paper, there are many potential hypotheses we can verify to ex-
plain more interesting human behavior models. We use this data to
construct a refined baseline human behavior model for computing
robust strategies in BM-MDPs.

6. RELATED WORK

In discussing related work, a key point we wish to emphasize

is the uniqueness of our work in combining research on multiagent
systems. Specifically, our BM-MDP algorithm handles uncertainty,
and negotiations with human subjects, in an innovative application
for energy savings. It is this specific combination of attributes that
sets this work apart from previous research.
Multiagent Energy Systems: Multiagent systems have been con-
sidered to provide sustainable energy for buildings and smart grid
management. Miller ef al. [12] investigated how the optimal dis-
patch problem in the smart grid can be framed as a decentralized
agent-based coordination problem and presented a novel decentral-
ized message passing algorithm. Their work was empirically evalu-
ated in large networks using real distribution network data. In addi-
tion, [8] addressed research challenges to integrate plug-in Electric
Vehicles (EVs) into the smart grid.

To model and optimize building energy consumption, Mamidi et
al. [10] developed smart sensing and adaptive energy management
agents to decrease energy consumptions by HVACs in buildings.
They showed that in the educational building, these sensor agents
can be used to accurately estimate the number of occupants in each
room and predict future occupancy relying on machine learning to
intelligently control HVAC systems. Ramchurn et al. [17] consid-
ered more complex deferrable loads and managing comfort in the
residential buildings. Rogers et al. [18] addressed the challenge

>The x-axis in Figure 9(f) indicates the following conditions:
1: Less than 5 mins walking distance or less than 30 mins shift
2: Less than 10 mins walking distance or less than 1 hr shift

3: Less than 15 mins walking distance or less than 2 hrs shift
4: Less than 30 mins walking distance or less than 4 hrs shift
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Figure 9: Survey Outcomes

of adaptively controlling a home heating system in order to mini-
mize cost and carbon emissions within a smart grid using Gaussian
processes to predict the environmental parameters. Our domain is
different in focusing on energy savings in commercial buildings,
and the representation and approaches are also different from pre-
vious work by allowing consumers (i.e., occupants) to play a part
in optimizing the operation in the building instead of managing the
optimal demand on buildings.

Negotiation and Social Influence in Human Subject Studies:
Wood and Neal [23] have studied the potential of interventions
to reduce energy consumption and they have shown that it is not
only to change workplace energy consumption but also to establish
energy use habits that maintain over time. Abrahmase et al. [2]
also reviewed 38 interventions aimed to reduce household energy
consumption, and they concluded that normative feedback about
energy use is the most promising strategy for reducing and main-
taining low consumption.

In social psychology, there has been a significant deal of work
to figure out the correlation between irritation/distraction factors
and persuasion. McCullough and Ostrom [11] and Cacioppo and
Petty [4] discussed that message repetition would increase posi-
tive attitudes in a situation where highly similar communications
are used and showed that there is a positive relationship between
the number of presentations and attitude from general social psy-
chology perspectives. Focusing on a commercial advertisement,



Pechmann and Stewart [16] predicted the effectiveness of different
strategies on advertising and examined the effects of message rep-
etition on attitude changes. In addition, Baron et al. [3] discussed
that distractions affect behavior decisions, but they are more or less
effective in increasing persuasion depending upon whether people
can easily ignore the distraction.

We leverage lessons and insights from social psychology in un-
derstanding and designing reliable and accurate human behavior
models to compute robust strategies in the real-world.
Multi-objective Optimization Techniques: There has been a sig-
nificant amount of work done on multi-objective optimization. The
most common approaches to multi-objective optimization are to
find Pareto optimal solutions [15], use the weighted sum method
to aggregate multiple objectives using a prior preference [24], or
consider the weighted min-max (or Tchebycheff) formulation that
provides a nice theoretical property in terms of sufficient/necessary
conditions for Pareto optimality [14].

Chatterjee et al. [5] considered MDPs with multiple discounted
reward objectives. They theoretically analyzed the complexity of
the proposed approach and showed that the Pareto curve can be ap-
proximated in polynomial time. Wiering and Jong [22] described a
novel algorithm to compute Pareto optimal policies for determinis-
tic multi-objective sequential decision problems. Authors proved
that the algorithm converges to the Pareto optimal set of value
functions and policies for deterministic infinite horizon discounted
multi-objective Markov decision processes. Ogryczak et al. [13]
focused on finding a compromise solution in multi-objective MDPs
for a well-balanced solution. They compared their approach rely-
ing on the Tchebycheff scalarizing function to the weighted sum
method. On the other hand, there has been some significant ad-
vances to handle model uncertainty on standard MDPs including [6,
7]. Recently, Soh and Demiris [21] extended the previous work
and considered the multiple-reward POMDPs. They presented two
hybrid multi-objective evolutionary algorithms that generate non-
dominated sets of policies. Our work is different from them as we
assume model uncertainty while simultaneously optimizing multi-
ple criteria in MDPs.

7. CONCLUSION

In this work, we presented a new approach to conserve energy
in commercial buildings via providing a robust strategy. There are
several key contributions. We (i) developed a new method called
HRMM to compute robust solutions in practical situations; (ii)
experimentally showed that obtained strategies from HRMM con-
verge to near-optimal solutions; and (iii) provided a systematic way
to tightly incorporate the insights from human subject studies into
our computational model and algorithms. We showed that the gen-
erated solutions from HRMM substantially reduce the overall en-
ergy consumption compared to the existing control method while
achieving comparable average comfort levels for occupants.
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