
Tuning GENIE Earth System Model Components using a

Grid Enabled Data Management System

A. R. Price1, G. Xue1, A. Yool2, D. J. Lunt3, T. M. Lenton4, J. L. Wason1,

G. E. Pound1, S. J. Cox1 and the GENIE team
1School of Engineering Sciences, University of Southampton, Southampton, UK

2Southampton Oceanography Centre, Southampton, UK
3School of Geographical Sciences, University of Bristol, Bristol, UK

4School of Environmental Sciences, University of East Anglia, Norwich, UK

http://www.genie.ac.uk/

Abstract

We present the Grid enabled data management system that has been deployed for the GENIE
project and demonstrate its use in tuning studies of an Earth system model. A Matlab client to the
system provides a common environment for the project Virtual Organization to share scripts,
binaries and output data. By using tools available in the Geodise toolkits we have scripted the
execution of tuning studies which exploit multiple heterogeneous computational resources and use
the database repository to steer computation using multi-dimensional optimisation methods.

1 Introduction
The GENIE project (Grid ENabled Integrated
Earth system model [1]) is creating a Grid
enabled component framework for the
composition, execution and management of
Earth system models. The GENIE code base
consists of mature models of Earth system
components (ocean, atmosphere, land surface,
sea-ice, ice-sheets, biogeochemistry, etc.) which
can be flexibly coupled together and run over
multi-millennial timescales, primarily for
glacial-interglacial simulations. An important
part of such simulations is the parameterisation
of many of the physical processes of the Earth
System that occur on relatively small
timescales. In order to make meaningful
predictions it is vital that these parameters are
tuned to appropriate values and that the effects
of uncertainties in these parameters are
quantified.

There are many methods that may be
adopted for the general problem of optimising a
parameterised model over a multi-dimensional
state space. Choosing an appropriate
methodology depends upon many factors
including the nature of the problem, the size of
the state space and the cost involved in
evaluating data points. The application of
optimisation methods to new models often
requires additional code development to
implement a suitable algorithm, integrate with

an optimisation package or link with numerical
library routines. E.g. The ClimatePrediction.net
project has developed an entire distributed client
application in order to perform an exhaustive
study of the state space of the Hadley climate
model. In this paper we present the design of the
data management system we have deployed for
the GENIE project and demonstrate its use in a
tuning study of an example GENIE
implementation (the c-GOLDSTEIN climate
model [2]). This system provides an interface to
the computational Grid, integration with a
sophisticated optimisation and design package
OPTIONS [3] and access to our file and
metadata repository. We show how the Grid
enabled tools provided by the Geodise project
[4] enable bespoke tuning studies to be quickly
configured and executed and how the data
management system provides a resource that
can be exploited for computational steering of
the optimisation study. This provides the
environmental scientist with a common toolset
with which to investigate and tune their models.

In section 2 we present the data management
system, the tools available in the Geodise
toolkits and the OPTIONS design package. We
then discuss how bespoke tuning studies can be
scripted in the Matlab environment in section 3.
The results from a number of multi-dimensional
optimisation studies are presented in section 4.
We discuss the data management system and
future intentions in section 5.

2 Data Management System
We have adopted an augmented version of the
Geodise Database Toolkit to provide a generic
data management solution for the GENIE
project. The Geodise system exploits database
technology to enable metadata to be associated
with any file submitted to the repository for
archiving (Figure 1). The database interface is
exposed as Web services and files are archived
in the system through a two step process: a) the
file is transferred to a user specified file server
using the GridFTP protocol [5] and b)
information is recorded in the database about
the file including its location, its unique system
generated identifier, access rights and any user-
defined metadata. Client tools are provided in
Matlab [6] and Jython [7] to allow the user to
upload, query and retrieve data in the
repository. The XML Toolbox [8] is used to
convert Matlab data structures into XML for
communication with the Web service interface
to the database. Access to the system is
controlled by authenticating the user through
their X.509 certificate. The system therefore
provides an open and transparent facility
through which members of the project Virtual
Organisation can share data.

Figure 1: Architectural design of the GENIE
data management system.

The Geodise system has been designed to
provide a flexible management solution for the

engineering design process and must be able to
handle any user-defined metadata that the
engineer wishes to record. However, the data
generated by the GENIE framework is produced
by well-defined component codes and the
metadata is thus more tightly constrained. This
enables us to significantly improve the
efficiency of the system by mapping an XML
Schema to the underlying Oracle9i database.
The metadata is therefore handled by the
database using relational tables but we maintain
the flexibility of the system by managing the
XML Schema.

