

Deployment and Exploitation of Grid-enabled Data
Management for Engineers

Jasmin Wason, Zhuoan Jiao, Wenbin Song, Andrew Price & Simon Cox

School of Engineering Sciences, University of Southampton, UK
{j.l.wason, z.jiao, w.song, a.r.price, sjc}@soton.ac.uk

Abstract

In this paper we describe the Geodise Database Toolbox, which utilises Web services, XML,
databases and Grid technologies to help manage data created by engineering applications running
locally or on the Grid. It has been integrated into the Matlab and Jython scripting environments for
ease of use, and into other applications via its Java API. The toolbox supports centralised vs.
personal data repositories, the former accessed via secure Web services from platform independent
client applications. Metadata can be easily defined on files, data structures, collections of related
data, and workflows. A distinctive feature is the support for user-defined application specific
metadata that can be queried to locate required data efficiently. We describe the toolbox, how it has
been deployed and exploited, and indicate that our approach has proved sufficiently generic to be
useful in a range of application areas.

1. Introduction

Engineering design search and optimisation
(EDSO) aims to achieve improved designs by
exploiting engineering modelling and analysis.
Variables in a design are systematically
modified to increase, or reduce a quality
measure called the objective function, whilst
ensuring the variables satisfy certain constraints.
It often involves computationally and data
intensive processes, producing large amounts of
data at different locations in a variety of
formats. The emergence of Grid computing and
Web service technologies provides new
opportunities for the engineering community to
access an extended range of compute resources
and manage the sizable data created by
distributed applications more effectively. To
help engineers utilise the available compute and
data resources on the Grid, the Geodise project
[1] have developed computational and database
toolboxes to bring the technologies into an
environment familiar to engineers. The Geodise
Computational Toolbox [2] provides a suite of
functions which enable and simplify access to
Grid compute resources, and the database
toolbox offers similar support for data
management and sharing.

In previous papers [3, 4] we described how
the Geodise Database Toolbox, wrapped as a set
of Matlab [5] functions that can be incorporated
into a user’s Matlab scripts, has been used in
Computational Fluid Dynamics (CFD) and
Computational Electromagnetic (CEM)
engineering problems. Matlab is a powerful,

flexible, and easy to use scripting environment
popular with engineers. It also provides a
powerful execution engine for our workflows,
and is available on a wide variety of platforms
and operating systems.

The underlying toolbox is exposed as a Java
API so it can be integrated with different
scripting environments, such as Jython [6], and
other applications that can interact with Java
code. For example, the GENIE project [7]
supports environmental scientists modelling
long term climate change and has used the API
to manage data from their framework using a
web portal. The Geodise Workflow
Construction Environment (WCE) [8] also uses
the API to a) archive, query, and retrieve the
workflows for reuse and sharing; b) store data
for monitoring workflow executions. Recently
we have released the toolbox’s client code to the
Integrative Biology project [9] so that
researchers can experiment with using our
repository remotely to manage their application
data. We have also extended the toolbox so that
it can be used more conveniently for monitoring
application processes while they are running, so
that engineers can intervene to halt or change
long running optimisations if necessary.

In this paper we will give an overview of the
architecture in section 2 and discuss deployment
in section 3. A description of how the toolbox
has been used in various applications will be
given in section 4 and in section 5 we will
demonstrate its use in application monitoring
using an example drawn from engineering
design practice. Section 6 summarises the
conclusions and future work.

2. Architecture Overview

Traditionally, data created from engineering
applications is stored in files on file systems
with little information to describe them. When
the data volume is large, this makes them
difficult to search, share and reuse. The
limitation of this approach becomes more
obvious when a group of people working in
different institutions, i.e. in a Virtual
Organisation (VO), wish to collaborate to solve
a common problem, making use of Grid
technology. This can be overcome by attaching
additional descriptive information (metadata) to
the data, so that it can be located by querying its
characteristics rather than having to know its
location.

2.1 Metadata

To encourage the use of metadata within the
engineer’s environment it must be
straightforward to specify and sufficiently
flexible to contain any terms and nested data
structures required to describe the relevant
application data. The Storage Resource Broker
(SRB) [10] provides a uniform interface for
connecting to heterogeneous resources over a
network and, with the Metadata Catalog
(MCAT), provides dataset access based on
characteristics rather than names or physical
locations. However, MCAT has limited support
for application specific metadata, particularly
the complex, nested data structures and data
types which are often essential in assisting
engineering users to locate data specific to their
problems.

