
A Service-Oriented Approach for Aerodynamic Shape Optimization across
Institutional Boundaries

Wenbin Song1, Yew Soon Ong2, Hee Khiang Ng2, Andy Keane1, Simon Cox1, and Bu Sung Lee2

1 Southampton e-Science Centre, University of Southampton, Southampton, SO17 1BJ, UK,

{w.song, ajk, sjc}@soton.ac.uk
2School of Computer Engineering, Nanyang Technological University, Singapore 639798

{asysong, mhkng, ebslee}@ntu.edu.sg

Abstract

This paper presents the experiences gained from
ongoing research collaboration between the School
of Computer Engineering at Nanyang Technological
University and the Southampton e-Science centre at
the University of Southampton using a service-
oriented approach for complex engineering design
optimization. The service-oriented approach enables
programmatic collaboration to be realized while
maintaining the autonomy of individual codes at the
different institutes and organizations. In the current
work, a Genetic algorithm optimization logic
implemented as a Grid service at Southampton is
used to drive the design search process, while the
aerodynamic analysis code located in Singapore is
used to evaluate the objective function of the design
points. Experience gathered from the current study
on airfoil shape optimization is valuable for
establishing effective, efficient and customised
programmatic links between institutions to solve
complicated engineering design problems.

1. Introduction

Collaboration lies at the heart of Grid computing. [1]
Grid computing provides the infrastructure and tools to
encourage collaboration between departments,
institutions and research centres to deliver better
research outcomes. The concepts of service-oriented
computing are seeing wide acceptance and becoming a
standard approach for tackling distributed,
heterogeneous computing problems. Web services/Grid
services are evolving fast, and the proposed WSRF
(WS-Resources Framework) [2] is seen as a joint effort
between industry and academia and a sign of the
convergence of Web services and Grid Services. The
principle motivation for adopting web services is
interoperability, where a service consumer can access
Web services using standard protocols such as SOAP
(Simple Object Access Protocol) [3] and HTTP, etc.,
irrespective of the operating systems and programming
languages that either parties use. Therefore, it increases
the accessibility of existing capabilities by presenting
existing codes as Web services and enables
collaborations across geographic and institutional
boundaries.

Numerical optimization methods are often used in
the engineering design process to improve product
performance and quality over a shorter design-cycle
time. In many complex engineering design problems,
high-fidelity analysis models are employed where each
function evaluation may require a Computational
Structural Mechanics (CSM), Computational Fluid
Dynamics (CFD) or Computational Electromagnetics
(CEM) simulation costing minutes to hours of
supercomputer time. A motivating example for us is
aerodynamic shape design of airfoils. The design
optimization approach typically involves many
repetitive function calls to the high-fidelity analysis
codes to obtain the merits of the different combinations
of design variables. This process is therefore both
computational expensive and data intensive.

To increase the robustness and probability of
obtaining a globally improved design, stochastic
techniques such as evolutionary algorithms (EAs) [4]
are often adopted as the principle algorithm in the
design search process. Evolutionary algorithms, unlike
conventional gradient-based numerical optimization
methods produce new design points that do not use
information about the local slope of the search function
and are thus not prone to stalling at local optima. They
have shown considerable success in locating the global
optimum solution of many optimization problems
characterized by non-convex and disjoint solution
spaces. However, this increase in capacity to locate the
global optimum designs is often achieved at the expense
of greater computational cost and hence a longer design
cycle time. Since EAs typically require thousands of
function evaluations to locate a near optimal solution,
the use of EAs such as Genetic algorithms (GAs) in
general increases the cost of finding globally optimum
designs.

This poses a serious impediment to the practical
application of combining high-fidelity analysis codes
and evolutionary design optimization in complex design
problems in science and engineering. It is thus
important to retain the appeal of evolutionary design
optimization algorithms and to effectively handle
computationally expensive design problems in order to
produce high quality designs under tight design time
schedules.

Fortunately, a well-known strength of EAs is their
ability to partition the population of individuals among

multiple compute nodes. Since the design optimization
cycle time is directly proportional to the number of calls
to the analysis solvers, an intuitive way to reduce the
total search time of evolutionary optimization
algorithms is to parallelize the analysis of the design
points. All design points within a single EA population
may be evaluated simultaneously across multiple
compute nodes.

The benefits of combining conventional parallel
processing capability and the emerging Grid computing
technology in the context of evolutionary design
optimization are numerous. In particular, the Grid
provides the infrastructure to facilitate distributed
computing and parallelisms by tapping on vast compute
power and a secure means of solving large-scale
optimization problems. In this paper, we consider using
Web services to provide access to high fidelity
computational fluid dynamics analysis codes and
compute resources located at Singapore and Grid
services at Southampton to provide the optimization
logic of a genetic algorithm to drive the design search
process.