The data management system thus provides
a resource for storing metadata, files and data
structures. The system is flexible enough that
the developing needs of the framework can be
supported while maintaining the efficiency of
the database.

The Geodise Computational toolkit [9]
provides an interface to the Grid through
functions written in the Matlab scripting
environment which invoke classes in the Java
CoG 1.1 [10]. These functions allow a user to
submit compute jobs to the Grid, transfer files
using GridFTP and monitor jobs and resources.
In addition to the database toolset we therefore
have a set of functions that enable powerful use
of the computational grid. A subset of the
Matlab functions is described in Table 1.

In addition to the tools described above the
system also interfaces to OPTIONS, a design
exploration and optimisation package that has
been developed by the Evolutionary
Optimization Research Group at the University
of Southampton. This software provides a suite
of sophisticated multi-dimensional optimisation
algorithms developed primarily for engineering
design optimisation. The package has been
made available to the Matlab environment by
the Geodise project via the OptionsMatlab
interface.

Table 1: Description of the subset of Geodise functions used in tuning studies of GENIE codes. See
[9] for further details.

Command Description
gd_putfile Transfer a file to a specified Grid system using GridFTP.
gd_getfile Retrieve a file from a specified Grid system using GridFTP.
gd_jobsubmit Submit a Globus RSL job specification string to a specified job manager.
gd_jobstatus Returns the status of a Globus GRAM job.
gd_archive Archive a file or data structure to the GENIE database.
gd_query Query the database for data matching specified criteria.
gd_retrieve Retrieve files from the data management system.

3 Scripting Bespoke Tuning
Studies

We have exploited the tools described above in
conjunction with our database system to
perform bespoke tuning studies of a GENIE
simulation code:

1) The GENIE code is statically compiled on

the target platform and the resulting binary
is archived to the database.

2) The Matlab scripting environment is used to
orchestrate the submission and execution of
the GENIE binary with an accompanying set
of parameters. The user is free to tailor the
experiment to their local or national Grid-
enabled computational resources (e.g.
Globus, Condor, batch processing).

3) The output data from each component run is
uploaded to the database repository.

4) The data is post-processed to obtain a “skill
score”, or “objective function”, that gives a
measure of the realism of each simulation.

5) The input parameter set is tuned using
numerical tools available in Matlab, such as
fminsearch, invoking external optimisation
tools (e.g. OPTIONS [3]) that have been
exposed as Grid/Web services or by
applying a user defined algorithm such as
the Ensemble Kalman filter [11]. The tool
seeks to minimise or maximise the
“objective function” by exploring the
provided parameter space.

6) The results are available to the user from the
database and can be viewed at any point in
the optimisation.

We have performed a number of studies

using such a design to optimise the c-
GOLDSTEIN climate model, a composite of
three initial GENIE components. The binary
executable has been wrapped in the Matlab
scripting language and presented as a function
which accepts as input the variables to be tuned.
The function returns, after simulation, the
model's RMS error value determined by
comparing the model climate and ocean state
for that parameter set to present day
observations. Having written such a function
wrapper to the component code it is trivial to
exploit the optimisation tools available in
Matlab. Figure 2 illustrates the optimisation
process in Matlab using the fminsearch method
with a wrapped executable.

Figure 2: Schematic of the Matlab tuning
process.

Upon each invocation, the cgoldstein
function performs a query on the database to
establish whether the data point specified by the
parameters has been analysed in a previous
experiment. If the result is available from the
database then the RMS error value is simply
retrieved from the database and returned by the
function. This saves time by eliminating
unnecessary duplication of effort. If the result is
not available then the function proceeds by
creating a parameter file, retrieving the binary
executable from the database and transferring
both to a grid-enabled resource using GridFTP.
A Globus RSL string is created and submitted to
the resource job manager (e.g. Fork, PBS) on
the target platform. The component code is
executed and a job handle is monitored from
Matlab within the function call. Once the code
has completed, the function uploads the
parameters and results as a data structure to the
database, archives the output data files and
returns the RMS error function value of the
component run.

To perform an optimisation of the wrapped
binary the Matlab optimisation tools can be
passed the function handle, a starting point in
the parameter space, and limits or constraints on
valid parameter values. In Figure 2, the
fminsearch method minimises the function by
invoking it with parameters determined by the
algorithm being employed. At any point the
optimisation can be monitored by retrieving the
function evaluations from the database.

