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Abstract 

In this paper we describe the Geodise Database Toolbox, which utilises Web services, XML, 
databases and Grid technologies to help manage data created by engineering applications running 
locally or on the Grid. It has been integrated into the Matlab and Jython scripting environments for 
ease of use, and into other applications via its Java API. The toolbox supports centralised vs. 
personal data repositories, the former accessed via secure Web services from platform independent 
client applications. Metadata can be easily defined on files, data structures, collections of related 
data, and workflows. A distinctive feature is the support for user-defined application specific 
metadata that can be queried to locate required data efficiently. We describe the toolbox, how it has 
been deployed and exploited, and indicate that our approach has proved sufficiently generic to be 
useful in a range of application areas.  

1. Introduction 

Engineering design search and optimisation 
(EDSO) aims to achieve improved designs by 
exploiting engineering modelling and analysis. 
Variables in a design are systematically 
modified to increase, or reduce a quality 
measure called the objective function, whilst 
ensuring the variables satisfy certain constraints.  
It often involves computationally and data 
intensive processes, producing large amounts of 
data at different locations in a variety of 
formats. The emergence of Grid computing and 
Web service technologies provides new 
opportunities for the engineering community to 
access an extended range of compute resources 
and manage the sizable data created by 
distributed applications more effectively. To 
help engineers utilise the available compute and 
data resources on the Grid, the Geodise project 
[1] have developed computational and database 
toolboxes to bring the technologies into an 
environment familiar to engineers. The Geodise 
Computational Toolbox [2] provides a suite of 
functions which enable and simplify access to 
Grid compute resources, and the database 
toolbox offers similar support for data 
management and sharing. 

In previous papers [3, 4] we described how 
the Geodise Database Toolbox, wrapped as a set 
of Matlab [5] functions that can be incorporated 
into a user’s Matlab scripts, has been used in 
Computational Fluid Dynamics (CFD) and 
Computational Electromagnetic (CEM) 
engineering problems. Matlab is a powerful, 

flexible, and easy to use scripting environment 
popular with engineers. It also provides a 
powerful execution engine for our workflows, 
and is available on a wide variety of platforms 
and operating systems.  

The underlying toolbox is exposed as a Java 
API so it can be integrated with different 
scripting environments, such as Jython [6], and 
other applications that can interact with Java 
code. For example, the GENIE project [7] 
supports environmental scientists modelling 
long term climate change and has used the API 
to manage data from their framework using a 
web portal. The Geodise Workflow 
Construction Environment (WCE) [8] also uses 
the API to a) archive, query, and retrieve the 
workflows for reuse and sharing; b) store data 
for monitoring workflow executions.  Recently 
we have released the toolbox’s client code to the 
Integrative Biology project [9] so that 
researchers can experiment with using our 
repository remotely to manage their application 
data. We have also extended the toolbox so that 
it can be used more conveniently for monitoring 
application processes while they are running, so 
that engineers can intervene to halt or change 
long running optimisations if necessary. 

In this paper we will give an overview of the 
architecture in section 2 and discuss deployment 
in section 3. A description of how the toolbox 
has been used in various applications will be 
given in section 4 and in section 5 we will 
demonstrate its use in application monitoring 
using an example drawn from engineering 
design practice. Section 6 summarises the 
conclusions and future work. 



 

2. Architecture Overview 

Traditionally, data created from engineering 
applications is stored in files on file systems 
with little information to describe them. When 
the data volume is large, this makes them 
difficult to search, share and reuse. The 
limitation of this approach becomes more 
obvious when a group of people working in 
different institutions, i.e. in a Virtual 
Organisation (VO), wish to collaborate to solve 
a common problem, making use of Grid 
technology. This can be overcome by attaching 
additional descriptive information (metadata) to 
the data, so that it can be located by querying its 
characteristics rather than having to know its 
location.   

2.1 Metadata 

To encourage the use of metadata within the 
engineer’s environment it must be 
straightforward to specify and sufficiently 
flexible to contain any terms and nested data 
structures required to describe the relevant 
application data. The Storage Resource Broker 
(SRB) [10] provides a uniform interface for 
connecting to heterogeneous resources over a 
network and, with the Metadata Catalog 
(MCAT), provides dataset access based on 
characteristics rather than names or physical 
locations. However, MCAT has limited support 
for application specific metadata, particularly 
the complex, nested data structures and data 
types which are often essential in assisting 
engineering users to locate data specific to their 
problems. 

