
Empowering Resource Providers to Build the Semantic Grid

Chen L.1, Cox S.J.2, Tao F.1, Shadbolt N.R.1, Puleston C.3, Goble C.3
1 Department of Electronics and Computer Science

University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
{lc, nrs, ft}@ecs.soton.ac.uk

2 School of Engineering Sciences
University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.

sjc@soton.ac.uk
3 Department of Computer Science

University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
{carole, colin.puleston}@cs.man.ac.uk

Abstract

The future success of Grid-enabled e-Science depends on
the availability of semantic/knowledge-rich resources on
the Grid, i.e., the so-called semantic Grid. This requires
not only novel knowledge modelling and representation
methods but also a shift of knowledge acquisition and
population from a limited number of specialised
knowledge engineers to resource providers. To this end
we have developed a lightweight ontology-enabled tool,
Function Annotator, to support resource providers in
capturing and publishing resource semantics and
knowledge. Function Annotator takes a different line to
most knowledge acquisition tools in that it is designed for
use by resource providers, probably in the absence of a
knowledge engineer. Its aim is to facilitate large scale
knowledge population on the Grid. Function Annotator is
built on the state of the art of semantic web technologies,
such as ontology, OWL language, instance store and DL-
based reasoning, thus ensuring flexibility and scalability
on the Grid. This paper describes the tool’s role in a
Grid-oriented resource lifecycle, its underlying
technologies and implementation. It also illustrates the
usage of the tool in the context of engineering design
search and optimisation.

1. Introduction

One of the core challenges in knowledge management
lifecycle and also in knowledge intensive system
development is knowledge acquisition and modelling, i.e.
the elicitation, collection, analysis, modelling and
validation of domain knowledge by interaction and
collaboration between knowledge engineers and domain

experts. To improve the process of knowledge acquisition
(KA) researchers have developed a number of principles,
methodologies [1] [2], techniques and tools [3] over years.
These approaches and techniques, however, are usually
efficient and effective for standalone and one-off
applications. For example, knowledge models such as
ladders, network diagrams and tabular, and knowledge
representations such as unified modelling language
(UML), concept modelling language (CML) and HTML1
are usually application specific and also closely related to
the underlying reasoning mechanism. In most cases
knowledge acquired for one application cannot be used
for another. Furthermore current KA tools are knowledge
engineer-oriented. Domain experts are not able to use
these tools to capture knowledge.

There is currently vigorous research into e-Science [4]
(large scale science over the Internet via the sharing and
coordinated use of diverse resources in dynamic,
distributed virtual organisations) and the Grid [5] (the
fundamental computing infrastructure to support the
vision of e-Science). Whilst a whole raft of Grid
middleware [6] [7] that provides core Grid functionality
and a diversity of Grid applications [8] [9] are being
developed, work so far has shown that large scale
semantic/knowledge support on the Grid, i.e., the
realisation of the Semantic Grid [10], will be an important
component in delivering the true potential of e-Science.

Scientific computing in e-Science usually involves
very complicated processes. Each process is normally
composed of many steps of computation. Each scientific
computation is a resource that may come from different
organizations and most probably is represented by

1 HTML, XML, RDF, RDFS and OWL that will be mentioned later are
all W3C standards at http://www.w3.org/.

lc
Submitted to IEEE/WIC International Conference on Web Intelligence (WI2004)/Intelligennt Agent Technology20-24, September, 2004Beijing, China

different models and terminologies. In addition, different
scientific disciplines have different problems, each
dependent on different aspects of domain-specific
knowledge. It is usually the case that resources required
for each scientific activity is domain specific and problem
dependent. Obviously an effective realization of the Grid
computing paradigm, namely to promote the seamless
integration of highly flexible and distributed coalitions of
resources, requires that resource providers should expose
resources with explicitly represented knowledge in
common knowledge models so that resources are used to
the best effect.