To achieve the required flexibility and ease
of use we have developed the Geodise Database
Toolbox which allows engineers working in the
Matlab environment to define metadata
conveniently as Matlab structures. Standard
metadata (e.g. archive date, file size) are
generated automatically by the toolbox so that
users only need to concentrate on defining
custom metadata specific to their applications,
and granting access permissions to other users
in the VO if they want to share the data.
Metadata is stored in an XML enabled relational
database (Oracle 9i [11]): standard metadata is
stored in tables for efficient access, whilst user
defined metadata is stored as native XML for
flexibility, and this can be transparently
converted to and from user defined Matlab
structures using our XML Toolbox for Matlab
[12].

The database is queried using a simple
syntax to locate files/variables or groups of data
based on their characteristics. Users specify

queries as a combination of named metadata
variables and comparison operators, with
options for exact or wildcard matches and case
insensitivity. A user query is converted to a
combination of SQL and XPath, and restricted
so that it only returns results the user is entitled
to access. The returned array of structures may
contain all the metadata for each result or a
specified subset, for example the user may only
want the unique data identifiers, which can then
be used to retrieve files from the archive,
regardless of where they are stored. Users can
incorporate the query function into their Matlab
scripts directly or interact with a query GUI
supporting hyperlinks for downloading and
browsing related data.

A datagroup is used to logically group
together related data, such as that used in a
process monitoring task, and metadata can be
added at the group level so that the entire
collection is described. A datagroup may also
contain sub-datagroups, and data can belong to
multiple datagroups. This gives users the ability
to describe and exploit relationships or
hierarchies.

Jython [6] is a pure Java implementation of
the Python scripting language which, like
Matlab, allows seamless integration with any
Java code. We were therefore able to implement
the database toolbox in Jython by providing a
thin set of functions on top of our existing Java
client API. We also provide functionality
analogous to the XML Toolbox for Matlab,
converting between metadata contained in
Jython dictionaries or objects and XML. Data
types in the XML Toolbox are described by
type, dimensions and array index where
applicable, and using the same XML syntax for
Jython means metadata can be passed between
the environments via the database. For example,
an engineer may prefer to install Jython for free
at home and query the database to monitor the
progress of their current job. Alternatively,
Jython may be used to archive files and
associated metadata from Grid compute
resources that do not have access to a Matlab
license, then later in the lab the data can be
queried, retrieved and plotted for analysis using
Matlab.

For applications running in other
environments, metadata can be defined using
the appropriate data structures and then
converted into XML format before calling the
toolbox’s Java API. For example, in the
Geodise WCE metadata is defined initially as
Java objects, and then converted into XML
before archiving.

2.2 Web and Grid technologies

Both files and variables (primitive values and
data structures) can be archived in the
repository with associated system generated and
user defined metadata. Files are archived to a
user specified remote file store, using GridFTP
[13] and assigned Universally Unique
Identifiers (UUIDs) [14]. This information is
recorded in the database allowing files to be
physically located and retrieved by their UUIDs
later. Variables are archived as XML in a way
similar to the user defined metadata.

All database access is supplied through
secure Web services for storage and query of
metadata, file location and authorisation, as
shown in Figure 1. The Web services are
invoked, using Apache Axis [15], from platform
independent client code running locally or on
Grid resources. To support distributed users and
prevent unauthorised access we use a secure
method of Web service communication. It
allows X.509 certificate based authentication
and authorisation using the same delegated
credentials that provide a point of single sign-on
for computational jobs on the Grid [16]. The
user’s unique identifier (certificate subject) is
extracted from the certificate that signs the
SOAP [17] request message and used to
authorise database access, record data

ownership and allow users to grant access
permissions to others.

 Projects like Spitfire [18] and OGSA-DAI
[19] develop generic middleware to provide
database access from Grid applications. Spitfire
is a project within the European DataGrid
(EDG) project [20]. It provides a thin layer on
top of a relational database management system,
and uses Web service technology to provide
SOAP-based RPC to some user-definable
database operations. It is designed to give quick
and easy access to data where the access
patterns are simple, rather than to be used as a
full-fledged data management system. Problems
are anticipated for long-running queries, queries
returning a very large result set, and other
operations that need a large amount of system
memory.

