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Abstract 

 
This paper presents the experiences gained from 
ongoing research collaboration between the School 
of Computer Engineering at Nanyang Technological 
University and the Southampton e-Science centre at 
the University of Southampton using a service-
oriented approach for complex engineering design 
optimization. The service-oriented approach enables 
programmatic collaboration to be realized while 
maintaining the autonomy of individual codes at the 
different institutes and organizations. In the current 
work, a Genetic algorithm optimization logic 
implemented as a Grid service at Southampton is 
used to drive the design search process, while the 
aerodynamic analysis code located in Singapore is 
used to evaluate the objective function of the design 
points. Experience gathered from the current study 
on airfoil shape optimization is valuable for 
establishing effective, efficient and customised 
programmatic links between institutions to solve 
complicated engineering design problems. 
 
1. Introduction 
 
Collaboration lies at the heart of Grid computing. [1] 
Grid computing provides the infrastructure and tools to 
encourage collaboration between departments, 
institutions and research centres to deliver better 
research outcomes. The concepts of service-oriented 
computing are seeing wide acceptance and becoming a 
standard approach for tackling distributed, 
heterogeneous computing problems. Web services/Grid 
services are evolving fast, and the proposed WSRF 
(WS-Resources Framework) [2] is seen as a joint effort 
between industry and academia and a sign of the 
convergence of Web services and Grid Services. The 
principle motivation for adopting web services is 
interoperability, where a service consumer can access 
Web services using standard protocols such as SOAP 
(Simple Object Access Protocol) [3] and HTTP, etc., 
irrespective of the operating systems and programming 
languages that either parties use. Therefore, it increases 
the accessibility of existing capabilities by presenting 
existing codes as Web services and enables 
collaborations across geographic and institutional 
boundaries. 

Numerical optimization methods are often used in 
the engineering design process to improve product 
performance and quality over a shorter design-cycle 
time. In many complex engineering design problems, 
high-fidelity analysis models are employed where each 
function evaluation may require a Computational 
Structural Mechanics (CSM), Computational Fluid 
Dynamics (CFD) or Computational Electromagnetics 
(CEM) simulation costing minutes to hours of 
supercomputer time. A motivating example for us is 
aerodynamic shape design of airfoils. The design 
optimization approach typically involves many 
repetitive function calls to the high-fidelity analysis 
codes to obtain the merits of the different combinations 
of design variables. This process is therefore both 
computational expensive and data intensive. 

To increase the robustness and probability of 
obtaining a globally improved design, stochastic 
techniques such as evolutionary algorithms (EAs) [4] 
are often adopted as the principle algorithm in the 
design search process. Evolutionary algorithms, unlike 
conventional gradient-based numerical optimization 
methods produce new design points that do not use 
information about the local slope of the search function 
and are thus not prone to stalling at local optima. They 
have shown considerable success in locating the global 
optimum solution of many optimization problems 
characterized by non-convex and disjoint solution 
spaces. However, this increase in capacity to locate the 
global optimum designs is often achieved at the expense 
of greater computational cost and hence a longer design 
cycle time. Since EAs typically require thousands of 
function evaluations to locate a near optimal solution, 
the use of EAs such as Genetic algorithms (GAs) in 
general increases the cost of finding globally optimum 
designs. 

This poses a serious impediment to the practical 
application of combining high-fidelity analysis codes 
and evolutionary design optimization in complex design 
problems in science and engineering. It is thus 
important to retain the appeal of evolutionary design 
optimization algorithms and to effectively handle 
computationally expensive design problems in order to 
produce high quality designs under tight design time 
schedules. 

Fortunately, a well-known strength of EAs is their 
ability to partition the population of individuals among 



multiple compute nodes. Since the design optimization 
cycle time is directly proportional to the number of calls 
to the analysis solvers, an intuitive way to reduce the 
total search time of evolutionary optimization 
algorithms is to parallelize the analysis of the design 
points. All design points within a single EA population 
may be evaluated simultaneously across multiple 
compute nodes. 

