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Stabilization of Linear Flow Solver for Turbomachinery
Aeroelasticity Using Recursive Projection Method
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The linear analysis of turbomachinery aeroelasticity relies on the assumption of small level of unsteadiness
and requires the solution of both the nonlinear steady and the linear unsteady flow equations. The objective
of the analysis is to compute a complex flow solution that represents the amplitude and phase of the unsteady
flow perturbation for the frequency of unsteadiness of interest. The solution procedure of the linear harmonic
Euler/Navier–Stokes solver of the HYDRA suite of codes consists of a preconditioned fixed-point iteration, which
in some circumstances becomes numerically unstable. Previous work had already highlighted the physical origin
of these numerical instabilities and demonstrated the code stabilization achieved by wrapping the core part of the
linear code with a Generalized Minimal Residual (GMRES) solver. The implementation and the use of an alternative
algorithm, namely, the Recursive Projection Method, is summarized. This solver is shown to be well suited for both
stabilizing the fixed-point iteration and improving its convergence rate in the absence of numerical instabilities.
In the framework of the linear analysis of turbomachinery aeroelasticity, this method can be computationally
competitive with the GMRES approach.

I. Introduction

T HE aeroelastic phenomena of concern in the turbomachinery
industry are blade flutter and forced response,1 as they can

both lead to dramatic mechanical failures if not properly accounted
for in the design of the engine. The blades of an assembly can un-
dergo flutter vibrations when the aerodynamic damping associated
with certain flow regimes becomes negative and is not counterbal-
anced by the mechanical damping. In such circumstances, the free
vibration of the blades triggered by any temporary perturbation is
sustained through the energy fed into the structure by the unsteady
aerodynamic forces.2 The high cycle fatigue (HCF) caused by these
vibrations can shorten the life of the blades below the target life
of the engine. Blade forced response can also lead to HCF and is
caused by the relative motion of adjacent frames of reference, which
transforms steady circumferential variations of the flowfield in one
frame into periodic time-varying forces acting on the blades in the
other. Well-known examples include forcing caused by the wakes
shed by an upstream blade row3 and circumferential nonuniformities
produced by distressed upstream vanes.4

The estimation of both the mean energy flux between fluid and
structure in the flutter case and the unsteady forces acting on the
blades in the forced response problem requires knowledge of the
unsteady flowfield. Over the past two decades, a number of ap-
proaches have emerged to carry out the analysis of turbomachin-
ery aeroacoustics and aeroelasticity.5 These methods vary from un-
coupled linearized potential flow solvers in which the structural
equations are solved independently of the aerodynamics6,7 to fully
coupled nonlinear three-dimensional unsteady viscous methods in
which the structural and aerodynamic time-dependent equations are
solved simultaneously.8 Within this range the uncoupled linear har-
monic Euler and Navier–Stokes (NS) methods9−12 have proved to be
a successful compromise between accuracy and cost. This method
views the aerodynamic unsteadiness as a small perturbation of the
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space-periodic mean steady flow. Hence the unsteady flowfield can
be linearized about it and because of linearity can be decomposed
into a sum of harmonic terms, each of which can be computed in-
dependently. The cyclic periodicity of both the steady and unsteady
flow leads to a great reduction of computational costs because the
analysis can focus on one blade passage rather than the whole blade
row by making use of suitable periodic boundary conditions. The as-
sumption of small amplitude of the aerodynamic unsteadiness often
allows one to neglect both the coupling and variations of structural
eigenmodes caused by the aerodynamic forces.1 Therefore the in-
vestigation can be carried out considering one structural mode at a
time, determined by a finite element program and used as an input for
calculating the unsteady aerodynamic forces. The complete aerody-
namic analysis consists of two phases: 1) calculation of the nonlinear
steady flowfield about which the linearization is performed and 2)
solution of the linear harmonic equations.