To achieve the required flexibility and ease 
of use we have developed the Geodise Database 
Toolbox which allows engineers working in the 
Matlab environment to define metadata 
conveniently as Matlab structures.  Standard 
metadata (e.g. archive date, file size) are 
generated automatically by the toolbox so that 
users only need to concentrate on defining 
custom metadata specific to their applications, 
and granting access permissions to other users 
in the VO if they want to share the data. 
Metadata is stored in an XML enabled relational 
database (Oracle 9i [11]): standard metadata is 
stored in tables for efficient access, whilst user 
defined metadata is stored as native XML for 
flexibility, and this can be transparently 
converted to and from user defined Matlab 
structures using our XML Toolbox for Matlab 
[12]. 

The database is queried using a simple 
syntax to locate files/variables or groups of data 
based on their characteristics. Users specify 

queries as a combination of named metadata 
variables and comparison operators, with 
options for exact or wildcard matches and case 
insensitivity. A user query is converted to a 
combination of SQL and XPath, and restricted 
so that it only returns results the user is entitled 
to access. The returned array of structures may 
contain all the metadata for each result or a 
specified subset, for example the user may only 
want the unique data identifiers, which can then 
be used to retrieve files from the archive, 
regardless of where they are stored. Users can 
incorporate the query function into their Matlab 
scripts directly or interact with a query GUI 
supporting hyperlinks for downloading and 
browsing related data. 

A datagroup is used to logically group 
together related data, such as that used in a 
process monitoring task, and metadata can be 
added at the group level so that the entire 
collection is described. A datagroup may also 
contain sub-datagroups, and data can belong to 
multiple datagroups. This gives users the ability 
to describe and exploit relationships or 
hierarchies. 

Jython [6] is a pure Java implementation of 
the Python scripting language which, like 
Matlab, allows seamless integration with any 
Java code. We were therefore able to implement 
the database toolbox in Jython by providing a 
thin set of functions on top of our existing Java 
client API. We also provide functionality 
analogous to the XML Toolbox for Matlab, 
converting between metadata contained in 
Jython dictionaries or objects and XML. Data 
types in the XML Toolbox are described by 
type, dimensions and array index where 
applicable, and using the same XML syntax for 
Jython means metadata can be passed between 
the environments via the database. For example, 
an engineer may prefer to install Jython for free 
at home and query the database to monitor the 
progress of their current job. Alternatively, 
Jython may be used to archive files and 
associated metadata from Grid compute 
resources that do not have access to a Matlab 
license, then later in the lab the data can be 
queried, retrieved and plotted for analysis using 
Matlab.  

For applications running in other 
environments, metadata can be defined using 
the appropriate data structures and then 
converted into XML format before calling the 
toolbox’s Java API. For example, in the 
Geodise WCE metadata is defined initially as 
Java objects, and then converted into XML 
before archiving.  



 

2.2 Web and Grid technologies 

Both files and variables (primitive values and 
data structures) can be archived in the 
repository with associated system generated and 
user defined metadata. Files are archived to a 
user specified remote file store, using GridFTP 
[13] and assigned Universally Unique 
Identifiers (UUIDs) [14]. This information is 
recorded in the database allowing files to be 
physically located and retrieved by their UUIDs 
later. Variables are archived as XML in a way 
similar to the user defined metadata.   

All database access is supplied through 
secure Web services for storage and query of 
metadata, file location and authorisation, as 
shown in Figure 1. The Web services are 
invoked, using Apache Axis [15], from platform 
independent client code running locally or on 
Grid resources. To support distributed users and 
prevent unauthorised access we use a secure 
method of Web service communication. It 
allows X.509 certificate based authentication 
and authorisation using the same delegated 
credentials that provide a point of single sign-on 
for computational jobs on the Grid [16]. The 
user’s unique identifier (certificate subject) is 
extracted from the certificate that signs the 
SOAP [17] request message and used to 
authorise database access, record data 

ownership and allow users to grant access 
permissions to others.   