An ontology has been generally regarded as a
formalised representation of the knowledge in a domain
taken from a particular perspective or conceptualisation. It
can be used to share and communicate knowledge, both
between people and between computer systems. With an
ontology as a common knowledge-preserving structure
we still need the means to acquire and attach knowledge
to these resources before putting them on the Grid.
Traditionally such tasks are accomplished by knowledge
engineers and domain experts on a case-by-case basis.
Given the scale and diversity of e-science and also the
huge demand on knowledge support, the observations are
that (1) the population of knowledge-rich resources on the
Grid should become a constant activity and routine
practice performed by as many resource providers as
possible; (2) conventional knowledge acquisition and
modelling practices cannot meet the requirements of e-
Science, i.e. the dynamic, collective and just-in-time/ real-
time publishing of knowledge–rich resources. Resource
providers should be mobilised and given central roles to
participate in the process. We suggest that KA tools
oriented towards resource providers should be developed
so that resource providers are better equipped to fulfil the
responsibility of acquiring and publishing knowledge-rich
resources.

In this paper we first give the motivation for
developing resource provider-oriented KA tools based on
our research experience on Geodise [11]. In section 3 we
introduce a Grid-oriented resource supply and
consumption lifecycle and the roles of resource providers.
Section 4 details key underlying technologies for the tool.
We describe Function Annotator implementation and its
usage scenario in section 5. Section 6 discusses related
work in related communities. We conclude the paper and
discuss future work in section 7.

2. Motivations

Developing a tool for resource providers to conduct KA is
inspired and driven directly by our work and experience
on one of UK e-Science pilot - Grid enabled optimisation
and design search in engineering (Geodise) [11]. Geodise
is intended to enable engineers to carry out engineering

design search and optimisation (EDSO) by seamless
access to a state-of-the-art collection of optimisation and
search tools, industrial strength application and analysis
codes, and distributed computing and data resources on
the Grid. Engineering design has been practised for many
years, which has accumulated huge, valuable resources
including computational algorithms, design patterns and
rationale, specific design prototypes, etc. Large
engineering enterprises and research institutions may have
data/knowledge bases of current and past products and
their design information. New designs such as engines or
ships are not generated from scratch but based on design
data from previous practices. However, these resources
are mostly so far either stored in enterprises’ own archives
or reside in domain experts’ head. These resources are
geographically located and represented in heterogeneous
formats with little information on their sources and usage,
which is only human-accessible and consumable
(probably only the resource provider).

To make the vision of e-Science become true, two
fundamental issues are: (1) how to model and represent
knowledge so that it can be explicitly exposed and further
shared and used on the Grid; (2) how knowledge
acquisition can be done in a way that will facilitate the
large-scale deployment of knowledge-rich resources on
the Grid.

In Geodise we have conducted extensive knowledge
acquisition. Captured knowledge is modelled in
production-rules and frame-like structures and represented
in various format including CML, HTML and XML.
Clearly the models and representations fail to address the
above issues. Therefore we have turned to Semantic Web
technologies, in particular ontologies, for help. An
ontology is an explicit, shared specification of the various
conceptualisations in a problem domain. It contains a
shared vocabulary used to describe domain concepts and
the relationships among them. Ontology provides
common knowledge templates/structures for a domain
and ontology languages such as DAML+OIL [22] and
OWL provide knowledge representation formalism.

Although we have used the latest integrated, feature-
rich knowledge engineering tools such as PC-PACK [3]
for knowledge acquisition, both knowledge engineers and
domain experts realise that a lightweight, resource
provided-oriented KA tool is necessary. The reasons are:

1). Grid computing and resource sharing will become
pervasive in the near future, which requires the population
of knowledge-rich resources on the Grid. It is impossible
for knowledge engineers to be everywhere or to capture
scientific knowledge in the right place in the right time.
The right way should be for scientists to capture and
model knowledge when they carry out scientific activities.