The HYDRA suite of parallel codes13−16 includes both a non-
linear (hyd) and a linear harmonic (hydlin) Euler/NS solver. The
solution procedure for both hyd and hydlin can be viewed as a pre-
conditioned fixed-point iteration. Usually the linear code converges
without difficulty, but problems have been encountered in situations
in which the mean flow calculation itself failed to converge to a
steady state but instead finished in a low-level limit cycle, often re-
lated to some physical phenomenon such as vortex shedding at a
blunt trailing edge, unsteady shock/boundary layer, or shock/wake
interaction. In these circumstances the linear fixed-point iteration on
which hydlin is based becomes unstable, leading to an exponential
growth of the residuals. The relationship between these instabilities
and the physical features of the underlying base flow is discussed
in Ref. 17, which also summarizes the successful implementation
of a Generalized Minimal Residual (GMRES) algorithm18 aimed
at retrieving the numerical stability of the linear code. For large
three-dimensional problems, however, the restarted GMRES solver
can become computationally too expensive if the number of Krylov
vectors per restarted cycle needed to prevent the residual from stag-
nating becomes larger than 30. To overcome this problem, an al-
ternative algorithm has been implemented in hydlin, namely, the
Recursive Projection Method (RPM).19 The main objectives of this
paper are to 1) summarize the main features of this algorithm and
its implementation in hydlin and 2) compare the numerical perfor-
mance of the RPM and GMRES stabilized iterations. Section II
presents an overview of the steady nonlinear and unsteady linear
equations, whereas the RPM solver is discussed in Sec. III. Finally,
the numerical performance of the RPM and GMRES algorithms are
compared in Sec. IV, in which the two methods are applied to the
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flutter analysis of a two-dimensional turbine section and of a civil
engine fan.

II. Linear Analysis of Flow Unsteadiness
The time-dependent Euler and Reynolds-averaged NS equations

in conservative form are approximated on unstructured hybrid grids,
using an edge-based discretization.20 Considering the computational
domain consisting of all of the passages of a blade row leads to a sys-
tem of nonlinear ordinary differential equations (ODE) of the form

T
dU
dt

+ R(U, Ub, X, Ẋ) = 0 (1)

where t is the physical time, T is the Jacobian of the transformation
from primitive to conservative variables, U is the vector of primitive
flow variables, R is the nodal residual, and X and Ẋ are the vectors
of nodal coordinates and velocities, respectively. The vector Ub is
used to enforce time-dependent disturbances at the inflow and out-
flow boundaries such as wakes shed by an upstream blade row, and
the residual vector R depends also on the nodal velocities Ẋ because
the grid can deform conforming to the blade vibration.

The first stage of the linear analysis requires the computation of
the mean steady flow about which the linearization of the unsteady
terms will be carried out. Time-averaging the governing equation
(1) yields

R(Ū, X̄) = 0 (2)

where X is the vector of nodal coordinates and the bar overlin-
ing U and X denotes time-averaged quantities. The mean steady
flow Ū is obtained by solving Eq. (2) for a single blade passage,
because the mean flow is circumferentially periodic. The bound-
ary conditions to which the system (2) is subject can be of three
types: inflow/outflow, periodic and inviscid/viscous wall. The far-
field boundaries are handled through fluxes that incorporate pre-
scribed flow information, and thus they become part of the residual
vector R. At matching pairs of periodic nodes, the periodicity con-
dition for linear cascades is enforced by setting the flow state on the
upper boundary equal to that on its lower counterpart. In the case of
annular domains because of the use of Cartesian coordinates, the ve-
locity vectors on the upper boundary are obtained by rotating those
on the lower one. Combining flux residuals at the two periodic nodes
in a suitable manner to maintain periodicity, this boundary condi-
tion can also be included in the definition of the flux residual vector
R. The treatment of the wall boundaries introduces some additional
terms in Eq. (2). These terms are not reported here for brevity, and
the interested reader is referred to Refs. 17 and 21 for more details.
The discrete equation (2) is then solved using Runge–Kutta time-
marching accelerated by Jacobi preconditioning and multigrid.20

The second stage of the analysis is the linearization of the un-
steady flow equations. Assuming that the flow unsteadiness is small,
the time-dependent variables can be written as the sum of a mean
steady part and a small-amplitude perturbation:

