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Abstract 

We present the Grid enabled data management system that has been deployed for the GENIE 
project and demonstrate its use in tuning studies of an Earth system model. A Matlab client to the 
system provides a common environment for the project Virtual Organization to share scripts, 
binaries and output data. By using tools available in the Geodise toolkits we have scripted the 
execution of tuning studies which exploit multiple heterogeneous computational resources and use 
the database repository to steer computation using multi-dimensional optimisation methods. 

1 Introduction 
The GENIE project (Grid ENabled Integrated 
Earth system model [1]) is creating a Grid 
enabled component framework for the 
composition, execution and management of 
Earth system models. The GENIE code base 
consists of mature models of Earth system 
components (ocean, atmosphere, land surface, 
sea-ice, ice-sheets, biogeochemistry, etc.) which 
can be flexibly coupled together and run over 
multi-millennial timescales, primarily for 
glacial-interglacial simulations. An important 
part of such simulations is the parameterisation 
of many of the physical processes of the Earth 
System that occur on relatively small 
timescales. In order to make meaningful 
predictions it is vital that these parameters are 
tuned to appropriate values and that the effects 
of uncertainties in these parameters are 
quantified. 

There are many methods that may be 
adopted for the general problem of optimising a 
parameterised model over a multi-dimensional 
state space. Choosing an appropriate 
methodology depends upon many factors 
including the nature of the problem, the size of 
the state space and the cost involved in 
evaluating data points. The application of 
optimisation methods to new models often 
requires additional code development to 
implement a suitable algorithm, integrate with 

an optimisation package or link with numerical 
library routines. E.g. The ClimatePrediction.net 
project has developed an entire distributed client 
application in order to perform an exhaustive 
study of the state space of the Hadley climate 
model. In this paper we present the design of the 
data management system we have deployed for 
the GENIE project and demonstrate its use in a 
tuning study of an example GENIE 
implementation (the c-GOLDSTEIN climate 
model [2]). This system provides an interface to 
the computational Grid, integration with a 
sophisticated optimisation and design package 
OPTIONS [3] and access to our file and 
metadata repository. We show how the Grid 
enabled tools provided by the Geodise project 
[4] enable bespoke tuning studies to be quickly 
configured and executed and how the data 
management system provides a resource that 
can be exploited for computational steering of 
the optimisation study. This provides the 
environmental scientist with a common toolset 
with which to investigate and tune their models. 

In section 2 we present the data management 
system, the tools available in the Geodise 
toolkits and the OPTIONS design package. We 
then discuss how bespoke tuning studies can be 
scripted in the Matlab environment in section 3. 
The results from a number of multi-dimensional 
optimisation studies are presented in section 4. 
We discuss the data management system and 
future intentions in section 5. 



2 Data Management System 
We have adopted an augmented version of the 
Geodise Database Toolkit to provide a generic 
data management solution for the GENIE 
project. The Geodise system exploits database 
technology to enable metadata to be associated 
with any file submitted to the repository for 
archiving (Figure 1). The database interface is 
exposed as Web services and files are archived 
in the system through a two step process: a) the 
file is transferred to a user specified file server 
using the GridFTP protocol [5] and b) 
information is recorded in the database about 
the file including its location, its unique system 
generated identifier, access rights and any user-
defined metadata. Client tools are provided in 
Matlab [6] and Jython [7] to allow the user to 
upload, query and retrieve data in the 
repository. The XML Toolbox [8] is used to 
convert Matlab data structures into XML for 
communication with the Web service interface 
to the database. Access to the system is 
controlled by authenticating the user through 
their X.509 certificate. The system therefore 
provides an open and transparent facility 
through which members of the project Virtual 
Organisation can share data. 

 

 
Figure 1: Architectural design of the GENIE 
data management system. 
 

The Geodise system has been designed to 
provide a flexible management solution for the 

engineering design process and must be able to 
handle any user-defined metadata that the 
engineer wishes to record. However, the data 
generated by the GENIE framework is produced 
by well-defined component codes and the 
metadata is thus more tightly constrained. This 
enables us to significantly improve the 
efficiency of the system by mapping an XML 
Schema to the underlying Oracle9i database. 
The metadata is therefore handled by the 
database using relational tables but we maintain 
the flexibility of the system by managing the 
XML Schema. 