The benefits of combining conventional parallel 
processing capability and the emerging Grid computing 
technology in the context of evolutionary design 
optimization are numerous. In particular, the Grid 
provides the infrastructure to facilitate distributed 
computing and parallelisms by tapping on vast compute 
power and a secure means of solving large-scale 
optimization problems. In this paper, we consider using 
Web services to provide access to high fidelity 
computational fluid dynamics analysis codes and 
compute resources located at Singapore and Grid 
services at Southampton to provide the optimization 
logic of a genetic algorithm to drive the design search 
process. 

The rest of this paper is organized as follows: In 
section 2, we present a brief overview of service-
oriented computing. Sections 3 and 4 describe the 
implementation aspects of wrapping airfoil analysis 
code as services and realizing genetic algorithms as 
Grid services, respectively. Section 5 illustrates the 
consumption of the services within the Matlab 
environment. Section 6 presents the experimental 
studies and discussions while section 7 concludes this 
paper. 
 
2. Towards Service-Oriented Computing 
 
Service-oriented computing (SOC), an emerging 
paradigm for distributed computing, represents a major 
shift in the way that software systems are designed, 
developed, and consumed. Services are platform and 
language independent software elements that can be 
described, published, orchestrated using XML data. 

Web services [5] provide the programmatic 
interfaces between diverse applications via the Web. 
The WSDL [6] is used to describe the network services 
as a set of endpoints operating on messages containing 
either document-oriented or procedure-oriented 
information. The introduction of stateful Web services 
leads to the development of Open Grid Services 
Architecture (OSGA) and associated implementation 
OGSI (Globus 3.0). [7] 

In addition to building Web services interfaces to 
existing applications, there is also a need for a standard 
approach to connect services together to create 
constructive and effective customized processes. Web 
services orchestration [8] is about providing an open, 
standards-based approach for connecting web services 
together to create advanced processes. 
 

3. Airfoil Aerodynamic Analysis as Web 
Service 
 
The collaboration setup between the University of 
Southampton (Soton) and Nanyang Technological 
University (NTU) employs a multi-tiered service 
architecture as illustrated in Figure 1. The architecture 
consists of a Client tier, at Soton, a Web service tier at 
NTU, and the Grid resource tier utilizing the NTU 
campus grid [9] resources. The client tier at 
Southampton uses Java clients running within 
Matlab/Jython to send requests to the aerodynamic 
analysis service tier located at NTU. This tier thus 
provides the access point to the airfoil code which will 
then access NTU campus grid resources to carry out the 
computation. 

In regard to security, we have used Globus GSI [10] 
enabled Web services to provide the essential security 
for the airfoil analysis Web services we deployed. The 
client generates the necessary proxy certificate from a 
grid proxy initialization process through the user’s GSI 
certificate and private key. This proxy credential is then 
sent to the Web service using the HTTPG [7] protocol. 
The Web service will extract the credential context from 
the service request to authenticate the user and using 
this delegated credential to authorize access to the grid 
resources. Figure 2 illustrates this GSI web service 
architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the grid resource tier, the GRAM’s [11] gatekeeper 
of the resource cluster upon receiving the job 
submission service request through the Globus web 
service spawns the aerodynamic analysis jobs across 
multiple computing nodes in parallel. In the process, the 
design input files are uploaded and transferred to the 
grid resource clusters. This is accomplished via the 
upload file web services provided. First, the input files 
are uploaded to the service provider web server using 
the file upload service. Subsequently, the GridFTP [12] 
web service, which is designed to handle peer to peer 
transfer of data files, relocates the files to the chosen 
compute nodes to proceed with the analysis 
computation. Upon completion, the results are 
marshalled back to the Globus web service via the 
Global Access to Secondary Storage (GASS) [13]. The 
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responsibility of the agent is to perform local scheduling 
and resource discovery across the computing nodes in 
the cluster. A brief overview of the airfoil analysis 
execution process is given in Figure 3. 
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Figure 2: GSI Web Service Architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Airfoil analysis execution process 
 
4. A Genetic Algorithm as a Grid Service 
 
The growing popularity of evolutionary computation 
algorithms such as genetic algorithms [4] in design 
optimization has resulted in many implementations of 
the basic algorithm. These include some well-
established and validated implementations, for example, 
one such implementation in the design exploration 
system OPTIONS [14]. The Genetic algorithm 
implemented in OPTIONS is typical of those discussed 
in the literature except that it incorporates a version of 
an adaptive clustering algorithm based on K-mean 
distance, and an elitist survival strategy. For constrained 
optimization problems, two types of penalty functions 
can be used when calculating the fitness of the design. 