X(t) = X̄ + x̃(t), ‖x̃‖ � ‖X̄‖
Ub(t) = Ūb + ũb(t), ‖ũb‖ � ‖Ūb‖

U(t) = Ū + ũ(t), ‖ũ‖ � ‖Ū‖
where the perturbations are overlined with a tilde symbol.
Linearizing Eq. (1) about the mean steady conditions (X̄, Ū) yields

T
dũ
dt

+ Lũ = f̃1 + f̃2 (3)

where the linearization matrix L and the vectors f̃1 and f̃2 are given
by

L = ∂R
∂U

, f̃1 = −
(

∂R
∂X

x̃ + ∂R

∂Ẋ
˙̃x
)

, f̃2 = − ∂R
∂Ub

ũb

Because of linearity, the linear unsteady flowfield can be decom-
posed into a sum of complex harmonics of the form ũk(t) =

�(eikωt ûk), each of which can be computed separately. The complex
elements of ûk define the amplitude and phase of the unsteadiness at
frequency kω. Analogous expansions hold for x̃(t), ˙̃x(t), and ũb(t).
Inserting them in Eq. (3) and considering only the mode k = 1 for
simplicity yields the harmonic equation

(iωT + L)û = f̂1 + f̂2 (4)

which are complex and can be viewed as the frequency-domain
counterpart of Eq. (3). The right-hand-side vectors f̂1 and f̂2 give
the sensitivity of the residuals to harmonic deformations of the
mesh and to incoming harmonic perturbations respectively. Based
on an idea of Ni and Sisto,22 the linear equations are solved with
the same pseudo-time-marching approach adopted for the solution
of the nonlinear steady equations, that is, by introducing a fictitious
time derivative dû/dτ and time marching the solution of the system
of linear ODEs:

dû
dτ

= −[(iωT + L)û − f̂1 − f̂2]

until dû/dτ vanishes. Discretizing this time derivative leads to the
linear fixed-point iteration discussed in greater detail in the follow-
ing section.

In the flutter case, the object of the analysis is to assess the stability
of a particular structural mode. The frequency ω and the blade mode
shape are calculated with a finite element program and used to de-
termine f̂1, which is nonzero throughout the computational domain
because the grid deforms conforming to the harmonic vibration of
the blade, whereas f̂2 is set to zero. The phase between the motion
of adjacent blades (interblade phase angle or IBPA) is an additional
parameter of the analysis. It is given by φ j = 2π j/Nblades, and the
index j usually called nodal diameter can take any integer value be-
tween 0 and (Nblades − 1), though the critical values are usually the
first few ones, as shown in Ref. 1. Equation (4) can then be solved
for a single passage, introducing the complex phase shift eiφ j be-
tween the two periodic boundaries. The output of interest is the net
energy flux from the structure to the working fluid over one cycle
of vibration, defined by the worksum integral

W =
∫ Tv

0

∫
S

publade · dS dt

in which Tv is the period of vibration, p and ublade are the time-
dependent blade static pressure and velocity respectively, dS is the
elemental blade surface with outward normal, and S is the over-
all blade surface. A positive sign indicates stability as energy is
transferred from the structure to the fluid, whereas a negative sign
indicates the occurrence of flutter. In the engineering community,
the logarithmic decrement δ is a more frequently used stability pa-
rameter, which depends on the ratio between the amplitude V of two
consecutive cycles of vibration. It is defined as δ = V (t + Tv)/V (t),
and it can be proved that

δ = W/ω2

In forced response, the object of the analysis is to determine the
unsteady forces acting on the blade as a result of any of the harmonic
components, into which the incoming time-periodic gust can be de-
composed. The IBPA depends on the geometric properties of the
problem. In the case of forcing coming from circumferentially peri-
odic wakes, the blades and the wakes can have different pitches, and
hence there is a difference in the times at which neighboring wakes
strike neighboring blades. Therefore the IBPA of the fundamental
harmonic is 2π Nwakes/Nblades. Again the linear harmonic equation
(4) can be solved for a single blade passage using complex periodic
boundary conditions. The vector f̂1 is zero throughout the domain
because the mesh is stationary, and the vector f̂2 is nonzero only at
the inlet or outlet boundaries, where the harmonic perturbation is
prescribed. The unsteady aerodynamic force acting on the blade can
be calculated in a postprocessing step for each structural mode using
the unsteady pressure field determined with the harmonic analysis.
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The linear unsteady analysis is completed by enforcing suitable
linearized boundary conditions. The inflow, outflow, and (complex)
periodic boundary conditions can all be symbolically included into
Eq. (4), whereas the additional terms as a result of the wall boundary
condition are omitted here and reported in Refs. 17 and 21. The
implementation of the far-field boundary conditions is based on one-
dimensional nonreflecting boundary conditions.23 Equation (4) are
then solved using the same preconditioned pseudo-time-marching
method as for the nonlinear equations.