 Projects like Spitfire [18] and OGSA-DAI 
[19] develop generic middleware to provide 
database access from Grid applications.  Spitfire 
is a project within the European DataGrid 
(EDG) project [20].  It provides a thin layer on 
top of a relational database management system, 
and uses Web service technology to provide 
SOAP-based RPC to some user-definable 
database operations. It is designed to give quick 
and easy access to data where the access 
patterns are simple, rather than to be used as a 
full-fledged data management system. Problems 
are anticipated for long-running queries, queries 
returning a very large result set, and other 
operations that need a large amount of system 
memory. 

We also encountered a problem when the 
volume of query results was very high. In this 
situation returning all the results from the Web 
service as one very large SOAP message can 
cause Axis to run out of memory when it 
attempts deserialization on the client. To 
prevent this we split large results into chunks, 
which are no more than 2 MB in size by default. 
The client code pulls the results back in stages 
from the service, which will indicate when they 
have all been returned. This is transparent to the 
user, as the client code passes on the full results 
when the process is complete. Users can 
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Figure 1 - A GUI or high level set of scripting functions on top of a client side Java API provides an 
interface to secure data management Web services and file transfer. User scripts may run locally as 

shown or on remote compute resources with the user’s delegated authorisation credentials. 
 



 

optionally set the chunk size in a configuration 
file according to their computer’s capabilities.  

The OGSA-DAI project produces open 
source database access and integration 
middleware for use in the Grid environment. It 
provides an extension to the Open Grid Services 
Architecture (OGSA) specifications [21] to 
allow data resources, such as databases, to be 
incorporated within an OGSA framework. Its 
latest release (version 4.0) provides a client 
toolbox that minimises the specialist knowledge 
required to interact with OGSA-DAI services 
and shields the developer from the changes that 
have been seen in previous releases. OGSA-
DAI’s provision for asynchronous delivery of 
query results to various destinations, such as a 
URL or a file, is a useful feature that we shall 
investigate using in the future.  

3. Deployment 

We now discuss some alternative deployment 
strategies for the client and server tools. The 
computational and XML toolboxes are 
prerequisites of the database client toolbox, 
which also requires classpath additions and a 
configuration directory to be copied to the 
user’s home directory. The client configuration 
file can then be altered to specify the location of 
the database Web services and which Globus 
[22] enabled server to store files on. We have 
found that for organisations sharing a Matlab 
installation the easiest arrangement is to 
configure these details and the classpath 
centrally. Then users only need to run a single 
command to copy the configuration information 
to their home directory and start using the 
toolbox, providing they have passed on their e-
Science certificate subject to the relevant 
administrator(s) so they can be authorised to 
access the database and file store. 

Deployment of the server components is 
more involved, requiring Oracle 9i and an 
application server (e.g. WebSphere [23]) to be 
installed together or on separate machines. The 
database schema is created by running a script, 
and then user certificate subjects and IDs can be 
added. The Web services are deployed on the 
application server, and will access a 
configuration file to determine the location of 
the database. A public version of the Web 
services exists at Southampton so that the 
database can be accessed by any authorised 
user, regardless of location. 

The Integrative Biology [9] project aims to 
create an infrastructure allowing biomedical 
researchers to use Grid computing, databases 
and visualisation tools to develop complex 

models of how heart disease and cancer 
develop. By installing the Geodise database 
client toolbox they were able to experiment with 
it, by connecting to a remote repository via the 
Web services hosted at Southampton, before 
deciding whether to deploy the database and 
server components of the toolbox locally.  

The database toolbox has been fully 
deployed in the Computational Engineering 
Design Centre (CEDC) [24] at Southampton 
University, where a number of projects use 
optimisation and design search engineering 
methods coupled with industrial applications. 
Engineers are currently using the database to 
store data associated with structural 
optimisation and F1 aerodynamic design 
optimisation problems. A separate installation 
of the database and services was required at the 
CEDC due to a policy requiring all systems to 
remain behind a firewall, to protect 
commercially sensitive data. 

The GENIE project has augmented and 
deployed the Geodise database code and 
database schema to meet their specific needs. 
For example, the standard Geodise database 
must be flexible enough to handle any user 
defined metadata, so it is stored as unstructured 
XML. However, the metadata produced by the 
GENIE framework is more tightly constrained 
and can be described by an XML Schema, 
which improves query efficiency when mapped 
to the Oracle 9i database. 