Access to the algorithms is not only limited to the 
availability of the code, but also the various types of 
interfaces used by the codes, including platforms, 
languages, etc. This presents further challenges when 
used in a wider scope for solving complex engineering 
problems, as it is often the case that various software 
components need to be integrated to create customized 
workflows or tools to suit a particular problem. 
Although this can be achieved by using a dedicated 
GUI-based environment such as iSIGHT [15] or 
ModelCenter [16], or using some free-form scripting 
languages such as Jython [17] or Matlab [18], it is 
usually beneficial to expose the optimization logic in a 
standard interface independent of the implementation 
languages and platforms, thus relieving the difficulties 
of integrating various components. 

In the current work, our in-house design exploration 
system OPTIONS developed using Fortran 77 over the 
last 20 years is used to provide the optimization logic 
behind the optimization Grid service. OPTIONS 
maintains its own internal data structure which allows 
users to establish an optimization problem and 
manipulate the definitions of variables through a 
Fortran/C API. However, the Fortran/C interface it uses 
to communicate to users’ simulation codes requires 
users to wrap their simulation codes as Fortran/C 
subroutines and link them with the system libraries. 
Alternatively, standalone packages may be executed as 
system calls. With the increasing complexity and the 
large number of simulation packages that are often 
involved in a typical multidisciplinary design 
optimization process, more advanced and flexible 
integration frameworks are required to couple users’ 
codes with the optimiser. The efficiency and ease-of-use 
offered by more recently developed programming 
languages such as Java or C# and the open standards 
base Grid services should be exploited to enhance 
present engineering design processes. 
 
4.1 Wrapping Native code into a .NET Managed 
code 
 
The implementation of the genetic algorithm as a grid 
services is here presented as two phases. The first phase 
describes the steps that are required to prepare the code 
written in Fortran for use in other more network service-
aware programming environments. The approach 
adopted can be used for generic cases where legacy 
codes (written in Fortran or C) need to be accessed from 
these environments. 

Here, we target on shared libraries for Windows and 
Linux operating systems. Two steps are involved in this 
phase because the Win32 shared library generated by a 
conventional Fortran compiler such as Compaq Visual 
Fortran (CVF 6.1.0) [19] cannot be directly deployed 
as .NET applications. Here, a Salford FTN95 Fortran 
compiler [20] is used in place to create a library which 
itself calls routines in the Win32 shared library. The 
newly created library produced by FTN95 is then used 

A Single Cluster 

GRAM 

Agent 

Compute 
Node 

… Compute 
Node 

Airfoil Analysis Globus Service 

3. Extraction of 
GSI credential 
from request 

… … 

 

 

4. Delegation of 
GSI credential 
to Grid 
resources 

2. Service Request 
with GSI Credentials 

HTTPG 

1. Creation/ Extraction 
of credential 

  

Objective Function 
services 

 

User’s 
Credential



in .NET projects or J2EE to implement the Grid services 
application logic. 

 
4.2 Implementation of Grid Services 
 
The workflow for a conventional Genetic algorithm is 
outlined in Figure 4(a). To implement it as a grid 
service, it is necessary to reengineer the workflow into 
the one illustrated in Figure 4(b). The new workflow 
involves requesting the evolved design variables for the 
subsequent generations after undergoing standard GA 
operating mechanisms (selection, crossover and 
mutation) and marshalling the fitness of the design 
points back to the Grid service. The main difference 
between these two workflows is exactly where the GA 
operators are applied. 
 