III. RPM Stabilization
The linearized harmonic flow equation (4) can be viewed as a

simple linear system of the form

Ax = b (5)

with A = iωT + L , b = f̂1 + f̂2, and x = û. This system has dimen-
sion k = (2 × Neqs × N ), where N is the number of grid nodes, Neqs

is 5 for inviscid flows and 6 for turbulent flow analyses using a
one-equation turbulence model, and the factor 2 accounts for real
and imaginary part of the complex flowfield. Though Eq. (4) is
complex, hydlin has been written using real arithmetic, that is, con-
sidering real vectors of size k rather than complex vectors of size
k/2. This choice has been made because of errors often introduced
by highly optimized FORTRAN compilers when dealing with com-
plex arithmetic. The linear code for the solution of these equations
can be regarded as the fixed-point iteration:

xn + 1 = F(xn) = (I − M−1 A)xn + M−1b (6)

in which M−1 is a preconditioning matrix resulting from the Runge–
Kutta time-marching algorithm, the Jacobi preconditioner, and one
multigrid cycle. Linear stability analysis of Eq. (6) shows that a
necessary condition for its convergence is that all of the eigenvalues
of (I − M−1 A) lie within the unit circle centered at the origin in the
complex plane or equivalently that all of the eigenvalues of M−1 A
lie in the unit disk centered at (1, 0). For most aeroelastic problems
of practical interest, this condition is fulfilled, and the linear code
converges without difficulty. However, an exponential growth of
the residual has been encountered in situations in which the steady
flow calculation itself failed to converge to a steady state but instead
finished in a small-amplitude limit cycle, related to some physical
phenomenon such as separation bubbles, corner stalls, and vortex
shedding at a blunt trailing edge. The solution procedure of the non-
linear steady equation (2) is not time accurate, but it nevertheless
reflects some time-dependent physical properties of the flowfield
because of the pseudo-time-marching strategy associated with the
Runge–Kutta algorithm. Physical small-amplitude limit cycles do
not prevent the steady solver from converging to an acceptable level,
and their effect is sometimes visible in small oscillations of the resid-
ual. However these periodic instabilities result in a small number
of complex conjugate pairs of eigenvalues of the linearization ma-
trix M−1 A lying outside the unit circle (outliers) and thus causing
the exponential growth of the residual of the linear equations. This
problem had been previously solved by implementing a restarted
GMRES algorithm in hydlin.17 The drawback of this approach is
that the GMRES code can become computationally very expensive
when dealing with large three-dimensional problems. This is be-
cause each Krylov vector has the same size of the linear flowfield x,
and the extra memory requirement with respect to the standard code
grows linearly with the number of Krylov vectors (nKr) per restarted
cycle. Furthermore nKr cannot be chosen below a case-dependent
threshold to prevent the residual from stagnating. The memory re-
quirement of the GMRES code is already about twice that of the
standard code if nKr = 30.

To stabilize the linear code reducing the additional memory re-
quirement, the RPM first introduced by Shroff and Keller to stabi-
lize unstable iterative procedures for nonlinear parameter dependent
problems19 has been implemented in hydlin. This algorithm is based
on the projection of Eq. (6) onto the orthogonal subspaces P and
Q of Rk associated respectively with the subset of m outliers and
that of the remaining (k − m) eigenvalues lying in the unit disk. At