In response to user feedback we have 
implemented a standalone version of the 
database toolbox that can be used when no 
network connection is available, for example 
when at home or travelling. A user can switch 
between the local and central archive by setting 
a configuration parameter. In standalone mode 
the code calls local class versions of the Web 
services to access a personal database, and uses 
the local file system rather than a remote Globus 
file store. At present the personal edition of 
Oracle 9i database must be installed, but we are 
looking at more lightweight XML enabled 
database alternatives. Data stored in the local 
archive can later be uploaded to the central 
repository using simple synchronisation based 
on the unique handles.  

We have also implemented an administrative 
data cleanup facility which allows information 
in the database (and corresponding files) to be 
deleted by performing a query to find metadata 
meeting certain restrictions. This has not yet 
been included in the deployed toolbox, as we 
intend to further develop the tool to minimise 
the risk of accidental deletion of important data. 
Users have requested the ability to remove 



 

unwanted data, (e.g. from test runs) and we 
would like to provide a tool that allows them to 
mark data for deletion, or expiry after a certain 
period. This would hide the data from ordinary 
query or retrieval commands, but not 
immediately delete it, providing a chance for 
recovery. An administrator can inform users 
when the repository is due to be cleaned up, 
which will involve deleting, or taking offline to 
a long-term data store, any flagged data. 

4. Applications 

We shall now describe some of the different 
ways in which the database toolbox software 
and architecture have been used. The industrial 
application of engineering design optimisation 
using Computational Fluid Dynamics (CFD) is 
a subject of ongoing research in the Geodise 
project. Three-dimensional engine nacelle 
optimisation is a complex example of this, 
which aims to reduce the ground noise 
generated by the engine fan when an aircraft 
takes off.  Metadata has been used extensively 
in these studies to define the model and manage 
data. Metadata was attached to large binary files 
with proprietary formats, enabling the use of 
queries to search for the required files without 
having to open them. Datagroups were used to 
organise the data in a hierarchy, providing a 
logical abstraction for the model files, which are 
conventionally scattered in the file system. The 
introduction of more efficient data management 
approaches and tools also encourages the reuse 
of previously explored models by engineers 
working to deliver better designs within 
restricted timescales. 

The GEM project [25] is developing 
software to improve the design of optical 
components for next generation integrated 
photonic devices. Optimisations involve a large 
number of initial designs and parameters to 
vary, giving rise to many solutions and large 
amounts of data. All the solutions may yield 
valuable information for future simulations and 
need to be preserved. Post-processing relevant 
data became easier when the database toolbox 
was used. The conventional file system 
approach can make it very difficult to find data 
relating to particular simulation runs, where 
there often is no way to search for an individual 
data range, or user description.  

The GENIE project has recently used the 
database toolbox to manage data during tuning 
studies of an Earth system model. In addition to 
being a convenient resource for monitoring 
progress, sharing data, and post-processing, the 
database also provides a level of fault tolerance 

during the studies. When an optimisation is run 
it will typically execute about 1000 model runs 
and record all valid evaluations in the database. 
Occasional Grid job failures inevitably occur 
during such an optimisation so the database 
provides a convenient resource for analysing or 
re-running the study. Although failures are 
handled by the optimisation algorithm it is 
sometimes desirable to re-evaluate the failed 
points. In this case the GENIE code will retrieve 
all the values recorded in the database and 
resume the study from the point of failure. This 
mode of working is particularly efficient for 
optimisations, which could take days to re-
compute if started from scratch. 

The architecture described permits data 
archiving, querying and retrieval from any 
location with web access, Java support, the 
required APIs and a valid Globus proxy 
certificate. Consequently, in addition to 
migrating the toolbox to Jython, we could also 
integrate it into our GUI based Workflow 
Construction Environment (WCE) [8] with ease. 
The WCE helps users construct workflows 
visually. Constituent components can be 
dragged from a hierarchy of tasks on to the 
main workflow view and connected to each 
other by specifying the relationships between 
input and output parameters.  Each workflow is 
saved in two formats, one described in XML for 
future reuse in the graphical editor, and the 
other (more importantly) as a Matlab script. 
This script can run on compute resources with 
Matlab support, and be reused and edited 
outside the WCE without engineers learning 
new workflow formats. Both the XML and the 
Matlab versions of the workflow can be stored 
locally or sent to the Geodise archive with 
additional metadata, calling the database 
toolbox’s Java API. The WCE verifies that the 
resources are accessible to the user and 
configured properly before executing the 
workflow script which may archive user 
configured data as it is running.  The archived 
workflows and result data can be later retrieved 
from the database for reuse, modification, and 
sharing among collaborators.   