 
 
 
 
 
 
 

(a) Conventional GA 
 
 
 
 
 
 
 
 
 

(b) Re-engineered GA Grid Service 
Figure 4: Logic for a Conventional Genetic Algorithm 
and as a Grid Service 
 
The Grid service that delivers the Genetic algorithm 
maintains the control parameters of the algorithm 
together with the other configurations, and provides 
access to operations of the algorithm based on the 
standard SOAP protocol. Hence, our service for the 
OPTIONS genetic algorithm includes definitions of data 
fields that store the standard GA control parameters 
such as the population size, mutation rate and etc., as 
well as the following function calls that are made 
available: 

– ga_optdbs, which initialise the internal data 
structure used by the algorithms; 

– ga_next, which evolves the GA by one 
generation; 

–  ga_objs, which returns objective functions and 
constraints for the current population to the GA 

 
In our approach, we choose to implement the GA as a 
collection of transient services, meaning that all the 
operations and data in the optimization process are 
handled by unique instances of the service that exist for 

the lifetime of the entire process. This provides a simple 
state management model, which avoids the need to 
transfer the state information back and forth between the 
service and client, or the need to deploy complicated 
mechanisms to manage states of multiple optimization 
processes. Details on how the service is implemented 
may be found in [21]. 
 
5. Service Consumption in the Matlab 
Scripting Environment 
 
To consume the Web/Grid services, two client tools 
were developed in Java. Besides platform independence, 
the use of the Java programming language also enables 
seamless integration with Java-compatible scripting 
scientific environments, like Matlab and Jython, which 
are familiar to most engineers. One of the client tools 
provides access to the Genetic Algorithm services that 
drives the design optimization search process. The other 
is used to evaluate the high-fidelity airfoil analysis code 
in Singapore. The application example in the following 
section illustrates how the clients can be used with 
scripting languages to access these services to carry out 
airfoil optimizations. A piece of Matlab script used in 
the study is shown in Figure 5. 
 

 
Figure 5: Matlab script for the consuming of Web/Grid 
services 
 
6. Experimental Studies and Discussions 
 
Making use of the web and grid services provided at 
both sides of the institutional boundaries and a Matlab 
client environment, an optimization study carried out on 
a 2D airfoil aerodynamic design problem is presented 
next. 
6.1. 2D Airfoil Aerodynamic Design 
The 2D airfoil aerodynamic design optimization 
problem considered in this paper is an inverse pressure 

jobc = JobSubmissionClient; 
ftpc = FileTransferClient; 
gridftpc = GridFTPServiceClient; 
% iterate through the GA process 
npop=1; 
for j=1:npop 
    if j == 1 first=1; 
    else first=0; 
    end 
    opt.ga_next(optdat, popsize, xvars,first, usepop); 
    xvars=optdat.dwork; 
    fid = fopen('designpoints.txt','w'); 
    for k1 = 1 : popsize 
        for k2 = 1 : nvars 
            fprintf(fid, '%g ', xvars(nvars*(k1-1)+k2)); 
        end 
        fprintf(fid, '\n'); 
    end 
    fclose(fid); 
    % send input file via Web services 
    inputfile = ftpc.sendFile('designpoints.txt'); 
    % remove the last newline character 
    gridftpc.putfile('//tmp/',inputfile); 
    jobid = jobc.submit(inputfile,1); 
    while (jobc.jobpoll(jobid) == 'done') 
        res = jobc.results(jobid); 
        for i=1:popsize 
            vars=xvars(nvars*(i-1)+1:nvars*i); 
            xobj(i)=res; 
            txobj((j-1)*popsize+i)=xobj(i); 
            for k=1:ncons 
                xcons((i-1)*ncons+k)=zeros(ncons,1);     
            end 
        end 
    end 
    opt.ga_objs(optdat, popsize, xvars, xcons, xobj); 
end 

Get the initial generation from GA service 
While (termination condition = false) 
 Evaluate fitness of the whole population 
 Notify the GA service with fitness values of the  

          current population 
 Get the next generation from GA service 
End 

gen = 1 
Pop(gen) =  randomly generated first generation 
Evaluate fitness of all individuals in the population 
While (termination condition =  false) 
gen = gen  + 1; 
apply genetic operators to  Pop(gen) 
evaluate fitness of the population 
end 



design problem, which constitutes a good test case for 
validating the collaboration, as the target solution is 
known in advance. In the design problem, we choose 
the NACA 0015 as the target shape for a Mach value of 
0.5 and 2-degree Angle of Attack (AOA), i.e. the 
desired pressure profile is computed using these 
conditions. 