The rest of this paper is organized as follows: In
section 2, we present a brief overview of service-
oriented computing. Sections 3 and 4 describe the
implementation aspects of wrapping airfoil analysis
code as services and realizing genetic algorithms as
Grid services, respectively. Section 5 illustrates the
consumption of the services within the Matlab
environment. Section 6 presents the experimental
studies and discussions while section 7 concludes this
paper.

2. Towards Service-Oriented Computing

Service-oriented computing (SOC), an emerging
paradigm for distributed computing, represents a major
shift in the way that software systems are designed,
developed, and consumed. Services are platform and
language independent software elements that can be
described, published, orchestrated using XML data.

Web services [5] provide the programmatic
interfaces between diverse applications via the Web.
The WSDL [6] is used to describe the network services
as a set of endpoints operating on messages containing
either document-oriented or procedure-oriented
information. The introduction of stateful Web services
leads to the development of Open Grid Services
Architecture (OSGA) and associated implementation
OGSI (Globus 3.0). [7]

In addition to building Web services interfaces to
existing applications, there is also a need for a standard
approach to connect services together to create
constructive and effective customized processes. Web
services orchestration [8] is about providing an open,
standards-based approach for connecting web services
together to create advanced processes.

3. Airfoil Aerodynamic Analysis as Web
Service

The collaboration setup between the University of
Southampton (Soton) and Nanyang Technological
University (NTU) employs a multi-tiered service
architecture as illustrated in Figure 1. The architecture
consists of a Client tier, at Soton, a Web service tier at
NTU, and the Grid resource tier utilizing the NTU
campus grid [9] resources. The client tier at
Southampton uses Java clients running within
Matlab/Jython to send requests to the aerodynamic
analysis service tier located at NTU. This tier thus
provides the access point to the airfoil code which will
then access NTU campus grid resources to carry out the
computation.

In regard to security, we have used Globus GSI [10]
enabled Web services to provide the essential security
for the airfoil analysis Web services we deployed. The
client generates the necessary proxy certificate from a
grid proxy initialization process through the user’s GSI
certificate and private key. This proxy credential is then
sent to the Web service using the HTTPG [7] protocol.
The Web service will extract the credential context from
the service request to authenticate the user and using
this delegated credential to authorize access to the grid
resources. Figure 2 illustrates this GSI web service
architecture.

At the grid resource tier, the GRAM’s [11] gatekeeper
of the resource cluster upon receiving the job
submission service request through the Globus web
service spawns the aerodynamic analysis jobs across
multiple computing nodes in parallel. In the process, the
design input files are uploaded and transferred to the
grid resource clusters. This is accomplished via the
upload file web services provided. First, the input files
are uploaded to the service provider web server using
the file upload service. Subsequently, the GridFTP [12]
web service, which is designed to handle peer to peer
transfer of data files, relocates the files to the chosen
compute nodes to proceed with the analysis
computation. Upon completion, the results are
marshalled back to the Globus web service via the
Global Access to Secondary Storage (GASS) [13]. The

Client
Tier

Web Service
 Tier

Grid Resource
Tier

Aerodynamic
analysis

service, NTU

Matlab/
Jython,

Southampton

Analysis
Computation,

NTU
 Figure 1: Collaboration Architecture

responsibility of the agent is to perform local scheduling
and resource discovery across the computing nodes in
the cluster. A brief overview of the airfoil analysis
execution process is given in Figure 3.

Client tools

Figure 2: GSI Web Service Architecture

Figure 3: Airfoil analysis execution process

4. A Genetic Algorithm as a Grid Service

The growing popularity of evolutionary computation
algorithms such as genetic algorithms [4] in design
optimization has resulted in many implementations of
the basic algorithm. These include some well-
established and validated implementations, for example,
one such implementation in the design exploration
system OPTIONS [14]. The Genetic algorithm
implemented in OPTIONS is typical of those discussed
in the literature except that it incorporates a version of
an adaptive clustering algorithm based on K-mean
distance, and an elitist survival strategy. For constrained
optimization problems, two types of penalty functions
can be used when calculating the fitness of the design.