2). Scientific knowledge such as that involved in
design search and optimisation is still largely the province
of human domain experts expressed in the medium of

natural languages. This means that formal knowledge
capture processes are invaluable for editing and
structuring domain knowledge. Domain experts would
like to be in control, i.e. what resources are worthy
publishing, and have flexibility, i.e. when to do it.

3. Resource lifecycle on the Grid

Traditionally resources are generated by resource users
for their own consumption. These resources are usually
either discarded or archived somewhere after use. Stored
resources are in most cases only accessible and
consumable by resource creators. Resource lifecycle is
short and limited to the resource provider. Grid computing
is all about resource reuse and sharing. This has
significantly changed the scope and expectancy of a
resource lifecycle. Figure 1 shows a Grid-oriented
resource lifecycle that enables resource reuse and sharing
through semantic metadata support. In this lifecycle a
resource provide will play multiple roles, which include to:

1). Provide raw resources. Raw resources, here
contained in Raw Resources component, could be
previously written or newly generated algorithms and/or
design solutions.

2). Modify and edit resource knowledge models, i.e.
the ontology. Resource providers are not knowledge
engineers or ontologists so it is knowledge engineers’
responsibility to conceptualise problem domains and
develop relevant ontologies in the first stance. These
ontologies will then be evaluated and verified by domain
experts. During this process resource providers will obtain
and be given primary knowledge about how to model
their resources (concepts, properties, instances) in
ontologies. An easy of use tool such as Ontology View
[12] is then provided for resource providers to edit

ontologies when new resources are available and worthy
modelling in the ontology.

3). Elicit knowledge and put it into knowledge models,
i.e. creating instances for ontological concepts.
Knowledge engineers will provide resource providers a
tool such as Function Annotator for them to capture and
publish resource knowledge. As resource providers know
exactly what knowledge is important and where it is, it is
relatively easy and flexible, for example when a new
resource is developed, for them to carry out the work. In
such case the main role of knowledge engineer is to
develop a knowledge acquisition tool for resource
providers.

4). Publish the knowledge-rich descriptions of
resources into central or distributed knowledge repository.
Once again knowledge engineers will develop underlying
infrastructure such as instance store [13] that has built-in
physical storage medium and reasoning capability.
Resource providers only need to use APIs or GUIs to
perform archiving, retrieval and/or query.

5). Consume exposed resources in applications. With
the above work done, resource providers are able to share,
reuse and/or further explore available resources for
problem solving.

The compelling feature of the above lifecycle is that
knowledge engineers’ role in knowledge acquisition and
modelling shifted to the provision of underlying
infrastructure. On the other hands, resource providers are
given more control and flexibility in that they can conduct
knowledge modelling and elicitation whenever necessary
and populate knowledge repository on the Grid with
knowledge-rich content in a large scale that would not be
possible ever before.

4. Function annotator design

Knowledge acquisition is often viewed as a very complex
task requiring dedicated knowledge engineering expertise.
To empower resource providers to capture and publish
resource-related knowledge, we have developed Function
Annotator, a lightweight knowledge acquisition tool.
Function Annotator is based on a new knowledge
engineering framework, i.e. separating knowledge
modelling from knowledge elicitation. The aims of such a
framework are, on one hand, to provide commonly shared,
domain specific but application independent knowledge
models for use by a community on the Grid. On the other
hand, it allows for not only knowledge engineers but
ordinary resource providers to capture knowledge by
simply filling in the knowledge models. Function
Annotator tries to further simplify the process of
knowledge acquisition by providing a number of hand-on
supports that are particularly needed for resource
providers. Below we describe the enabling technologies
for Function Annotator.