An important aspect of working with the
emerging Grid software is dealing with
occasional failures that inevitably occur. The
tuning studies we describe in this paper submit
hundreds of Grid jobs to a nationally distributed
set of resources, and have had to be designed to
cope with these occasional failures. The Matlab
and Jython scripting environments provide
native support for sophisticated exception
handling. We therefore ensure that every
interaction with the Grid is wrapped in a try-
catch block and that any failures are handled

such that the optimisation may continue without
being adversely affected. For example, if the
function evaluation cannot be completed then
the script will return a NULL RMS error value
that is ignored by the optimisation algorithm.

Allowing the user to wrap their binaries in
this way provides a flexible means for the
project to study the new models being
developed for the framework. Users are free to
adapt the optimisation scripts to study a
component of their choice, execute on the local
or national resources available to them and
share results from other experiments through the
database.

We have studied the c-GOLDSTEIN model
using a number of optimisation methods
including methods from the Matlab optimisation
toolbox and the OptionsMatlab suite of tools. In
the next section we present the results of some
simple optimisations of the model in one- and
two-dimensions. We then present a twin-study
to demonstrate the use of a Genetic Algorithm
[12] to attempt to recover an optimal set of
model parameters in twelve dimensions using
OptionsMatlab. The results of applying the
same method to tune the model towards
observational data are then also presented.

4 Results
The c-GOLDSTEIN Earth System Model
(ESM) is a composite of three of the initial
GENIE component codes and consists of a
three-dimensional frictional geostrophic ocean
model coupled to a sea-ice model and a two-
dimensional energy-moisture balance
atmosphere model. The resulting ESM is
computationally efficient with a 4000 year
integration being possible in ~2 hours on a
standard 1GHz PIII desktop system. This is

sufficient time for the slowest component of the
model to reach equilibrium.
The model has twelve tuneable parameters
which affect various properties of the ocean,
atmosphere and sea-ice. The parameters that we
study are detailed in [2] and are summarised in
Table 2. The objective function for the
optimisation problem is calculated as the
discrepancy between model and observational
fields evaluated by calculating an RMS error for
the model state variables (ocean temperature
and salinity, atmospheric temperature and
specific humidity). The observational data is
taken from the National Centers for
Environmental Prediction [13]. The 3D ocean
error fields and 2D atmosphere error fields are
weighted and averaged together to determine a
single measure of model-observation mismatch.

4.1 1D and 2D optimisation
Initial experiments using the grid tools applied
the Matlab function fminsearch to find local
minima in a small subset of the parameter space
for the c-GOLDSTEIN code.

Figure 3 presents the results of one- and
two-dimensional minimisations that examine
the atmospheric parameterisation of the model.
The first experiment varies a scaling factor that
modifies the strength of freshwater anomalies
applied to the model to transport moisture
between the Atlantic and Pacific basins. The
result suggests that, given standard values of
other parameters, the default freshwater
correction (1.0) is slightly stronger than that
required to reproduce the current climate. The
discontinuity in the function is caused by a
phase change in the model where the
characteristics of the ocean’s thermohaline
circulation (THC) alter dramatically. In the
most extreme (top left) point, the THC

Label Min Init Max Truth Final Meaning Units
SCLTAU 1.3 1.4 2.1 1.7 1.702 Wind-scale -
INVDRAG 2.0 2.1 4.8 3.4 3.7 Inverse drag Days
OCNHORZDIFF 2500 2600 5700 4100 4511 Ocean horizontal diffusion m2s-1
OCNVERTDIFF 0.5261 0.6 6.325 1.824 1.931 Ocean vertical diffusion 10-5 m2s-1
ATMDIFFAMPT 2.8 2.9 4.8 3.8 3.545 T diffusion amplitude 106 m2s-1
ATMDIFFAMPQ 1.3 1.4 1.9 1.6 1.686 Q diffusion amplitude 106 m2s-1
TDIFFWIDTH 0.9 1.0 1.7 1.3 1.438 T diffusion width radians
TADVCTCOEFF 0.0 0.01 0.12 0.06 0.065 T advection coefficient -
QADVCTCOEFF 0.06 0.08 0.22 0.14 0.151 Q advection coefficient -
SEAICEDIFF 3200 3400 9200 6200 7157 Sea-ice diffusion m2s-1
SCALECO2 0.95 0.96 1.05 1.0 1.011 CO2 concentration factor (350 ppm)
SCALEFWF 0.8 0.81 1.2 1.0 1.053 Fresh Water Flux factor (0.29 Sv)
Table 2: Parameters varied in the c-GOLDSTEIN climate model. The Min and Max columns define the
valid ranges of the parameter values. The Truth and Final columns are discussed in the text. See [2] for
further details.