each RPM iteration, only the projection of Eq. (6) onto the subspace
Q is solved with the standard fixed-point iteration; the projection
onto the typically low-dimensional subspace P is instead solved
with Newton’s method. Denoting by Z an orthonormal basis of P ,
the orthogonal projectors P and Q of the subspaces P and Q are
defined, respectively, as P = Z Z T and Q = I − P . Each time the
calculation is diverging, the basis Z is augmented with the current
dominant eigenmode, and the projectors P and Q are updated ac-
cordingly. The projections f and g of Eq. (6) onto P and Q are
defined, respectively, as

f = PF = P[(I − M−1 A)x + M−1b]

g = QF = Q[(I − M−1 A)x + M−1b]

and the stabilized iteration can be written as follows:

pν + 1 = pν + (I − fp)
−1[ f ( pν, qν) − pν] (7a)

qν + 1 = g( pν, qν) (7b)

where

p = Px, q = Qx, f p ≡ P Fx P, Fx = I − M−1 A

It is easily verified that

(I − f p)
−1 = Z [I −Z T (I −M−1 A)Z ]−1 Z T = Z [I −H ]−1 Z T (8)

where (I − H) is a small matrix of size m, whose inversion requires
minimum computational effort. The stability analysis of this algo-
rithm shows that its spectral radius is smaller than 1, that is, the
stabilized RPM iteration is stable.19

The basis Z is updated directly from the iterates qν of the modified
iteration (7b), without computing Jacobians. This is done by moni-
toring the rate of convergence of the iterates qν . If the residual starts
growing, it is argued that some of the eigenvalues of gq = QFx Q lie
outside the unit circle. The generic case is that either an isolated real
eigenvalue λm + 1 or a complex conjugate pair (λm + 1, λm + 2) cause
the instability. One has to decide which is the case and determine the
one or two vectors to append to Z to make it span the larger invari-
ant subspace of Fx associated with the augmented set of eigenvalues
{λ1, λ2, . . . , λm + 1} or {λ1, λ2, . . . , λm + 1, λm + 2}. It can be shown19

that the vectors {∆qν = qν + 1 − qν} are a power iteration with the
matrix gq applied to the starting vector �q0. Asymptotically these
vectors will tend to be in the dominant eigenspace of gq , provided
that �q0 has a nonzero component in this direction. If the iteration
starts diverging, the two difference vectors {�qν, �qν − 1} (i.e., the
most recent power iterates) are used to compute the Gram–Schmidt
factorization24

D ≡ [∆qν,∆qν − 1] = D̂T (9)

with T ∈R2 × 2 upper triangular and D̂ ∈Rk × 2 orthogonal. If
T1,1 � T2,2, the dominant eigenmode of gq is real, and only the first
column of D̂ is included in Z . Otherwise the instability is caused
by a complex conjugate pair, and both columns of D̂ are included in
Z . This procedure can be used to append to Z not only the unstable
eigenmodes, but also the stable ones whose eigenvalues are very
close to the unit circle, allowing one to speed up the convergence
rate even in the absence of outliers. In the current implementation,
we determine recursively and include in Z one real eigenmode or
one complex conjugate eigenpair at a time, until a satisfactory con-
vergence rate is obtained. However one could also scrutinize more
than one dominant mode at a time, carrying out the QR factorization
(9) with more than two ∆q looking at the modulus of the eigenval-
ues of T and including in Z all of the modes needed for a satisfactory
convergence rate of the stabilized iteration. The experience gained
so far makes us believe that this approach would require fewer iter-
ations to achieve the desired level of convergence. Looking for one
dominant mode at a time, in fact, can result in a longer numerical
transient, as the RPM iteration continues to diverge until all outliers
have been included in P . On the other hand, the single-mode search
results in a reduced memory usage, as the memory for storing new
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vectors of Z can be allocated “dynamically” when the convergence
rate needs to be improved.