Ontology

ApplicationsApplications Raw ResourcesOntology View

Retrieval & Query
GUI & APIs

Resource Provider

Function Annotator

Permanent DB

Instance Store

Reasoner

Create & publish

applyapply

co
ns

um
e

bu
ild

design

query

produce

OntologyOntology

ApplicationsApplications Raw ResourcesOntology View

Retrieval & Query
GUI & APIs

Resource Provider

Function Annotator

Permanent DB

Instance Store

ReasonerReasoner

Create & publish

applyapply

co
ns

um
e

bu
ild

design

query

produce

Figure 1: Grid-oriented resource lifecycle

4.1. Web-oriented knowledge modelling

To expose, share and reuse knowledge-rich resources on
the Grid the fundamental question is how knowledge
preserving templates/structures and the knowledge they
contain are modelled in an appropriate way so that other
users can recognise and extract embedded knowledge. To
resolve this issue, we have adopted ontologies as
knowledge models for holding knowledge for distributed
resources.

Ontologies are different from other knowledge models
in that they contain commonly agreed knowledge
structures, i.e. domain concepts and the relations among
them, and also shared terminology for describing these
knowledge structures. This means that resource providers,
no matter where they are, can use these same structures to
preserve, publish knowledge-rich resources and equally
consume resources from other experts. Ontologies provide
a common medium for inter-agent information transfer,
which is applicable to both humans and machines.

4.2. Resource knowledge representation

Traditional knowledge representation formalisms are not
intended to deal with the sharing and interoperability of
knowledge in a distributed environment such as the Grid.
Therefore, it is natural and straightforward to adopt the
web ontology language (OWL) as the underlying
knowledge representation language.

OWL builds upon existing Web standards such as
XML, RDF and RDFS. The resource description
framework (RDF) is a language for representing
information about resources in the Web. It is particularly
intended for representing metadata about Web resources,
such as the author, functionality, and modification history,
copyright and licensing information about a algorithm
and/or software tool. RDF Schema (RDFs) defines a
vocabulary (terms) for describing properties and classes
of RDF resources, with a semantics for generalization-
hierarchies of such properties and classes. On top of RDF
and RDFs OWL adds more vocabulary for describing
properties and classes: among others, relations between
classes (e.g. disjointness), cardinality (e.g. "exactly one"),
equality, richer typing of properties, characteristics of
properties (e.g. symmetry), and enumerated classes. This
empowers OWL to be able to represent knowledge about
complicated resources that are usually used in scientific
activities.

OWL is also different from RDF(s) in that it is
underpinned by the expressive description logic.
Therefore, OWL-represented knowledge can support
sophisticated reasoning and knowledge extraction. Any
DL-based reasoner such as [14][15] can perform various

operations such as concept classification, subsumption
checking, retrieving definitional information, navigating
concept hierarchies, and retrieving lexical information
against knowledge against OWL-based knowledge
repository. Description-based reasoning capability has
many applications. For example, it can be used to
discover required resources via a concept match-maker or
to retrieve sets of ontological concepts matching some
arbitrarily defined queries through classification and
subsumption reasoning.

4.3. Knowledge storage

There are three different mechanisms to store knowledge
about a resource. First it can be added into the original
resource with an embedded piece of descriptions.
Semantic web community usually uses this approach to
attach semantics to web pages. Second, knowledge can be
saved in a separate file in the same location as the
resource. Thirdly knowledge can be archived in a central
knowledge repository separate from resources. In the
context of Grid computing it is supposed that resources
are owned by dynamic virtual organisations and
geographically located. These resources should be
published with explicit expressive descriptions exposing
as much information as possible, so that they can be
discovered, shared and reused. From this perspective we
decided to build a central knowledge repository for
distributed resources, which can also serve as a registry
service.

When Grid resources are modelled using ontologies
and represented in OWL, knowledge objects will be
generated as OWL individuals that are independent of the
original resource formats and/or providers. In such cases
both knowledge objects and knowledge structures will be
save together in an ontology file that is actually a
knowledge base. Applications can then consume
knowledge by accessing the ontology file and carrying out
DL reasoning over individuals. Unfortunately, existing
technologies, either Racer's assertion reasoning [15] or
FaCT's terminological reasoning over pseudo-concepts
[14], fail to scale up to the size of over 100,000s
individuals that is usually required by real scientific
applications on the Grid.