We also encountered a problem when the
volume of query results was very high. In this
situation returning all the results from the Web
service as one very large SOAP message can
cause Axis to run out of memory when it
attempts deserialization on the client. To
prevent this we split large results into chunks,
which are no more than 2 MB in size by default.
The client code pulls the results back in stages
from the service, which will indicate when they
have all been returned. This is transparent to the
user, as the client code passes on the full results
when the process is complete. Users can

Java
Client
Code

CoG

Apache
Axis

Java
Client
Code

CoG

Apache
Axis

Java
Client
Code

CoG

Apache
Axis

Geodise
Matlab

Functions

Globus ServerGlobus ServerGlobus ServerGeodise Database
Toolbox

Metadata
Database

Client Grid

SOAP

GridFTP

Jython

Geodise
Jython

Functions

WCE

Geodise Database
Web Services

Authorisation
Service

Location
Service

Metadata
Archive & Query

Services

Figure 1 - A GUI or high level set of scripting functions on top of a client side Java API provides an
interface to secure data management Web services and file transfer. User scripts may run locally as

shown or on remote compute resources with the user’s delegated authorisation credentials.

optionally set the chunk size in a configuration
file according to their computer’s capabilities.

The OGSA-DAI project produces open
source database access and integration
middleware for use in the Grid environment. It
provides an extension to the Open Grid Services
Architecture (OGSA) specifications [21] to
allow data resources, such as databases, to be
incorporated within an OGSA framework. Its
latest release (version 4.0) provides a client
toolbox that minimises the specialist knowledge
required to interact with OGSA-DAI services
and shields the developer from the changes that
have been seen in previous releases. OGSA-
DAI’s provision for asynchronous delivery of
query results to various destinations, such as a
URL or a file, is a useful feature that we shall
investigate using in the future.

3. Deployment

We now discuss some alternative deployment
strategies for the client and server tools. The
computational and XML toolboxes are
prerequisites of the database client toolbox,
which also requires classpath additions and a
configuration directory to be copied to the
user’s home directory. The client configuration
file can then be altered to specify the location of
the database Web services and which Globus
[22] enabled server to store files on. We have
found that for organisations sharing a Matlab
installation the easiest arrangement is to
configure these details and the classpath
centrally. Then users only need to run a single
command to copy the configuration information
to their home directory and start using the
toolbox, providing they have passed on their e-
Science certificate subject to the relevant
administrator(s) so they can be authorised to
access the database and file store.

Deployment of the server components is
more involved, requiring Oracle 9i and an
application server (e.g. WebSphere [23]) to be
installed together or on separate machines. The
database schema is created by running a script,
and then user certificate subjects and IDs can be
added. The Web services are deployed on the
application server, and will access a
configuration file to determine the location of
the database. A public version of the Web
services exists at Southampton so that the
database can be accessed by any authorised
user, regardless of location.

The Integrative Biology [9] project aims to
create an infrastructure allowing biomedical
researchers to use Grid computing, databases
and visualisation tools to develop complex

models of how heart disease and cancer
develop. By installing the Geodise database
client toolbox they were able to experiment with
it, by connecting to a remote repository via the
Web services hosted at Southampton, before
deciding whether to deploy the database and
server components of the toolbox locally.

The database toolbox has been fully
deployed in the Computational Engineering
Design Centre (CEDC) [24] at Southampton
University, where a number of projects use
optimisation and design search engineering
methods coupled with industrial applications.
Engineers are currently using the database to
store data associated with structural
optimisation and F1 aerodynamic design
optimisation problems. A separate installation
of the database and services was required at the
CEDC due to a policy requiring all systems to
remain behind a firewall, to protect
commercially sensitive data.

The GENIE project has augmented and
deployed the Geodise database code and
database schema to meet their specific needs.
For example, the standard Geodise database
must be flexible enough to handle any user
defined metadata, so it is stored as unstructured
XML. However, the metadata produced by the
GENIE framework is more tightly constrained
and can be described by an XML Schema,
which improves query efficiency when mapped
to the Oracle 9i database.

In response to user feedback we have
implemented a standalone version of the
database toolbox that can be used when no
network connection is available, for example
when at home or travelling. A user can switch
between the local and central archive by setting
a configuration parameter. In standalone mode
the code calls local class versions of the Web
services to access a personal database, and uses
the local file system rather than a remote Globus
file store. At present the personal edition of
Oracle 9i database must be installed, but we are
looking at more lightweight XML enabled
database alternatives. Data stored in the local
archive can later be uploaded to the central
repository using simple synchronisation based
on the unique handles.