In the actual computation, one introduces coordinate variables
z ∈Rm × 1 for the representation of p in the basis Z :

z ≡ Z T p = Z T x

from which it follows that

p = Zz, x = Zz + q

The iteration (7a) in the subspaceP can be written in these variables
using Eq. (8) and observing that Z T Z = I :

zν + 1 = zν + (I − H)−1
[

Z T F(xν) − zν

]
The implementation of the RPM solver in hydlin has been carried
out at the top routine level. At this level, the pseudocode of the
preconditioned multigrid iteration without RPM looks like

x = xstart

x = mg(A, x, b, ncl)

xfinish = x

where mg is the core routine that performs the preconditioned fixed-
point iteration (6) and xfinish is the solution after ncl multigrid cycles.
The RPM solver does not require any change to mg, which is still
used as in the standard fixed-point iteration to determine the pro-
jection q of the solution x onto Q. This operation corresponds to
Eq. (7b). The computationally cheap inversion of the matrix (I −H)
along with the other matrix-vector products is carried out at the top
routine level and the pseudocode of the main hydlin using RPM is

Z = [ ], m = 0, ν = 0, xν = xstart

while |b − Axν | > tolerance

% stabilized iteration

if m > 0

zν = Z T xν, ζν = Z T xν + 1

zν + 1 = zν + (I − H)−1(ζν − zν)

qν + 1 = xν + 1 − Zζν

xν = Zzν + 1 + qν + 1

endif

xν + 1 = mg(A, xν, b, 1)

ν = ν + 1

% increase basis size

if not converging

T and D̂ from equation (9)

Z = [Z D̂(:, 1 : δm)], m = m + δm

% update H

for j = 1 : m

H(:, j) = Z T mg(A, Z(:, j), 0, 1)

end

ν = 0

endif

end

xfinish = qν + 1 + Zzν + 1

The section of the pseudocode labeled with “stabilized iteration”
corresponds to the stabilized iteration (7). Only one multigrid cycle
is performed at each step of the stabilized iteration by setting ncl = 1
in the arguments of mg. The variable δm in the section “increase
basis size” depends on the outcome of the QR factorization (9): it
is 1 if the dominant mode is real and 2 if it is a complex conjugate
pair. Thereafter the subroutine mg is used to determine the columns
of Fx Z by setting b = 0 and performing one multigrid cycle on each
column of Z . The additional CPU time of the RPM iteration is that
required for the matrix-vector products of the stabilized iteration and
for calling mg to update H . The order of magnitude of m based on
the problems investigated so far varies between 1 and 10, and both
operations are fairly inexpensive for values of m in this range. In-
cluding this extra cost in that required for a multigrid cycle, the CPU
time for executing a given number of multigrid cycles using RPM
is about 1% higher than using the standard iteration. In the absence
of unstable or slowly converging modes, the algorithm reduces to
the standard iteration (6), as at each step one simply performs one
multigrid cycle using the appropriate vector b and ncl = 1 in the
arguments of mg.

Each column of Z has the same size of the linear flowfield x, and
the implementation of RPM in hydlin has led to an extra memory
allocation of [(m + 1) × k] needed for the vectors of the basis Z and
for a new work array. By comparison, the extra memory allocation
required by GMRES is [(nKr + 1) × k] and is independent of the
number of outliers.

The RPM algorithm also allows the straightforward determina-
tion of the dominant eigenmodes, as they are isolated in the small
eigenspace P . Similarly to the GMRES case,17 this enables one
to relate the numerical instability to the physical unsteadiness that
causes it. To establish the relationship between the dominant modes
and the vectors of Z , let us start by considering the restriction of Fx

to P defined as

f p ≡ P Fx P = P(I − M−1 A)P

The eigenvalues of f p are given by

P(I − M−1 A)PV = V � (10)

where � is the diagonal matrix of the eigenvalues and V the ma-
trix whose columns are the eigenvectors of f p . The eigenvalues of
the dominant modes are the first m diagonal entries of �, and the
associated eigenvectors are the first m columns of V . Note that the
remaining k − m diagonal entries of � and columns of V are zero,
as f p has rank m. Inserting the expression P = Z Z T in Eq. (10), it
then follows that

HY = Y�′

in which �′ is the upper-left portion of � of size m × m and the
columns of the matrix Y = Z T V are the right eigenvectors of H .
The sought dominant modes are given by