We have developed the instance store technology [13]
to tackle this problem. The instance store uses a relational
database such as MySQL and Oracle as permanent
storage media and a DL reasoner to support reasoning.
This means that assertions over individuals are stored in a
database, together with information inferred using a DL
reasoner over the position in the ontological taxonomy of
their corresponding descriptions. The DL-based reasoner
deals purely with terminological reasoning functionality.
As terminologies are fairly restrictive there will be no size
limitation problem. Furthermore, pure terminological

reasoning will significantly reduce reasoning cost while
maintaining soundness and completeness. Retrieving
individuals is then a combination of query against that
database and subsumption and classification requests to
the reasoner.

4.4. Ontology view

One observation from Geodise is that resource

providers express strong desire to have control and
flexibility to edit ontologies once they are built by
knowledge engineers. While there are many tools
available for building ontologies such as OilEd [16] and
Protégé [17], they are all intended for knowledge
engineers to use. Their rich functionality and complex
GUIs usually scare away resource providers from using
them.

Ontology view is a lightweight ontology editor
specially designed for resource providers to create
knowledge models when new resources are available and
modelled. Full detail about Ontology View is beyond the
scope of this paper.

5. Implementation and usage

We have applied Function Annotator and its underlying
framework to Geodise. As Geodise uses Matlab as its
problem solving environment [18], i.e. to access and
execute Grid resources in Matlab, Geodise resources,
including optimisation algorithms, compute, database and
application tools, at the moment are all Matlab functions
rather than web/Grid services. Matlab has two types of
functions, primitive functions and scripts. A primitive
function has its specific interface and the function body
can be treated as a blackbox. A Matlab script usually
consists of a number of primitive functions. Scripts have
no explicitly defined interface and cannot be treated as a
blackbox. A script is actually a workflow or sub-
workflow for a problem. Below we describe in details
Function Annotator implementation and its usage scenario
in the context of Geodise.

5.1 Implementation

We have implemented Function Annotator using OWL
APIs. Figure 2 shows the GUI of the tool, which consists
of an Ontology Browser, an Annotation Palette and a
Function Browser. The left hand panel is the Ontology
Browser that contains a concept hierarchy and a function
hierarchy. The concept hierarchy presents a list of
knowledge structures for a problem domain. It should be
domain specific, for example the function ontology in
engineering design search and optimisation (EDSO). It is
used for resource providers to browse available
knowledge structures so they can choose suitable ones for

knowledge acquisition. If a required structure is not
available, users can add the model by editing the ontology
through Ontology View. The function hierarchy displays
available knowledge objects under different function
categories. These knowledge objects will be retrieved
from backend knowledge repository on user’s demand.
They can be modified, edited such as cloning, and reused
to generate new knowledge objects.

Figure 2: Function annotator GUI

The right hand panel is the Function Browser, which is

used to load Grid resources for knowledge acquisition. As
the main resources in Geodise are Matlab functions,
Function Annotator particularly targets dealing with them.
We have provided parsing capability to facilitate
automatic information extraction based on function
interface. As primitive Matlab functions have conventions
for interface specification, we are able to obtain important
information about a resource such as input, output
parameters and location details directly from original
resource sources. The extracted information will be listed
on the top window of the right hand panel. It is usually
enough for resource providers to fill in relevant
knowledge structures in the Annotation Palette. For
Matlab scripts information about input, output and
contained primitive functions are all embedded in the
script body. Apart from automatically extracted
information it is necessary to look into the content of a
script to get detailed information. In such cases resource
providers need to do more manual knowledge capture in
order to instantiate a knowledge structure.

The Annotation Palette in the middle of the GUI is
where knowledge acquisition takes place. It consists of
two panels, i.e. the Function Profile at the top and the
Function Model at the bottom. Function Profile contains
two types of knowledge. One is metadata about the
function such as authors, version, methods used,

preconditions required etc. These metadata are specified
using formal ontological concepts. The second type of
knowledge is about the semantics of the function
input/output interface. Function Model is used to hold
information on how the function works and be invocated.
This includes input/output arguments, location and
expression. For scripts it could contain information on
embedded functions as well as their sequential details.