Access to the algorithms is not only limited to the
availability of the code, but also the various types of
interfaces used by the codes, including platforms,
languages, etc. This presents further challenges when
used in a wider scope for solving complex engineering
problems, as it is often the case that various software
components need to be integrated to create customized
workflows or tools to suit a particular problem.
Although this can be achieved by using a dedicated
GUI-based environment such as iSIGHT [15] or
ModelCenter [16], or using some free-form scripting
languages such as Jython [17] or Matlab [18], it is
usually beneficial to expose the optimization logic in a
standard interface independent of the implementation
languages and platforms, thus relieving the difficulties
of integrating various components.

In the current work, our in-house design exploration
system OPTIONS developed using Fortran 77 over the
last 20 years is used to provide the optimization logic
behind the optimization Grid service. OPTIONS
maintains its own internal data structure which allows
users to establish an optimization problem and
manipulate the definitions of variables through a
Fortran/C API. However, the Fortran/C interface it uses
to communicate to users’ simulation codes requires
users to wrap their simulation codes as Fortran/C
subroutines and link them with the system libraries.
Alternatively, standalone packages may be executed as
system calls. With the increasing complexity and the
large number of simulation packages that are often
involved in a typical multidisciplinary design
optimization process, more advanced and flexible
integration frameworks are required to couple users’
codes with the optimiser. The efficiency and ease-of-use
offered by more recently developed programming
languages such as Java or C# and the open standards
base Grid services should be exploited to enhance
present engineering design processes.

4.1 Wrapping Native code into a .NET Managed
code

The implementation of the genetic algorithm as a grid
services is here presented as two phases. The first phase
describes the steps that are required to prepare the code
written in Fortran for use in other more network service-
aware programming environments. The approach
adopted can be used for generic cases where legacy
codes (written in Fortran or C) need to be accessed from
these environments.

Here, we target on shared libraries for Windows and
Linux operating systems. Two steps are involved in this
phase because the Win32 shared library generated by a
conventional Fortran compiler such as Compaq Visual
Fortran (CVF 6.1.0) [19] cannot be directly deployed
as .NET applications. Here, a Salford FTN95 Fortran
compiler [20] is used in place to create a library which
itself calls routines in the Win32 shared library. The
newly created library produced by FTN95 is then used

A Single Cluster

GRAM

Agent

Compute
Node

… Compute
Node

Airfoil Analysis Globus Service

3. Extraction of
GSI credential
from request

… …

4. Delegation of
GSI credential
to Grid
resources

2. Service Request
with GSI Credentials

HTTPG

1. Creation/ Extraction
of credential

Objective Function
services

User’s
Credential

in .NET projects or J2EE to implement the Grid services
application logic.

4.2 Implementation of Grid Services

The workflow for a conventional Genetic algorithm is
outlined in Figure 4(a). To implement it as a grid
service, it is necessary to reengineer the workflow into
the one illustrated in Figure 4(b). The new workflow
involves requesting the evolved design variables for the
subsequent generations after undergoing standard GA
operating mechanisms (selection, crossover and
mutation) and marshalling the fitness of the design
points back to the Grid service. The main difference
between these two workflows is exactly where the GA
operators are applied.

(a) Conventional GA

(b) Re-engineered GA Grid Service
Figure 4: Logic for a Conventional Genetic Algorithm
and as a Grid Service

The Grid service that delivers the Genetic algorithm
maintains the control parameters of the algorithm
together with the other configurations, and provides
access to operations of the algorithm based on the
standard SOAP protocol. Hence, our service for the
OPTIONS genetic algorithm includes definitions of data
fields that store the standard GA control parameters
such as the population size, mutation rate and etc., as
well as the following function calls that are made
available:

– ga_optdbs, which initialise the internal data
structure used by the algorithms;

– ga_next, which evolves the GA by one
generation;

– ga_objs, which returns objective functions and
constraints for the current population to the GA

In our approach, we choose to implement the GA as a
collection of transient services, meaning that all the
operations and data in the optimization process are
handled by unique instances of the service that exist for

the lifetime of the entire process. This provides a simple
state management model, which avoids the need to
transfer the state information back and forth between the
service and client, or the need to deploy complicated
mechanisms to manage states of multiple optimization
processes. Details on how the service is implemented
may be found in [21].

5. Service Consumption in the Matlab
Scripting Environment

To consume the Web/Grid services, two client tools
were developed in Java. Besides platform independence,
the use of the Java programming language also enables
seamless integration with Java-compatible scripting
scientific environments, like Matlab and Jython, which
are familiar to most engineers. One of the client tools
provides access to the Genetic Algorithm services that
drives the design optimization search process. The other
is used to evaluate the high-fidelity airfoil analysis code
in Singapore. The application example in the following
section illustrates how the clients can be used with
scripting languages to access these services to carry out
airfoil optimizations. A piece of Matlab script used in
the study is shown in Figure 5.