5. Process Monitoring 

In deploying our toolbox to users, we have 
found the Grid accessibility of the database has 
made the implementation of remote monitoring 
and steering capabilities possible. Optimisation 
processes involving high-fidelity analysis codes 
are time consuming and therefore it is desirable 
to monitor the progress of the search as it is 
running and make adjustment if necessary. One 



 

of the most common tasks in EDSO 
applications is to monitor the progress of the 
optimisation process by plotting the objective 
function against the number of iterations. This 
gives a useful indication of whether additional 
analysis operations are yielding improvement to 
the design. More complicated tasks include 
monitoring the evolution of a complex 
Response Surface Model (RSM) as more 
analyses are performed and allowing the user to 
drill into interesting designs and further 
examine related geometries or analysis results. 

  The decoupling of process and storage of 
data means customised monitoring information 
can be retrieved and post-processed 
independently and asynchronously from the 
running script. This is not possible in most 
integrated packages which implement 
monitoring on the local machine controlling the 
optimisation using their internal data storage.  
We have extended our database toolbox to 
further support monitoring tasks by attaching 
job related metadata to specialized datagroups. 
Each group can contain data related to a 
particular job and has a name, start time and 
automatic index number, in addition to the usual 
custom metadata. This allows a user to more 
easily query for information on their most 
recent job, or the latest job that matches certain 
other criteria. The monitoring group provides a 
place for users to archive application specific 
data in a way that allows corresponding 
monitoring scripts to retrieve the required 
information and display the current progress of 
a particular job.  

A typical optimisation workflow as shown 
in Figure 2 is used on a two dimensional 
optimisation problem. The figure shows how an 
RSM can be built from objective functions 
evaluated at points returned by a design of 
experiment (DoE). A user can monitor the 
parallel evaluation of the design points to find 
out how many points have been evaluated and 
whether they have all been successful. 
Monitoring can also take place while the 
response surface is built, searched, and updated 
with the best point found on the RSM. For 
problems with more than two design variables, 
other visualisation techniques can be used after 
retrieving the search history from the database. 
Figure 3 (a) shows the original points returned 
by DoE and an additional single point generated 
by the update process. Figure 3 (b) and (c) show 
the initial and updated response surfaces 
models. 

The above example shows how the database 
toolbox and repository have provided a 
convenient way to deposit and monitor variables 
as the search progresses. Process steering can be 
achieved similarly. A running script retrieves 
the latest variables deposited in the database by 
a separate steering program, and makes 
decisions based on the values to control the 
design search. The RealityGrid [26] project has 
developed an API that provides application 
steering capabilities. File-based or socket-based 
IO is used to steer the application from a 
steering client, rather than the database 
approach described here.  

  

Figure 2 - A typical optimisation workflow in which a Response Surface Model 
(RSM) is built from objective functions evaluated on points returned from a 

Design of Experiment (DoE). 
 



 

6. Conclusions and Future Work 

The database toolbox described here has played 
an active role in managing data created by 
EDSO applications running on the Grid.  Its 
support for metadata, especially user-defined 
application specific metadata, and its ease of use 
has made it an appealing tool to be integrated 
into the daily working environment of 
engineers, and scientists from other disciplines.  

Furthermore, as users wish to share metadata 
and data, the use of a consistent semantic 
framework will become more important. 
Geodise has developed a set of domain specific 
ontologies to describe engineering applications, 
and engineers can use these, with the help of 
tools like the ontology annotator [27] to 
describe functions, data and processes. We shall 
further enrich the toolbox by developing tools to 
help engineers create a semantic framework for 
their metadata and also to publish and share 
important Matlab data structures that can be 
used as templates to generate or validate other 
data structure instances. This will utilize 
previous work [28] on generating and managing 
XML Schemas to describe data structures.  

An important issue for future consideration 
is the provision of a redundant failover system 
for the metadata services and database. The 
current central database may be extended to a 
replicated architecture by using, for example 
Oracle Stream, a high-speed tool that allows 

synchronization of replicated databases; and file 
replication management can be achieved by 
wrapping Globus replica management libraries 
[29] with possible extensions as has been shown 
in the Replica Manager [30] implemented by 
the EDG project.  
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