We have also implemented an administrative
data cleanup facility which allows information
in the database (and corresponding files) to be
deleted by performing a query to find metadata
meeting certain restrictions. This has not yet
been included in the deployed toolbox, as we
intend to further develop the tool to minimise
the risk of accidental deletion of important data.
Users have requested the ability to remove

unwanted data, (e.g. from test runs) and we
would like to provide a tool that allows them to
mark data for deletion, or expiry after a certain
period. This would hide the data from ordinary
query or retrieval commands, but not
immediately delete it, providing a chance for
recovery. An administrator can inform users
when the repository is due to be cleaned up,
which will involve deleting, or taking offline to
a long-term data store, any flagged data.

4. Applications

We shall now describe some of the different
ways in which the database toolbox software
and architecture have been used. The industrial
application of engineering design optimisation
using Computational Fluid Dynamics (CFD) is
a subject of ongoing research in the Geodise
project. Three-dimensional engine nacelle
optimisation is a complex example of this,
which aims to reduce the ground noise
generated by the engine fan when an aircraft
takes off. Metadata has been used extensively
in these studies to define the model and manage
data. Metadata was attached to large binary files
with proprietary formats, enabling the use of
queries to search for the required files without
having to open them. Datagroups were used to
organise the data in a hierarchy, providing a
logical abstraction for the model files, which are
conventionally scattered in the file system. The
introduction of more efficient data management
approaches and tools also encourages the reuse
of previously explored models by engineers
working to deliver better designs within
restricted timescales.

The GEM project [25] is developing
software to improve the design of optical
components for next generation integrated
photonic devices. Optimisations involve a large
number of initial designs and parameters to
vary, giving rise to many solutions and large
amounts of data. All the solutions may yield
valuable information for future simulations and
need to be preserved. Post-processing relevant
data became easier when the database toolbox
was used. The conventional file system
approach can make it very difficult to find data
relating to particular simulation runs, where
there often is no way to search for an individual
data range, or user description.

The GENIE project has recently used the
database toolbox to manage data during tuning
studies of an Earth system model. In addition to
being a convenient resource for monitoring
progress, sharing data, and post-processing, the
database also provides a level of fault tolerance

during the studies. When an optimisation is run
it will typically execute about 1000 model runs
and record all valid evaluations in the database.
Occasional Grid job failures inevitably occur
during such an optimisation so the database
provides a convenient resource for analysing or
re-running the study. Although failures are
handled by the optimisation algorithm it is
sometimes desirable to re-evaluate the failed
points. In this case the GENIE code will retrieve
all the values recorded in the database and
resume the study from the point of failure. This
mode of working is particularly efficient for
optimisations, which could take days to re-
compute if started from scratch.

The architecture described permits data
archiving, querying and retrieval from any
location with web access, Java support, the
required APIs and a valid Globus proxy
certificate. Consequently, in addition to
migrating the toolbox to Jython, we could also
integrate it into our GUI based Workflow
Construction Environment (WCE) [8] with ease.
The WCE helps users construct workflows
visually. Constituent components can be
dragged from a hierarchy of tasks on to the
main workflow view and connected to each
other by specifying the relationships between
input and output parameters. Each workflow is
saved in two formats, one described in XML for
future reuse in the graphical editor, and the
other (more importantly) as a Matlab script.
This script can run on compute resources with
Matlab support, and be reused and edited
outside the WCE without engineers learning
new workflow formats. Both the XML and the
Matlab versions of the workflow can be stored
locally or sent to the Geodise archive with
additional metadata, calling the database
toolbox’s Java API. The WCE verifies that the
resources are accessible to the user and
configured properly before executing the
workflow script which may archive user
configured data as it is running. The archived
workflows and result data can be later retrieved
from the database for reuse, modification, and
sharing among collaborators.

5. Process Monitoring

In deploying our toolbox to users, we have
found the Grid accessibility of the database has
made the implementation of remote monitoring
and steering capabilities possible. Optimisation
processes involving high-fidelity analysis codes
are time consuming and therefore it is desirable
to monitor the progress of the search as it is
running and make adjustment if necessary. One

of the most common tasks in EDSO
applications is to monitor the progress of the
optimisation process by plotting the objective
function against the number of iterations. This
gives a useful indication of whether additional
analysis operations are yielding improvement to
the design. More complicated tasks include
monitoring the evolution of a complex
Response Surface Model (RSM) as more
analyses are performed and allowing the user to
drill into interesting designs and further
examine related geometries or analysis results.