The data management system thus provides 
a resource for storing metadata, files and data 
structures. The system is flexible enough that 
the developing needs of the framework can be 
supported while maintaining the efficiency of 
the database. 

The Geodise Computational toolkit [9] 
provides an interface to the Grid through 
functions written in the Matlab scripting 
environment which invoke classes in the Java 
CoG 1.1 [10]. These functions allow a user to 
submit compute jobs to the Grid, transfer files 
using GridFTP and monitor jobs and resources. 
In addition to the database toolset we therefore 
have a set of functions that enable powerful use 
of the computational grid. A subset of the 
Matlab functions is described in Table 1. 

In addition to the tools described above the 
system also interfaces to OPTIONS, a design 
exploration and optimisation package that has 
been developed by the Evolutionary 
Optimization Research Group at the University 
of Southampton. This software provides a suite 
of sophisticated multi-dimensional optimisation 
algorithms developed primarily for engineering 
design optimisation. The package has been 
made available to the Matlab environment by 
the Geodise project via the OptionsMatlab 
interface. 

 
 
 

Table 1: Description of the subset of Geodise functions used in tuning studies of GENIE codes. See 
[9] for further details. 

Command Description 
gd_putfile Transfer a file to a specified Grid system using GridFTP. 
gd_getfile Retrieve a file from a specified Grid system using GridFTP. 
gd_jobsubmit Submit a Globus RSL job specification string to a specified job manager. 
gd_jobstatus Returns the status of a Globus GRAM job. 
gd_archive Archive a file or data structure to the GENIE database. 
gd_query Query the database for data matching specified criteria. 
gd_retrieve Retrieve files from the data management system. 



3 Scripting Bespoke Tuning 
Studies 

We have exploited the tools described above in 
conjunction with our database system to 
perform bespoke tuning studies of a GENIE 
simulation code: 

 
1) The GENIE code is statically compiled on 

the target platform and the resulting binary 
is archived to the database. 

2) The Matlab scripting environment is used to 
orchestrate the submission and execution of 
the GENIE binary with an accompanying set 
of parameters. The user is free to tailor the 
experiment to their local or national Grid-
enabled computational resources (e.g. 
Globus, Condor, batch processing). 

3) The output data from each component run is 
uploaded to the database repository. 

4) The data is post-processed to obtain a “skill 
score”, or “objective function”, that gives a 
measure of the realism of each simulation. 

5) The input parameter set is tuned using 
numerical tools available in Matlab, such as 
fminsearch, invoking external optimisation 
tools (e.g. OPTIONS [3]) that have been 
exposed as Grid/Web services or by 
applying a user defined algorithm such as 
the Ensemble Kalman filter [11]. The tool 
seeks to minimise or maximise the 
“objective function” by exploring the 
provided parameter space. 

6) The results are available to the user from the 
database and can be viewed at any point in 
the optimisation. 
 
We have performed a number of studies 

using such a design to optimise the c-
GOLDSTEIN climate model, a composite of 
three initial GENIE components. The binary 
executable has been wrapped in the Matlab 
scripting language and presented as a function 
which accepts as input the variables to be tuned. 
The function returns, after simulation, the 
model's RMS error value determined by 
comparing the model climate and ocean state 
for that parameter set to present day 
observations. Having written such a function 
wrapper to the component code it is trivial to 
exploit the optimisation tools available in 
Matlab. Figure 2 illustrates the optimisation 
process in Matlab using the fminsearch method 
with a wrapped executable. 

 

 
Figure 2: Schematic of the Matlab tuning 
process. 
 

Upon each invocation, the cgoldstein 
function performs a query on the database to 
establish whether the data point specified by the 
parameters has been analysed in a previous 
experiment. If the result is available from the 
database then the RMS error value is simply 
retrieved from the database and returned by the 
function. This saves time by eliminating 
unnecessary duplication of effort. If the result is 
not available then the function proceeds by 
creating a parameter file, retrieving the binary 
executable from the database and transferring 
both to a grid-enabled resource using GridFTP. 
A Globus RSL string is created and submitted to 
the resource job manager (e.g. Fork, PBS) on 
the target platform. The component code is 
executed and a job handle is monitored from 
Matlab within the function call. Once the code 
has completed, the function uploads the 
parameters and results as a data structure to the 
database, archives the output data files and 
returns the RMS error function value of the 
component run. 