Using Function Annotator the KA process is as follows:
• Resource providers load resources into Function

Browser, for example, Geodise functions.
• Resource providers select appropriate knowledge

structures from the ontology for the function. This
can be done by navigating the concept tree of the
ontology in the left hand panel. Alternatively users
can follow the popup selection choices powered by
the ontology.

• Once knowledge structures are selected, ontology-
driven forms will be automatically generated in the
Annotation Palette for resource providers to fill in
relevant information.

• Resource providers can fill in forms in different ways
in terms of the knowledge sources. In addition to
direct input, resource providers will often drag and
drop the extracted interface information into forms in
Annotation Palette from the Function Browser. They
can also drag and drop knowledge structure and/or
knowledge objects from the Ontology Browser. For
Matlab scripts, resource providers may need to
markup texts representing information embedded
inside resource sources in Function Browser, then
copy and paste them into forms in Annotation Palette.

• Knowledge objects will be first represented as OWL
individuals in memory in OWL language, and when
archiving, translated into instances in instance store
in DIG format.

Using Function Annotator resource knowledge can be
captured at multi-level of abstraction. For example it
could be a high-level concept/type, an instantiated
knowledge objects or concrete values. Resource providers
can add information into knowledge structures as detailed
as they know or just give simple or general information
on some aspects of a resource if they think it is not
important. In summary: with Function Annotator,
knowledge acquisition can be done to the exact degree
necessary.

5.2 Usage scenario in Geodise

Figure 3 shows Function Annotator usage scenario by

taking a broader view of its application in Geodise. In this
scenario the first step is function characterisation. This
includes function classification and categorisation,
function interface analysis (input/output modelling) and
terminology extraction. A domain ontology is then built

based on function characterisation. The domain ontology
will serve as a set of explicit knowledge structures for
preserving knowledge. In addition to the domain ontology,
a upper level function ontology will also be provided to
enable the addition of metadata to resources. These
metadata could contain any arbitrary information that can
help use the resources, mostly those such as authors,
copyright, version, licences and generic function
information. Metadata is extremely important for resource
discovery, sharing and use regarding provenance and trust.

Workflow Construction
Environment (WCE)

Geodise Functions

Function/workflow
Repository (Archive)

Function Ontology

Function Annotator

Load functions
and workflows
via GD APIs

A
rc

hi
ve

 w
or

kf
lo

w
s

vi
a

G
D

 A
P

Is

Query interface Advisor APIs

Workflow Construction
Environment (WCE)

Geodise Functions

Function/workflow
Repository (Archive)

Function Ontology

Function Annotator

Load functions
and workflows
via GD APIs

Load functions
and workflows
via GD APIs

A
rc

hi
ve

 w
or

kf
lo

w
s

vi
a

G
D

 A
P

Is
A

rc
hi

ve
 w

or
kf

lo
w

s
vi

a
G

D
 A

P
Is

Query interfaceQuery interface Advisor APIsAdvisor APIs

Figure 3: Usage scenario in Geodise

Following the above steps users (mainly resource
providers) can use Function Annotator to capture
embedded knowledge within functions as described above.
The acquired knowledge independent of the original
functions will be archived in the knowledge repository –
the instance store. Once instance store is populated with
large amount of knowledge objects, it is ready for use for
knowledge intensive applications.

In Geodise a workflow construction environment
(WCE) has been developed to help engineers construct a
workflow. A workflow in engineering design search and
optimisation is actually a solution to a specific EDSO
problem. The problem solving process amounts to the
process of constructing and executing a workflow.
However, building a workflow for a problem requires a
lot of domain knowledge, for example, what algorithm is
suitable, who has this codes, how to specify the control
parameters, etc. Therefore, WCE has been provided
knowledge support. As can be seen in Figure 3, WCE
uses high level GD APIs that build on top of OWL APIs
to load functions and workflows from instance store. As
knowledge regarding these functions has been explicitly
modelled and represented, engineers are able to get hold
of the right functions for a specific problem. To assist
workflow construction a DL-based query GUI and a
semantics-based workflow construction advisor are also
provided to make maximum use of the knowledge-rich
functions in instance store. Both tools exploit OWL
reasoning capability to find functions with required
characteristics.