Figure 5: Matlab script for the consuming of Web/Grid
services

6. Experimental Studies and Discussions

Making use of the web and grid services provided at
both sides of the institutional boundaries and a Matlab
client environment, an optimization study carried out on
a 2D airfoil aerodynamic design problem is presented
next.
6.1. 2D Airfoil Aerodynamic Design
The 2D airfoil aerodynamic design optimization
problem considered in this paper is an inverse pressure

jobc = JobSubmissionClient;
ftpc = FileTransferClient;
gridftpc = GridFTPServiceClient;
% iterate through the GA process
npop=1;
for j=1:npop
 if j == 1 first=1;
 else first=0;
 end
 opt.ga_next(optdat, popsize, xvars,first, usepop);
 xvars=optdat.dwork;
 fid = fopen('designpoints.txt','w');
 for k1 = 1 : popsize
 for k2 = 1 : nvars
 fprintf(fid, '%g ', xvars(nvars*(k1-1)+k2));
 end
 fprintf(fid, '\n');
 end
 fclose(fid);
 % send input file via Web services
 inputfile = ftpc.sendFile('designpoints.txt');
 % remove the last newline character
 gridftpc.putfile('//tmp/',inputfile);
 jobid = jobc.submit(inputfile,1);
 while (jobc.jobpoll(jobid) == 'done')
 res = jobc.results(jobid);
 for i=1:popsize
 vars=xvars(nvars*(i-1)+1:nvars*i);
 xobj(i)=res;
 txobj((j-1)*popsize+i)=xobj(i);
 for k=1:ncons
 xcons((i-1)*ncons+k)=zeros(ncons,1);
 end
 end
 end
 opt.ga_objs(optdat, popsize, xvars, xcons, xobj);
end

Get the initial generation from GA service
While (termination condition = false)
 Evaluate fitness of the whole population
 Notify the GA service with fitness values of the

 current population
 Get the next generation from GA service
End

gen = 1
Pop(gen) = randomly generated first generation
Evaluate fitness of all individuals in the population
While (termination condition = false)
gen = gen + 1;
apply genetic operators to Pop(gen)
evaluate fitness of the population
end

design problem, which constitutes a good test case for
validating the collaboration, as the target solution is
known in advance. In the design problem, we choose
the NACA 0015 as the target shape for a Mach value of
0.5 and 2-degree Angle of Attack (AOA), i.e. the
desired pressure profile is computed using these
conditions.

The airfoil is parameterised using the weighted sum
of a number of basis functions, as shown in Equation (1).
Here, the function series representation proposed by
Hicks and Hennes [22] is used, which gives the upper
(and lower) thickness y of the airfoil as the sum of the
basis functions.

()∑
=

+=
N

j
jjbasic xfyy

1

α (1)

where x is the position along the chord, and jα are

design variables. The greater the number of parameters,
the larger is the set of shapes represented, therefore the
larger the design search space. In this work, 12 such
functions have been employed, as shown in Figure 6.
One such airfoil represented by series of Hicks-Henne
functions is shown in Figure 7.

Figure 6: Airfoil Parameterisation using 12 Hicks-
Hennes Functions

Figure 7: One of the Airfoils Represented by the Hicks-
Hennes Functions

6.2. Grid Environment Setup
The Nanyang Campus Grid project is an initiative that
links resources at different laboratories and research
centre at NTU, including both national and international
institutions to create a powerful Grid computing
environment. The campus grid is made up of 10 clusters
of heterogeneous platforms located at diverse
geographical locations (see Figure 8a). This pool of grid
resources varies from Sun Solaris to IBM AIX to Linux
Itanium clusters. In this experimental study, we consider
only one of the Linux clusters. The PDCC1 Linux cluster
used in this study consists of 10 dual CPU compute
nodes, and one master node, (see Figure 8b). The cluster
configuration is Pentium IV Xeon 2.6GHz, with a total
of 11 Gigabytes memory.

6.3. Result and Discussions
Here, a single exact adjoint airfoil code takes
approximately 30 minutes to compute. When dealing
with computationally expensive problems that cost more
than a few minutes of CPU time per analysis or function
evaluation, it makes perfect sense to compute the
solutions in parallel using the available nodes on the
campus grid. Using 24 design parameters, Figure 9
shows the result that converged to the known target
solution design cycles successfully when using the grid
service genetic algorithm, at Soton, and airfoil analysis
web service deployed in NTU.