To perform an optimisation of the wrapped 
binary the Matlab optimisation tools can be 
passed the function handle, a starting point in 
the parameter space, and limits or constraints on 
valid parameter values. In Figure 2, the 
fminsearch method minimises the function by 
invoking it with parameters determined by the 
algorithm being employed. At any point the 
optimisation can be monitored by retrieving the 
function evaluations from the database. 

An important aspect of working with the 
emerging Grid software is dealing with 
occasional failures that inevitably occur. The 
tuning studies we describe in this paper submit 
hundreds of Grid jobs to a nationally distributed 
set of resources, and have had to be designed to 
cope with these occasional failures. The Matlab 
and Jython scripting environments provide 
native support for sophisticated exception 
handling. We therefore ensure that every 
interaction with the Grid is wrapped in a try-
catch block and that any failures are handled 



such that the optimisation may continue without 
being adversely affected. For example, if the 
function evaluation cannot be completed then 
the script will return a NULL RMS error value 
that is ignored by the optimisation algorithm. 

Allowing the user to wrap their binaries in 
this way provides a flexible means for the 
project to study the new models being 
developed for the framework. Users are free to 
adapt the optimisation scripts to study a 
component of their choice, execute on the local 
or national resources available to them and 
share results from other experiments through the 
database. 

We have studied the c-GOLDSTEIN model 
using a number of optimisation methods 
including methods from the Matlab optimisation 
toolbox and the OptionsMatlab suite of tools. In 
the next section we present the results of some 
simple optimisations of the model in one- and 
two-dimensions. We then present a twin-study 
to demonstrate the use of a Genetic Algorithm 
[12] to attempt to recover an optimal set of 
model parameters in twelve dimensions using 
OptionsMatlab. The results of applying the 
same method to tune the model towards 
observational data are then also presented. 

4 Results 
The c-GOLDSTEIN Earth System Model 
(ESM) is a composite of three of the initial 
GENIE component codes and consists of a 
three-dimensional frictional geostrophic ocean 
model coupled to a sea-ice model and a two-
dimensional energy-moisture balance 
atmosphere model. The resulting ESM is 
computationally efficient with a 4000 year 
integration being possible in ~2 hours on a 
standard 1GHz PIII desktop system. This is 

sufficient time for the slowest component of the 
model to reach equilibrium. 
The model has twelve tuneable parameters 
which affect various properties of the ocean, 
atmosphere and sea-ice. The parameters that we 
study are detailed in [2] and are summarised in 
Table 2. The objective function for the 
optimisation problem is calculated as the 
discrepancy between model and observational 
fields evaluated by calculating an RMS error for 
the model state variables (ocean temperature 
and salinity, atmospheric temperature and 
specific humidity). The observational data is 
taken from the National Centers for 
Environmental Prediction [13]. The 3D ocean 
error fields and 2D atmosphere error fields are 
weighted and averaged together to determine a 
single measure of model-observation mismatch. 

4.1 1D and 2D optimisation 
Initial experiments using the grid tools applied 
the Matlab function fminsearch to find local 
minima in a small subset of the parameter space 
for the c-GOLDSTEIN code. 

Figure 3 presents the results of one- and 
two-dimensional minimisations that examine 
the atmospheric parameterisation of the model. 
The first experiment varies a scaling factor that 
modifies the strength of freshwater anomalies 
applied to the model to transport moisture 
between the Atlantic and Pacific basins. The 
result suggests that, given standard values of 
other parameters, the default freshwater 
correction (1.0) is slightly stronger than that 
required to reproduce the current climate. The 
discontinuity in the function is caused by a 
phase change in the model where the 
characteristics of the ocean’s thermohaline 
circulation (THC) alter dramatically. In the 
most extreme (top left) point, the THC 