"collapses", radically altering the distribution of
heat and salt in the ocean, and causing the
extreme RMS error.

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Transport scaling factor

R
M

S
 E

rr
or

(a)

0.7

(b)

0.680.66

Atmoshperic CO
2
 concentration, ppm

0.64

0.68

A
tm

os
ph

er
ic

 D
iff

us
iv

ity
, m

2 s−
1

150 200 250 300 350 400 450 500
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

6

Figure 3: a) The atmospheric transport scaling
factor is tuned by minimising the RMS error
and b) the RMS error function is (contour)
mapped as a function of atmospheric diffusivity
and the CO2 concentration. A minimisation
(dots) is performed using the Matlab fminsearch
function. Red dots indicate the starting points of
the searches.

In the second experiment, two parameters

are co-varied: atmospheric CO2 concentration
and atmospheric heat diffusivity. The results
here suggest that the default heat diffusivity of
5x106 m2s-1 is close to optimal but that the tuned
model prefers a pre-industrial value of
atmospheric CO2 (~280 ppm). This is consistent
with the fact that the present day climate has yet
to respond significantly to increased levels of
CO2 (the model default for the present day is
350 ppm). While these results only probe a
small subset of the model's parameter space, we
have demonstrated that such a study can be

easily configured, executed and managed from
within Matlab.

4.2 c-GOLDSTEIN optimisation

We have explored twelve of the tuneable
parameters of the c-GOLDSTEIN model using
the OPTIONS package. As an initial test of the
Grid enabled OptionsMatlab scripts we set up a
twin study following the methodology applied
by Annan et al. [14] when validating their
Ensemble Kalman Filter using the same model.
For this validation we attempt to tune the
parameters to a known state of the model using
a Genetic Algorithm followed by a local search
around the best candidate point.

For the ‘truth’ state of the model we have
run the simulation for 2000 years with a specific
set of parameters. The resulting state fields have
been processed to provide a data set from which
the RMS error statistic is subsequently derived.
For the optimum ‘truth’ parameters the RMS
error therefore evaluates to exactly zero.

In a similar process to that described for the
fminsearch optimisation the OptionsMatlab
library is invoked so that it performs an
optimisation over the function wrapper of the
model binary. The Matlab interface to the
OPTIONS suite of optimisation tools allows a
user to apply an algorithm of choice with
minimal reworking of the underlying scripts.

The Genetic Algorithm uses a population
size of 100 members and is performed over 10
iterations of the algorithm. The 100 function
evaluations are performed concurrently by the
OPTIONS package. The Matlab function
wrapper to the c-GOLDSTEIN binary has been
configured to use both local and national Grid
resources. These include a local IBM
©serverBladeCentre consisting of 12 dual node
Intel Xeon blades and the four clusters of the
National Grid Service [15] hosted at Oxford,
Leeds, RAL and Manchester. The function
randomly selects a compute resource on which
to run the binary so that the load is distributed
evenly over the available systems. For these
studies we have allocated jobs to these
resources in the ratio 10:16:8:8:36 to reflect the
different configurations of the ‘short’ job
queues on these systems. This is one of the
ways in which the scripting environment allows
us to flexibly adjust the study. With the
overhead of file transfers we typically complete
a generation of the Genetic Algorithm in
approximately 90 minutes.

30 20 10 0

1.4

1.6

1.8

2

SCLTAU

30 20 10 0
2

2.5

3

3.5

4

4.5

INVDRAG

30 20 10 0

3000

4000

5000

OCNHORZDIFF

30 20 10 0

1

2

3

4

5

6

OCNVERTDIFF

30 20 10 0

3

3.5

4

4.5

ATMDIFFAMPT

30 20 10 0
1.3

1.4

1.5

1.6

1.7

1.8

ATMDIFFAMPQ

30 20 10 0

1

1.2

1.4

1.6

TDIFFWIDTH

30 20 10 0
0

0.02

0.04

0.06

0.08

0.1

TADVCTCOEFF

30 20 10 0

0.1

0.15

0.2

QADVCTCOEFF

Candidate parameter set
30 20 10 0

4000

5000

6000

7000

8000

9000

SEAICEDIFF

Candidate parameter set
30 20 10 0

0.95

1

1.05
SCALECO2

Candidate parameter set
30 20 10 0

0.8

0.9

1

1.1

SCALEFWF

Candidate parameter set

GA candidates
truth

Figure 4: Parameter values for the 30 best points found by the Genetic Algorithm. The true optimal
values for the function are indicated by the truth lines.