 The decoupling of process and storage of
data means customised monitoring information
can be retrieved and post-processed
independently and asynchronously from the
running script. This is not possible in most
integrated packages which implement
monitoring on the local machine controlling the
optimisation using their internal data storage.
We have extended our database toolbox to
further support monitoring tasks by attaching
job related metadata to specialized datagroups.
Each group can contain data related to a
particular job and has a name, start time and
automatic index number, in addition to the usual
custom metadata. This allows a user to more
easily query for information on their most
recent job, or the latest job that matches certain
other criteria. The monitoring group provides a
place for users to archive application specific
data in a way that allows corresponding
monitoring scripts to retrieve the required
information and display the current progress of
a particular job.

A typical optimisation workflow as shown
in Figure 2 is used on a two dimensional
optimisation problem. The figure shows how an
RSM can be built from objective functions
evaluated at points returned by a design of
experiment (DoE). A user can monitor the
parallel evaluation of the design points to find
out how many points have been evaluated and
whether they have all been successful.
Monitoring can also take place while the
response surface is built, searched, and updated
with the best point found on the RSM. For
problems with more than two design variables,
other visualisation techniques can be used after
retrieving the search history from the database.
Figure 3 (a) shows the original points returned
by DoE and an additional single point generated
by the update process. Figure 3 (b) and (c) show
the initial and updated response surfaces
models.

The above example shows how the database
toolbox and repository have provided a
convenient way to deposit and monitor variables
as the search progresses. Process steering can be
achieved similarly. A running script retrieves
the latest variables deposited in the database by
a separate steering program, and makes
decisions based on the values to control the
design search. The RealityGrid [26] project has
developed an API that provides application
steering capabilities. File-based or socket-based
IO is used to steer the application from a
steering client, rather than the database
approach described here.

Figure 2 - A typical optimisation workflow in which a Response Surface Model
(RSM) is built from objective functions evaluated on points returned from a

Design of Experiment (DoE).

6. Conclusions and Future Work

The database toolbox described here has played
an active role in managing data created by
EDSO applications running on the Grid. Its
support for metadata, especially user-defined
application specific metadata, and its ease of use
has made it an appealing tool to be integrated
into the daily working environment of
engineers, and scientists from other disciplines.

Furthermore, as users wish to share metadata
and data, the use of a consistent semantic
framework will become more important.
Geodise has developed a set of domain specific
ontologies to describe engineering applications,
and engineers can use these, with the help of
tools like the ontology annotator [27] to
describe functions, data and processes. We shall
further enrich the toolbox by developing tools to
help engineers create a semantic framework for
their metadata and also to publish and share
important Matlab data structures that can be
used as templates to generate or validate other
data structure instances. This will utilize
previous work [28] on generating and managing
XML Schemas to describe data structures.

An important issue for future consideration
is the provision of a redundant failover system
for the metadata services and database. The
current central database may be extended to a
replicated architecture by using, for example
Oracle Stream, a high-speed tool that allows

synchronization of replicated databases; and file
replication management can be achieved by
wrapping Globus replica management libraries
[29] with possible extensions as has been shown
in the Replica Manager [30] implemented by
the EDG project.

7. Acknowledgement

This work is supported by the Geodise e-
Science pilot project (UK EPSRC
GR/R67705/01), and GENIE [7] is funded by
the UK Natural Environment Research Council
(NER/T/S/2002/00217).

8. References

1. Geodise (Grid Enabled Optimisation and

Design Search for Engineering) Project:
http://www.geodise.org

2. M.H. Eres, G.E. Pound, Z. Jiao, J.L. Wason,
F. Xu, A.J. Keane, and S.J. Cox.
Implementation and utilisation of a Grid-
enabled Problem Solving Environment in
Matlab. Future Generation Computer
Systems (in press).

3. W. Song, A.J. Keane and S.J. Cox. CFD-
Based Shape Optimisation with Grid-
Enabled Design Search Toolkits.
Proceedings of UK e-Science All Hands
Meeting 2003, 619-626.

Figure 3 - Monitoring of optimisation process using Geodise database toolboxes.

1 1.2 1.4
0.01

0.015

0.02

0.025

0.03

x1

x2

0.01
0.02

0.03

1

1.5
11.7

11.8

11.9

x2x1

lif
t−

dr
ag

−
ra

tio

0.01
0.02

0.03

1

1.5
11.7

11.8

11.9

x2x1

lif
t−

dr
ag

−
ra

tio

(a)

(b) (c)

4. J.L. Wason, M. Molinari, Z. Jiao and S.J.
Cox. Delivering Data Management for
Engineers on the Grid. Euro-Par 2003
Parallel Processing, Lecture Notes in
Computer Science, 2003, 413-416.