Label Min Init Max Truth Final Meaning Units 
SCLTAU 1.3 1.4 2.1 1.7 1.702 Wind-scale - 
INVDRAG 2.0 2.1 4.8 3.4 3.7 Inverse drag Days 
OCNHORZDIFF 2500 2600 5700 4100 4511 Ocean horizontal diffusion m2s-1 
OCNVERTDIFF 0.5261 0.6 6.325 1.824 1.931 Ocean vertical diffusion 10-5 m2s-1 
ATMDIFFAMPT 2.8 2.9 4.8 3.8 3.545 T diffusion amplitude 106 m2s-1 
ATMDIFFAMPQ 1.3 1.4 1.9 1.6 1.686 Q diffusion amplitude 106 m2s-1 
TDIFFWIDTH 0.9 1.0 1.7 1.3 1.438 T diffusion width radians 
TADVCTCOEFF 0.0 0.01 0.12 0.06 0.065 T advection coefficient - 
QADVCTCOEFF 0.06 0.08 0.22 0.14 0.151 Q advection coefficient - 
SEAICEDIFF 3200 3400 9200 6200 7157 Sea-ice diffusion m2s-1 
SCALECO2 0.95 0.96 1.05 1.0 1.011 CO2 concentration factor (350 ppm) 
SCALEFWF 0.8 0.81 1.2 1.0 1.053 Fresh Water Flux factor (0.29 Sv) 
Table 2: Parameters varied in the c-GOLDSTEIN climate model. The Min and Max columns define the 
valid ranges of the parameter values. The Truth and Final columns are discussed in the text. See [2] for 
further details. 



"collapses", radically altering the distribution of 
heat and salt in the ocean, and causing the 
extreme RMS error. 
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Figure 3: a) The atmospheric transport scaling 
factor is tuned by minimising the RMS error 
and b) the RMS error function is (contour) 
mapped as a function of atmospheric diffusivity 
and the CO2 concentration. A minimisation 
(dots) is performed using the Matlab fminsearch 
function. Red dots indicate the starting points of 
the searches. 

 
In the second experiment, two parameters 

are co-varied: atmospheric CO2 concentration 
and atmospheric heat diffusivity. The results 
here suggest that the default heat diffusivity of 
5x106 m2s-1 is close to optimal but that the tuned 
model prefers a pre-industrial value of 
atmospheric CO2 (~280 ppm). This is consistent 
with the fact that the present day climate has yet 
to respond significantly to increased levels of 
CO2 (the model default for the present day is 
350 ppm). While these results only probe a 
small subset of the model's parameter space, we 
have demonstrated that such a study can be 

easily configured, executed and managed from 
within Matlab. 

4.2 c-GOLDSTEIN optimisation 

We have explored twelve of the tuneable 
parameters of the c-GOLDSTEIN model using 
the OPTIONS package. As an initial test of the 
Grid enabled OptionsMatlab scripts we set up a 
twin study following the methodology applied 
by Annan et al. [14] when validating their 
Ensemble Kalman Filter using the same model. 
For this validation we attempt to tune the 
parameters to a known state of the model using 
a Genetic Algorithm followed by a local search 
around the best candidate point. 

For the ‘truth’ state of the model we have 
run the simulation for 2000 years with a specific 
set of parameters. The resulting state fields have 
been processed to provide a data set from which 
the RMS error statistic is subsequently derived. 
For the optimum ‘truth’ parameters the RMS 
error therefore evaluates to exactly zero. 

In a similar process to that described for the 
fminsearch optimisation the OptionsMatlab 
library is invoked so that it performs an 
optimisation over the function wrapper of the 
model binary. The Matlab interface to the 
OPTIONS suite of optimisation tools allows a 
user to apply an algorithm of choice with 
minimal reworking of the underlying scripts. 

The Genetic Algorithm uses a population 
size of 100 members and is performed over 10 
iterations of the algorithm. The 100 function 
evaluations are performed concurrently by the 
OPTIONS package. The Matlab function 
wrapper to the c-GOLDSTEIN binary has been 
configured to use both local and national Grid 
resources. These include a local IBM 
©serverBladeCentre consisting of 12 dual node 
Intel Xeon blades and the four clusters of the 
National Grid Service [15] hosted at Oxford, 
Leeds, RAL and Manchester. The function 
randomly selects a compute resource on which 
to run the binary so that the load is distributed 
evenly over the available systems. For these 
studies we have allocated jobs to these 
resources in the ratio 10:16:8:8:36 to reflect the 
different configurations of the ‘short’ job 
queues on these systems. This is one of the 
ways in which the scripting environment allows 
us to flexibly adjust the study. With the 
overhead of file transfers we typically complete 
a generation of the Genetic Algorithm in 
approximately 90 minutes.  
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Figure 4: Parameter values for the 30 best points found by the Genetic Algorithm. The true optimal 
values for the function are indicated by the truth lines. 
 