The airfoil is parameterised using the weighted sum 
of a number of basis functions, as shown in Equation (1). 
Here, the function series representation proposed by 
Hicks and Hennes [22] is used, which gives the upper 
(and lower) thickness y of the airfoil as the sum of the 
basis functions. 

( )∑
=

+=
N

j
jjbasic xfyy

1

α                          (1) 

where x is the position along the chord, and jα  are 

design variables. The greater the number of parameters, 
the larger is the set of shapes represented, therefore the 
larger the design search space. In this work, 12 such 
functions have been employed, as shown in Figure 6. 
One such airfoil represented by series of Hicks-Henne 
functions is shown in Figure 7. 
 

Figure 6: Airfoil Parameterisation using 12 Hicks-
Hennes Functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: One of the Airfoils Represented by the Hicks-
Hennes Functions 
 
 

6.2. Grid Environment Setup 
The Nanyang Campus Grid project is an initiative that 
links resources at different laboratories and research 
centre at NTU, including both national and international 
institutions to create a powerful Grid computing 
environment. The campus grid is made up of 10 clusters 
of heterogeneous platforms located at diverse 
geographical locations (see Figure 8a). This pool of grid 
resources varies from Sun Solaris to IBM AIX to Linux 
Itanium clusters. In this experimental study, we consider 
only one of the Linux clusters. The PDCC1 Linux cluster 
used in this study consists of 10 dual CPU compute 
nodes, and one master node, (see Figure 8b). The cluster 
configuration is Pentium IV Xeon 2.6GHz, with a total 
of 11 Gigabytes memory. 
 
6.3. Result and Discussions 
Here, a single exact adjoint airfoil code takes 
approximately 30 minutes to compute. When dealing 
with computationally expensive problems that cost more 
than a few minutes of CPU time per analysis or function 
evaluation, it makes perfect sense to compute the 
solutions in parallel using the available nodes on the 
campus grid. Using 24 design parameters, Figure 9 
shows the result that converged to the known target 
solution design cycles successfully when using the grid 
service genetic algorithm, at Soton, and airfoil analysis 
web service deployed in NTU. 
 
 
 
 
 
 
 
 

(a) 10 Clusters in NTU Campus Grid 
 
 

(a) 10 Clusters in the Nanyang Campus Grid 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) PDCC1 Cluster 
 

Figure 8: Nanyang Campus Grid 
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Figure 9: A plot on NACA 0015 target shape and final 
design using the grid service genetic algorithm at Soton, 
and airfoil analysis web service deployed in NTU. 
 
From the preliminary experience gained from this 
collaboration, several observations may be made: 
1) The Grid concepts and tools provide a workable 

alternative that enables collaboration across 
traditional institutional boundaries without 
jeopardizing individual intellectual property rights 
and software ownerships. 

2) Proprietary programs on each side can be run on 
diverse platforms, using different programming 
languages, if both parties adopt the same SOAP 
interface. 

3) A Service-oriented approach provides a seamless 
access to the sea of Grid and Web services and 
resources. This also accelerates research 
deliverables. 

4) Last but not least, security and licensing issues 
needs to be better addressed if commercial codes 
are involved in the collaborations. 

 
7. Conclusions 
 
In this paper, the details of an ongoing research 
collaboration between School of Computer Engineering 
at Nanyang Technological University and Southampton 
e-Science centre at University of Southampton using a 
service-oriented approach for complex engineering 
design optimization has been presented and validated. 
Currently, a study of collaborative complex engineering 
design using a service-oriented approach has been 
successfully carried out. The present study was based on 
a single cluster in the Nanyang campus grid. 
Subsequently, in our future work, studies will be 
extended across multiple clusters within the campus 
grid. 
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