V = ZY (11)

because Z Z T V = PV = V . The relationship between the dominant
eigenvalues λ j of M−1 A and the eigenvalues λ′

j of H (i.e., the
diagonal entries of �′) is

λ j = 1 − λ′
j , j = 1, . . . , m

IV. Results
In this section, the investigation of the flutter stability of a two-

and three-dimensional turbomachinery test case is carried out by
means of the RPM-stabilized linear flow solver to highlight the main
features of the algorithm. A comparative study of the numerical
performance of RPM and GMRES is also presented. The interested
reader is referred to Refs. 13, 14, 17, and 25 for other flow analyses
aiming at the validation of both the nonlinear and linear code.
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A. Two-Dimensional Turbine Section
The two-dimensional turbine section of the 11th Standard Con-

figuration is the midspan blade-to-blade section of an annular tur-
bine cascade with 20 blades. The test rig and cascade geometry are
described in Ref. 26, which also provides experimental measure-
ments and various computed results of the steady and unsteady flow
field caused by blade-plunging with prescribed IBPA. Two steady
working conditions are considered: a subsonic one with exit Mach
number of 0.68 and a transonic one with exit Mach number of 0.96.
This test case had already been used to demonstrate the predictive
capabilities of hydlin and test the GMRES solver.17 In this paper,

Fig. 1 Mesh for the two-dimensional turbine section.

Fig. 2 Mach contours for transonic conditions of the two-dimensional turbine.

it will be used to demonstrate the effectiveness of the RPM solver.
The computational grid that we have used for the investigation is a
quasi-orthogonal H-type mesh with medium refinement: it has 273
nodes in the streamwise and 65 nodes in the pitchwise direction,
for a total of 17,745 grid nodes. A preliminary mesh-refinement
analysis carried out using a coarser 7869-node (183 × 43) and finer
39673-node (409 × 97) mesh has shown no difference of practical
interest between the results obtained with the medium and finer
grids. The coarser mesh is shown in Fig. 1. The Mach contours in
Fig. 2 refer to the transonic mean flow. They reveal the presence of
a separation bubble on the suction side close to the leading edge and
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a shock, impinging on the suction side close to the trailing edge and
crossing the wake shed by the upper blade. Note also that both the
wake and the boundary layer on the suction side thicken remarkably
after passing through the shock.

The stability curves (δ vs IBPA) for both flow regimes are pro-
vided in Fig. 3a, which shows that the system never becomes aeroe-
lastically unstable. The nonlinear calculations of both the subsonic
and transonic base flow converge without difficulties to machine

a)

b)

Fig. 3 Flutter analysis of the two-dimensional turbine: a) logarithmic
decrement vs IBPA and b) convergence histories using the standard,
RPM, and GMRES iteration (transonic base flow, IBPA = 180 deg).

Fig. 4 Flutter analysis of the two-dimensional turbine: first 150 dominant eigenvalues of M−1A(ncl = 1) determined with GMRES (·) and two pairs
of complex conjugate outliers determined with RPM (◦) (transonic base flow, IBPA = 180 deg).

epsilon (10−18). However all of the linear calculations based on the
transonic base flow diverge using the standard code, and conver-
gence can be retrieved only by using RPM or GMRES, as shown
in the convergence histories of hydlin in Fig. 3b, which refer to
IBPA = 180 deg. The variable on the x axis is the number of multi-
grid cycles and that on the y axis is the logarithm in base 10 of the
rms of all nodal residuals (rms). The number at the right of the label
GMRES in the legend is nKr, whereas ncl is the number of multigrid
cycles per GMRES step. The exponential growth of the residual
using the standard iteration and the discontinuities in the slope of
the convergence history using RPM can be explained looking at
the dominant eigenmodes of M−1 A for ncl = 1. The first 150 dom-
inant eigenvalues determined by means of GMRES as described in
Ref. 17 are plotted in the complex plane of Fig. 4, which highlights
the presence of two complex conjugate pairs of outliers. These have
been determined also by means of RPM following the procedure
reported in the preceding section and are plotted in the same fig-
ure using empty circles. Note that there is a very good agreement
between the GMRES and RPM estimates. The complex conjugate
pair of outliers labeled with 1 is responsible for the exponential
growth of the residual associated with the fixed-point iteration (6).
In fact, its asymptotic convergence rate is determined by the spec-
tral radius ρ of the linear operator M−1 A, and it can be proved that
the relationship between the asymptotic slope of the residual curve
and ρ is