A workflow built in this way can inherit knowledge
from embedded component functions. More than this GD
APIs also provides mechanisms to attach semantic
metadata to a workflow. Therefore, WCE will not only
consume functions but also generate and archive
knowledge-rich workflows into instance store for reuse.

6. Related work

Function Annotator is a domain specific lightweight
knowledge acquisition tool. Comparing with conventional
KA tools, it explicitly separates knowledge elicitation
from knowledge modelling. The motivation behind this is
that for Grid-enabled e-Science knowledge elicitation and
publishing should take place in a very large scale by as
many people as possible and knowledge models need to
be commonly accessible, acceptable and recognisable,
thus ensuring flexibility and scalability. Traditional KA
tools are effective for standalone one-off knowledge
system development but fail to scale up to Grid
environment by using latest web technologies such as
ontology, RDF and OWL.

Function Annotator has much in common with Protégé
[17] as both of them allow for creating class and property
instances to describe resources, i.e. HTML pages or
Matlab functions. While Protégé has strong ontology
editing capabilities Function Annotator has a target
roughly similar to the instance acquisition phase in the
Protégé framework. The obvious difference between
Function Annotator and Protégé is that the latter does not
(and has not intended to) support the particular resource
settings, i.e. managing and displaying resources.

Function Annotator, to some extent, can be considered
as an annotation framework, though with a different focus
from those like Annotea [19] and Antomat-Annotizer [20].
Early annotation tools such as Annotea all share the idea
of creating a kind of user comment about web pages. The
term “annotation” here is best understood as a remark to
an existing document. For example, a user of these tools
might attach a note like "A stochastic optimisation
method" to the name “genetic algorithm” on a web page.
Like S-CREAM [21] Function Annotator uses an
ontology to cast strong types to comment or descriptions
regarding entity’s attributes and/or properties. While S-
CREAM deals with web pages Function Annotator targets
on software resources such as algorithms. From this
perspective Function Annotator is much like a tool for
semantic web service descriptions [23]. However,
Function Annotator concentrates on one particular type of
resource in engineering design search and optimisation,
i.e. Matlab functions rather than well-structured web
services.

Function Annotator is a resource providers-oriented
KA tool that distinguishes it from most others from
related communities. Function Annotator may be the first

of such tools to harvest the latest semantic web
technologies such as the OWL interface, instance store
and DL-based reasoning to enable knowledge acquisition,
publishing, storage and reasoning.

7. Conclusions

In this paper we have described Function Annotator, a
specialised, ontology-enabled tool for engineers to carry
out knowledge elicitation and semantic enrichment.
Function Annotator is underpinned by a new knowledge
acquisition framework, i.e., separating knowledge
modelling from knowledge elicitation, thus enabling large
scale knowledge population efficiently. We have
introduced the Grid-oriented resource lifecycle in which
resource providers play central role in the loop of resource
provision, knowledge elicitation, publishing and reuse.
We have discussed the exploitation of the latest semantic
web technologies to make the tool functionally unique.
We have implemented the tool and demonstrated its usage
in Geodise. The tool is tuned for use in design
optimisation and Matlab but it could be applied to many
other types of application or problem solving environment.

Initial feedback from resource providers is encouraging,
indicating a strong interest and desire to have such a tool
for use. However, it also shows big differences in the
requirements for functionality, usability and GUI support
between knowledge engineers and resource providers.
Future work on Function Annotator will include the
simplification of GUI, hiding as much unnecessary
‘knowledge jargon’ as possible, the provision of hand-on
assistance and the enhancement of automatic information
extraction and knowledge generation.