5. Matlab 6.5. http://www.mathworks.com

6. J. Hugunin. Python and Java: The Best of
Both Worlds, Proceedings of the 6th
International Python Conference, San Jose,
California , 1997

7. GENIE (Grid ENabled Integrated Earth
system model) project,
http://www.genie.ac.uk

8. F. Xu and S.J. Cox. Workflow Tool for
Engineers in a Grid-Enabled Matlab
Environment. Proc. UK e-Science All Hands
Meeting 2003, 212-215.

9. Integrative Biology Project,
http://www.integrativebiology.ox.ac.uk

10. A. Rajasekar, M. Wan and R. Moore.
MySRB and SRB - Components of a Data
Grid, 11th International Symposium on
High Performance Distributed Computing
(HPDC-11) Edinburgh, Scotland, 2002.

11. Oracle 9i Database,
http://otn.oracle.com/products/oracle9i

12. M. Molinari. XML Toolbox for Matlab,
GEM/Geodise, 2004,
http://www.soton.ac.uk/~gridem/xml_toolbox

13. B. Allcock, J. Bester, J. Bresnahan, A.
Chervenak, I. Foster, C. Kesselman, S.
Meder, V. Nefedova, D. Quesnel and S.
Tuecke. Secure, Efficient Data Transport
and Replica Management for High-
Performance Data-Intensive Computing,
Proceedings of the IEEE Mass Storage
Conference, 2001.

14. P. J. Leach and R. Salz. UUIDs and GUIDs,
Network Working Group Internet Draft,
1998, http://hegel.ittc.ukans.edu/topics/
internet/internet-drafts/draft-l/draft-leach-
uuids-guids-01.txt

15. Axis, The Apache Software Foundation,
http://ws.apache.org/axis/

16. I. Foster, C. Kesselman, G. Tsudik and S.
Tuecke. A Security Architecture for
Computational Grids. Proc. 5th ACM
Conference on Computer and
Communications Security Conference, 1998,
83-92.

17. M. Gudgin, M. Hadley, N. Mendelsohn, JJ
Moreau and H.F. Nielsen. Simple Object
Access Protocol (SOAP), W3C

Recommendation 24 June 2003
http://www.w3.org/TR/soap12

18. Spitfire, European DataGrid Project,
http://edg-wp2.web.cern.ch/edg-wp2/spitfire

19. OGSA-DAI, Open Grid Services
Architecture-Data Access and Integration
http://www.ogsadai.org.uk

20. European DataGrid Project,
http://eu-datagrid.web.cern.ch/eu-datagrid

21. I. Foster, C. Kesselman, J. Nick and S.
Tuecke. The Physiology of the Grid: an
Open Grid Services Architecture for
Distributed Systems Integration. June 2002.
http://www.gridforum.org/ogsa-wg

22. The Globus Toolkit, http://www.globus.org

23. IBM WebSphere Application Server,
http://www-
3.ibm.com/software/webservers/appserv

24. Computational Engineering and Design
Centre, Southampton University,
http://www.soton.ac.uk/~cedc

25. The GEM (Grid Enabled electroMagnetic
optimisation) project,
http://www.soton.ac.uk/~gridem

26. J. M. Brooke, P. V. Coveney, J. Harting, S.
Jha, S. M. Pickles, R. L. Pinning, and A. R.
Porter. Computational Steering in
RealityGrid. Proceedings of the UK e-
Science All Hands Meeting 2003.

27. L. Chen, N.R. Shadbolt, C. Goble, F. Tao,
S.J. Cox and C. Puleston. Managing
Semantic Metadata for the Semantic Grid.
Submitted to ISWC2004, Hiroshima, Japan,
2004.

28. Z. Jiao, J.L. Wason, M. Molinari, S.
Johnston, and S.J. Cox. Integrating Data
Management into Engineering Applications.
Proceedings of UK e-Science All Hands
Meeting 2003, 687-694.

29. Globus replica management,
http://www.globus.org/datagrid/replica-
management.html

30. P. Kunszt, E. Laure, H. Stockinger, and K.
Stockinger. Advanced Replica Management
with Reptor. In 5th International Conference
on Parallel Processing and Applied
Mathematics, Poland, September, 2003.
https://edms.cern.ch/file/404070/1/CP27.pdf