(a) 10 Clusters in NTU Campus Grid

(a) 10 Clusters in the Nanyang Campus Grid

 (b) PDCC1 Cluster

Figure 8: Nanyang Campus Grid

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

y/c

x/c

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

 10x2.6GHz
 1GB 1GB 1GB 1GB 1GB

c0-0 c0-1 c0-2 c0-3 c0-4

c0-5 c0-6 c0-7 c0-8 c0-9

PDCC1
2.6G
1GB

PDCC1 PDCC2 PDCC3 NCSV BIRC
 (Campus Resources)

GoTC IHPC TP APSTC Soton
 (External clusters)

Figure 9: A plot on NACA 0015 target shape and final
design using the grid service genetic algorithm at Soton,
and airfoil analysis web service deployed in NTU.

From the preliminary experience gained from this
collaboration, several observations may be made:
1) The Grid concepts and tools provide a workable

alternative that enables collaboration across
traditional institutional boundaries without
jeopardizing individual intellectual property rights
and software ownerships.

2) Proprietary programs on each side can be run on
diverse platforms, using different programming
languages, if both parties adopt the same SOAP
interface.

3) A Service-oriented approach provides a seamless
access to the sea of Grid and Web services and
resources. This also accelerates research
deliverables.

4) Last but not least, security and licensing issues
needs to be better addressed if commercial codes
are involved in the collaborations.

7. Conclusions

In this paper, the details of an ongoing research
collaboration between School of Computer Engineering
at Nanyang Technological University and Southampton
e-Science centre at University of Southampton using a
service-oriented approach for complex engineering
design optimization has been presented and validated.
Currently, a study of collaborative complex engineering
design using a service-oriented approach has been
successfully carried out. The present study was based on
a single cluster in the Nanyang campus grid.
Subsequently, in our future work, studies will be
extended across multiple clusters within the campus
grid.

Acknowledgement

The work at Southampton is supported by the UK e-
Science Pilot project (UK EPSRC GR/R67705/01). The
work at Singapore is supported by Nanyang Campus

Grid. In addition, the authors would like to thank the
Geodise team and all collaborators of the NTU campus
grid and Dr. K. Y. Lum and Dr. Z. K. Zhang from
Temasek Laboratories for contributing their airfoil
analysis problem.

References

1. I.Foster, C.Kesselman, and S.Tuecke, "The Anatomy
of the Grid: Enabling Scalable Virtual Organizations" ,
International J.Supercomputer Applications, vol. 15, no.
3, 2001
2. WS-Resource Framework,
http://www.globus.org/wsrf/, 2004,
3. Simple Object Access Protocol (SOAP),
http://www.w3.org/TR/soap/, 2004,
4. David E.Goldberg, "Genetic Algorithms in Search,
Optimisation, and Machine Learning", 1989,
5. Web Services, http://www.w3.org/2002/ws/, 2004,
6. WSDL (Web Services Definition Language),
http://www.w3.org/TR/wsdl, 2004,
7. The Globus Alliance, http://www.globus.org/, 2004,
8. Web Services Orchestration - a review of emerging
technologies, tools, and standards,
http://devresource.hp.com/drc/technical_white_papers/
WSOrch/WSOrchestration.pdf, 2003,
9. Nanyang Campus Grid, http://ntu-cg.ntu.edu.sg, 2004,
10. The Globus GSI, http://www-
unix.globus.org/security/, 2004,
11. The Globus Resource Allocation Manager (GRAM),
http://www-unix.globus.org/developer/resource-
management.html, 2004,
12. GridFTP,
http://www.globus.org/datagrid/gridftp.html, 2004,
13. Global Access to Secondary Storage (GASS),
http://www.globus.org/gass/, 2004,
14. OPTIONS: Design Exploration System,
http://www.soton.ac.uk/~ajk/options/welcome.html,
2004,
15. iSIGHT, http://www.engineous.com/index.htm,
2004,
16. ModelCenter: Integration for the engineering
process, http://www.phoenix-
int.com/products/ModelCenter.html, 2004,
17. Jython, http://www.jython.com, 2004,
18. Matlab, http://www.mathworks.com, 2004,
19. Compaq Visual Fortran 6.1,
http://www.qtsoftware.de/dvf/dvf/v61.html, 2000,
20. FTN95 for Microsoft .NET and Win32,
http://www.salfordsoftware.co.uk/compilers/ftn95/,
2004,
21. Song, W., Xue, G., Keane, A. J., and Cox, S. J.,
"Implementation of a Genetic Algorithm as a Grid
Service", 2004, submitted to EuroPar 2004
22. Hicks, R. M. and Henne, P. A., "Wing Design by
Numerical Optimisation" , Journal of Aircraft, vol. 15,
no. 7, pp407-412, 1978