Acknowledgement

This work is supported by the UK EPSRC Geodise e-
Science pilot (GR/R67705/01). The authors gratefully
acknowledge the contributions from and discussions with
EPSRC projects MyGrid [24] (GR/R67743/01) and AKT
[25] (GR/N15764/01(P)).

References

[1] Schreiber S., Akkermans H., Anjewierden A., Hoog R., and
Shadbolt N., (1999), Knowledge Engineering and Management.
The MIT Press, London.
[2] Brimble, R., Oldham, K., Callot, M. and Murton, A., (1999)
MOKA: A Methodology for Developing KBE Applications,
Proceedings of the 8th European Conference on Product Data
Technology, pp.361-366.
[3] PC PACK Knowledge tool
http://www.epistemics.co.uk/products/pcpack/

[4] Hey, T. and Trefethen, A.E. (2003). The Data Deluge: An e-
Science Perspective. In Journal of Grid Computing Making the
Global Infrastructure a Reality, Wiley, January 2003.
[5] Foster, I. and Kesselman, C. (1999). The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann.
[6] The Globus Project. http://www.globus.org/
[7] The UNICORE Project. http://www.unicore.org/unicore.htm
[8] The EUROGRID Project, http://www.eurogrid.org/
[9] The UK e-Science Initiative,
http://www.rcuk.ac.uk/escience/rclinks.shtml

[10] Roure, D., Jennings, N. and Shadbolt, N. 2001. Research
Agenda for the Future Semantic Grid: A Future e-Science
Infrastructure http://www.semanticgrid.org/v1.9/semgrid.pdf
[11] The Geodise Project http://www.geodise.org/
[12] Ontology view
ttp://www.cs.man.ac.uk/~puleston/ontoview/OntologyViews.pdf
[13] The Instance Store, http://instancestore.man.ac.uk/
[14] Horrocks, I., Sattler, U. and Tobies, S. 1999. Practical
reasoning for expressive description logics. In Lecture Notes in
Artificial Intelligence, No.1705 pp.161-180. Springer-Verlag.
[15] Haarslev, V. and Möller, R. (2001), High Performance
Reasoning with Very Large Knowledge Bases: A Practical Case
Study, Seventeenth International Joint Conference on Artificial
Intelligence, IJCAI-01, http://www.cs.concordia.ca/~haarslev/
publications/ijcai-2001.pdf

[16] Bechhofer, S., Horrocks, I., Goble, C. and Stevens, R. 2001.
OilEd: a Reason-able Ontology Editor for the Semantic Web
DL2001, 14th International Workshop on Description Logics,
Stanford, USA. http://oiled.man.ac.uk/.
[17] Protégé ontology and knowledge editor
http://protege.stanford.edu/index.html
[18] Pound, G. E, Eres, M. H, Wason, J. L, Jiao, Z, Keane, A.
J.and Cox, S. J. (2003) A Grid-Enabled Problem Solving
Environment (PSE) for Design Optimisation within
Matlab. 17th International Parallel & Distributed Processing
Symposium
[19] The Annotea Project http://www.w3.org/2001/Annotea/
[20] OntMat-Annotizer Annotation Tool http://km.aifb.uni-
karlsruhe.de/annotation/ontomat.html
[21] Handschuh, S, Staab, S, and Ciravegna, F (2002), S-
CREAM-Semi-automatic CREAtion of Metadata, In: Proc. of
the European Conference on Knowledge Acquisition and
Management - EKAW-2002.
[22] DAML+OIL http://www.daml.org.
[23] DAML Services Ontology. (2002). DAML-S: Web Service
Description for the Semantic Web. In The First International
Semantic Web Conference (ISWC).
http://www.daml.org/services/
[24] The MyGrid Project http://mygrid.man.ac.uk/index.shtml
[25] The Advanced Knowledge Technologies (AKT) Project.
http://www.aktors.org/