The parameter values for the 30 best 
candidate points returned by the Genetic 
Algorithm are plotted in Figure 4 along with the 
optimal values for the ‘truth’ data. While the 
method appears to have recovered the correct 
values for some of the parameters it has clearly 
not found the global optimum. This is not 
unexpected since time constraints have meant 
that we have not really provided the Genetic 
Algorithm with a sufficient population size to 
find the global minimum in a twelve parameter 
state space. 

However, having found a candidate point we 
perform a local search of the parameter space 
using a Nelder-Mead Simplex algorithm. This is 
easily achieved by simply passing the candidate 
point back to OptionsMatlab and configuring it 
to run the local search. In Figure 5 we plot the 
trace history of the RMS error value of both the 
Genetic Algorithm and the Simplex search. The 
first 885 function evaluations were generated by 
the Genetic Algorithm; in this experiment we 
‘lost’ 115 evaluations due to Grid job failures. 
The remaining points are evaluations from the 
Simplex search. The final optimum parameters 

are presented in Table 2 and can be compared 
with the ‘truth’ values. 
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Figure 5: Optimisation trace history of the 
twin-test study. 
 

During a study of this size it is inevitable 
that failures will occur in the execution of the 
model on the Grid. Job submission failure, 
GridFTP failure, numerical instability and 
network problems are all potential sources of 
error. However, as all valid function evaluations 



are recorded in the database any subsequent re-
analysis of the problem will benefit from these 
data points being readily available. 

We have applied the tuning process again 
using the original observational data to generate 
the RMS error statistic. 
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Figure 6: cGOLDSTEIN optimisation trace 
history. RMS Error statistic derived by 
comparing the model state with NCEP data. 
 

The optimisation trace history is presented 
in Figure 6 for the Genetic Algorithm and the 
Simplex search around the best candidate point 
from the GA. 
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Figure 7: a) Sea surface temperatures of the 
model evaluated at the optimum parameters. b) 
NCEP observed sea-surface temperature data. 

In Figure 7 we present the ocean temperature 
patterns generated by the model at the optimum 
parameter set and the equivalent observational 
data. The patterns generally compare well, 
although the model has a tendency to higher 
west Pacific temperatures because there is no 
Indonesian through-flow in the model (the 
channel connecting the Pacific and Indian 
Oceans).  The temperatures around Antarctica 
are also higher than those of the dataset because 
of deficiencies in the land surface scheme in this 
area of the model (there is no ice on the land so 
the albedo in this region is therefore too low). 
Unfortunately, there are no tuning parameters in 
this study that can affect these deficiencies in 
the model. 
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Figure 8: a) Air temperatures for the model 
evaluated at the optimum parameters. b) NCEP 
observational air temperatures. 
 
In Figure 8 the air temperature patterns of the 
model are compared to the observational data. 
Again the data compare well, although the lack 
of a detailed land surface scheme means that 
land temperatures cannot reach the extremes of 
the data (i.e. the model is too warm at the poles, 
and too cold in the deserts). This is, again, a 
deficiency that the parameters of the model 
cannot fix. Future iterations of the GENIE 
model will include a proper land surface scheme 
to remedy these deficiencies. 



5 Discussion and Future Work 
We have presented the GENIE data 

management solution and demonstrated its use 
in the tuning of a simulation code from the 
GENIE framework. By using tools available in 
the Geodise toolkits and OptionsMatlab we 
have been able to script the execution of a 
tuning study which uses local and national Grid 
resources and exploits our database repository 
to steer the computation and facilitate the 
sharing of data in a transparent way. 

The study of the c-GOLDSTEIN model has 
demonstrated the flexibility of the Matlab 
scripting approach. The model binary is 
wrapped as a function which is configured to 
select an available resource on which to execute 
the model. The optimisation tools can be 
quickly and easily configured to run a variety of 
optimisers or design search algorithms on the 
function. It is also possible to change the nature 
of the analysis by modifying the logic that 
determines the function’s return value. 