The parameter values for the 30 best
candidate points returned by the Genetic
Algorithm are plotted in Figure 4 along with the
optimal values for the ‘truth’ data. While the
method appears to have recovered the correct
values for some of the parameters it has clearly
not found the global optimum. This is not
unexpected since time constraints have meant
that we have not really provided the Genetic
Algorithm with a sufficient population size to
find the global minimum in a twelve parameter
state space.

However, having found a candidate point we
perform a local search of the parameter space
using a Nelder-Mead Simplex algorithm. This is
easily achieved by simply passing the candidate
point back to OptionsMatlab and configuring it
to run the local search. In Figure 5 we plot the
trace history of the RMS error value of both the
Genetic Algorithm and the Simplex search. The
first 885 function evaluations were generated by
the Genetic Algorithm; in this experiment we
‘lost’ 115 evaluations due to Grid job failures.
The remaining points are evaluations from the
Simplex search. The final optimum parameters

are presented in Table 2 and can be compared
with the ‘truth’ values.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

Function evaluation

R
M

S
 E

rr
or

Figure 5: Optimisation trace history of the
twin-test study.

During a study of this size it is inevitable
that failures will occur in the execution of the
model on the Grid. Job submission failure,
GridFTP failure, numerical instability and
network problems are all potential sources of
error. However, as all valid function evaluations

are recorded in the database any subsequent re-
analysis of the problem will benefit from these
data points being readily available.

We have applied the tuning process again
using the original observational data to generate
the RMS error statistic.

0 200 400 600 800 1000
0.57

0.575

0.58

0.585

0.59

0.595

0.6

0.605

Function evaluation

R
M

S
 E

rr
or

Figure 6: cGOLDSTEIN optimisation trace
history. RMS Error statistic derived by
comparing the model state with NCEP data.

The optimisation trace history is presented
in Figure 6 for the Genetic Algorithm and the
Simplex search around the best candidate point
from the GA.

0 5 10 15 20 25 30

−260 −230 −200 −170 −140 −110 −80 −50 −20 10 40 70 100
−90

−60

−30

0

30

60

90

Longitude [°E]

L
at

it
ud

e
[°

N
]

0 5 10 15 20 25 30

−260 −230 −200 −170 −140 −110 −80 −50 −20 10 40 70 100
−90

−60

−30

0

30

60

90

Longitude [°E]

L
at

it
ud

e
[°

N
]

Figure 7: a) Sea surface temperatures of the
model evaluated at the optimum parameters. b)
NCEP observed sea-surface temperature data.

In Figure 7 we present the ocean temperature
patterns generated by the model at the optimum
parameter set and the equivalent observational
data. The patterns generally compare well,
although the model has a tendency to higher
west Pacific temperatures because there is no
Indonesian through-flow in the model (the
channel connecting the Pacific and Indian
Oceans). The temperatures around Antarctica
are also higher than those of the dataset because
of deficiencies in the land surface scheme in this
area of the model (there is no ice on the land so
the albedo in this region is therefore too low).
Unfortunately, there are no tuning parameters in
this study that can affect these deficiencies in
the model.

−30 −20 −10 0 10 20 30

−260 −230 −200 −170 −140 −110 −80 −50 −20 10 40 70 100
−90

−60

−30

0

30

60

90

Longitude [°E]

L
at

it
ud

e
[°

N
]

−30 −20 −10 0 10 20 30

−260 −230 −200 −170 −140 −110 −80 −50 −20 10 40 70 100
−90

−60

−30

0

30

60

90

Longitude [°E]

L
at

itu
de

 [
°N

]

Figure 8: a) Air temperatures for the model
evaluated at the optimum parameters. b) NCEP
observational air temperatures.

In Figure 8 the air temperature patterns of the
model are compared to the observational data.
Again the data compare well, although the lack
of a detailed land surface scheme means that
land temperatures cannot reach the extremes of
the data (i.e. the model is too warm at the poles,
and too cold in the deserts). This is, again, a
deficiency that the parameters of the model
cannot fix. Future iterations of the GENIE
model will include a proper land surface scheme
to remedy these deficiencies.

5 Discussion and Future Work
We have presented the GENIE data

management solution and demonstrated its use
in the tuning of a simulation code from the
GENIE framework. By using tools available in
the Geodise toolkits and OptionsMatlab we
have been able to script the execution of a
tuning study which uses local and national Grid
resources and exploits our database repository
to steer the computation and facilitate the
sharing of data in a transparent way.

The study of the c-GOLDSTEIN model has
demonstrated the flexibility of the Matlab
scripting approach. The model binary is
wrapped as a function which is configured to
select an available resource on which to execute
the model. The optimisation tools can be
quickly and easily configured to run a variety of
optimisers or design search algorithms on the
function. It is also possible to change the nature
of the analysis by modifying the logic that
determines the function’s return value.

The framework therefore provides all of the
tools required for tuning the GENIE models; a
scripting environment, database repository,
computational Grid interface and a suite of
design optimisation algorithms. A global
minimum can reliably be found in low
dimensional problem space. For higher
dimensional problems we have demonstrated
that the tools are appropriate for locating local
minima in the state space. We have applied a
Genetic Algorithm to the c-GOLDSTEIN model
but could easily apply other methods such as
simulated annealing or an evolutionary
program. To improve our understanding of the
GENIE models we will provide an
implementation of the Ensemble Kalman Filter.
The EnKF is a highly efficient method that can
execute O(50) runs to tune the parameters of a
model and has already been successfully applied
to optimise the c-GOLDSTEIN model [14].

The occasional failures we encounter when
using the Grid are currently handled by letting
the function fall through and return a null value
to the optimiser. In most cases the failures are
intermittent and a subsequent attempt at the
Grid interaction would prove successful. While
the sophistication of the error handling could be
improved to deal with this it would be
detrimental to the ease of the scripting approach
we wish to adopt. To address this issue we will
liaise with system administrators to investigate
improving the quality of service of the Grid
resources. We will work with the Geodise
project to investigate the implementation of
additional logic in the toolset to improve

robustness. A merit of our framework is that it
also facilitates the integration of middleware
such as ICENI currently being developed by
members of the project at the London e-Science
Centre [16]. This would provide alternative
Grid job management and resource allocation.

6 References
[1] The GENIE project. http://www.genie.ac.uk

[2] Edwards, N. R. and Marsh, R., 2003. An efficient
climate model with three-dimensional ocean
dynamics. Clim. Dyn., submitted.

[3] Keane, A. J., OPTIONS: Design Exploration
System, http://www.soton.ac.uk/~ajk/options.ps

[4]The GEODISE project. http://www.geodise.org

[5] The GridFTP Protocol and Software.
http://www.globus.org/datagrid/gridftp.html

[6] Matlab 6.5. http://www.mathworks.com

[7] Jython. http://www.jython.org

[8] The XML Toolbox.
http://www.geodise.org/toolboxes/generic

[9] Eres, M. H., Pound, G.E., Jiao, Z., Wason, J. L.,
Xu, F., Keane, A. J. and Cox, S. J., 2004.
Implementation and utilisation of a Grid-enabled
problem solving environment in Matlab. Future
Generation Computer Systems, In Press.

[10] The Java Commodity Grid Kit.
http://www.globus.org/cog/java

[11] Evensen, G., 2003. The Ensemble Kalman
Filter: theoretical formulation and practical
implementation. Ocean Dynamics 53, 343-367.

[12] Michalewicz, Z., Genetic Algorithms + Data
Structures = Evolution Programs, Springer-Verlag,
Berlin, 1992.

[13] The NCEP/NCAR reanalysis project.
http://www.cdc.noaa.gov/cdc/reanalysis/

[14] J. D. Annan, J. C. Hargreaves, N. R. Edwards
and R. Marsh, Parameter estimation in an
intermediate complexity earth system model using an
ensemble Kalman filter, Ocean Modelling, In Press,
Corrected Proof, Available online 23 January 2004.

[15] The National Grid Service.
http://www.ngs.ac.uk/

[16] M.Y.Gulamali, A.S. McGough, S.J. Newhouse,
and J. Darlington, 2004. Using ICENI to run
parameter sweep applications across multiple Grid
resources. In Global Grid Forum 10, Case Studies on
Grid Applications Workshop, Berlin, Germany.

	Abstract
	Introduction
	Data Management System
	Scripting Bespoke Tuning Studies
	Results
	1D and 2D optimisation
	c-GOLDSTEIN optimisation

	Discussion and Future Work
	References