The framework therefore provides all of the 
tools required for tuning the GENIE models; a 
scripting environment, database repository, 
computational Grid interface and a suite of 
design optimisation algorithms. A global 
minimum can reliably be found in low 
dimensional problem space. For higher 
dimensional problems we have demonstrated 
that the tools are appropriate for locating local 
minima in the state space. We have applied a 
Genetic Algorithm to the c-GOLDSTEIN model 
but could easily apply other methods such as 
simulated annealing or an evolutionary 
program. To improve our understanding of the 
GENIE models we will provide an 
implementation of the Ensemble Kalman Filter. 
The EnKF is a highly efficient method that can 
execute O(50) runs to tune the parameters of a 
model and has already been successfully applied 
to optimise the c-GOLDSTEIN model [14]. 

The occasional failures we encounter when 
using the Grid are currently handled by letting 
the function fall through and return a null value 
to the optimiser. In most cases the failures are 
intermittent and a subsequent attempt at the 
Grid interaction would prove successful. While 
the sophistication of the error handling could be 
improved to deal with this it would be 
detrimental to the ease of the scripting approach 
we wish to adopt. To address this issue we will 
liaise with system administrators to investigate 
improving the quality of service of the Grid 
resources. We will work with the Geodise 
project to investigate the implementation of 
additional logic in the toolset to improve 

robustness. A merit of our framework is that it 
also facilitates the integration of middleware 
such as ICENI currently being developed by 
members of the project at the London e-Science 
Centre [16]. This would provide alternative 
Grid job management and resource allocation. 

6 References 
[1] The GENIE project. http://www.genie.ac.uk 
 
[2] Edwards, N. R. and Marsh, R., 2003. An efficient 
climate model with three-dimensional ocean 
dynamics. Clim. Dyn., submitted. 
 
[3] Keane, A. J., OPTIONS: Design Exploration 
System, http://www.soton.ac.uk/~ajk/options.ps 
 
[4]The GEODISE project. http://www.geodise.org 
 
[5] The GridFTP Protocol and Software. 
http://www.globus.org/datagrid/gridftp.html 
 
[6] Matlab 6.5. http://www.mathworks.com 
 
[7] Jython. http://www.jython.org 
 
[8] The XML Toolbox. 
http://www.geodise.org/toolboxes/generic 
 
[9] Eres, M. H., Pound, G.E., Jiao, Z., Wason, J. L., 
Xu, F., Keane, A. J. and Cox, S. J., 2004. 
Implementation and utilisation of a Grid-enabled 
problem solving environment in Matlab. Future 
Generation Computer Systems, In Press. 
 
[10] The Java Commodity Grid Kit. 
http://www.globus.org/cog/java 
 
[11] Evensen, G., 2003. The Ensemble Kalman 
Filter: theoretical formulation and practical 
implementation. Ocean Dynamics 53, 343-367. 
 
[12] Michalewicz, Z., Genetic Algorithms + Data 
Structures = Evolution Programs, Springer-Verlag, 
Berlin, 1992. 
 
[13] The NCEP/NCAR reanalysis project. 
http://www.cdc.noaa.gov/cdc/reanalysis/ 
 
[14] J. D. Annan, J. C. Hargreaves, N. R. Edwards 
and R. Marsh, Parameter estimation in an 
intermediate complexity earth system model using an 
ensemble Kalman filter, Ocean Modelling, In Press, 
Corrected Proof, Available online 23 January 2004. 
 
[15] The National Grid Service. 
http://www.ngs.ac.uk/ 
 
[16] M.Y.Gulamali, A.S. McGough, S.J. Newhouse, 
and J. Darlington, 2004. Using ICENI to run 
parameter sweep applications across multiple Grid 
resources. In Global Grid Forum 10, Case Studies on 
Grid Applications Workshop, Berlin, Germany. 


	Abstract
	Introduction
	Data Management System
	Scripting Bespoke Tuning Studies
	Results
	1D and 2D optimisation
	c-GOLDSTEIN optimisation 

	Discussion and Future Work
	References