∆[log(rms)]/Nmg ≈ log ρ (12)

where Nmg is the number of multigrid cycles across which the vari-
ation of rms is considered. This equation provides the theoretical
relationship between the slope of the exponentially growing resid-
ual curve of the standard iteration (branch 0A in Fig. 3b) and the
spectral radius of the linear operator (radius of the outlier 1). Insert-
ing the computed values in it yields 46.90e − 3 ≈ 47.53e − 3, which
demonstrates the correctness of the mathematical analysis. The dis-
continuities in the slope of the convergence history using the RPM
solver labeled with 1, 2, and 3 in Fig. 3b occur when the the complex
conjugate eigenpairs 1, 2, and 3 in Fig. 4 are appended to the unstable
eigenspaceP . Note that the RPM-stabilized iteration becomes stable
once the eigenmodes 1 and 2 are included in P , as demonstrated by
the negative slope of the branch 3E0. The inclusion of the eigenmode
3 has only the effect of increasing the convergence rate, because this
is controlled by the spectral radius of the projection of M−1 A onto
the subspace Q, namely, the distance of the eigenmode 4 from the
center of the unit disk. In fact, inserting in Eq. (12) this spectral radius
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Table 1 First three dominant eigenvalues for
three different IBPAs

IBPA, deg Mode �(λ) �(λ)

36 1 0.640143 0.984962
2 0.665552 0.992178
3 0.004075 0.004150

180 1 0.640016 0.984956
2 0.665476 0.992322
3 0.004076 0.004150

270 1 0.639930 0.984763
2 0.665644 0.992444
3 0.004075 0.004150

Fig. 5 Flutter analysis of the two-dimensional turbine: convergence
histories with standard, RPM, and GMRES iteration (subsonic base
flow).

and the data relative to the slope of the branch 30 E1 in Fig. 3b yields
−20.5e − 3 ≈ −19.8e − 3. The first three dominant eigenvectors of
M−1 A have been determined using the analysis presented at the end
of the preceding section, namely, by means of Eq. (11). Such analysis
has shown that the eigenmodes 1 and 2 correspond to the separation
bubble on the suction side because this is the only location at which
they have nonzero amplitude. This result proves that the origin of
the numerical instability is the small limit cycle associated with this
unstable flow separation. The eigenmode 3 has nonzero amplitude
both in the separation and downstream shock regions. These conclu-
sions are identical to those drawn on the basis of an Arnoldi-based
eigenmode analysis of the same test case, discussed in Ref. 17.

It has also been found that the two dominant eigenmodes just
described are independent of the IBPA, despite the fact that M−1 A
depends on it. This phenomenon is probably caused by the high spa-
tial localization of the unstable modes and is highlighted in Table 1,
which reports the real and imaginary parts of the first three least
stable modes for three different IBPAs. This feature can be easily
exploited in the framework of the RPM solver, as the same basis
Z can be used for linear calculations referring to different IBPAs,
thus leading to significant computational savings. All linear calcu-
lations based on the subsonic flow regime converge also without
RPM and GMRES. The convergence histories of the linear code
(IBPA = 180 deg) using the standard iteration, RPM, and GMRES
20 are provided in Fig. 5. The memory requirements with three
grid levels for the multigrid scheme are 52, 63, and 86 Mbytes, re-
spectively. The extra memory requirement of RPM with respect to
the standard code is used for the six vectors of the basis Z asso-
ciated with the three dominant complex conjugate eigenpairs. All
three calculations have been started from the same initial solution
and run on eight processors of a computer cluster consisting of 24
four-processor Sun Ultra-80 nodes, with a Sun Blade-1000 front
end. The 700 iterations for achieving a residual level of −17.5 with
RPM and GMRES have been carried out in about 27 min of CPU
time, whereas the 1800 needed to obtain the same level with the
standard iteration have required 69 min.

Fig. 6 Blade geometry and surface mesh of the three-dimensional fan.

B. Three-Dimensional Fan
The second test case considered is a three-dimensional fan rotor

whose geometry and surface grid are shown in Fig. 6. This grid has
only 157,441 nodes and is quite coarse, but all of the phenomena
discussed in this section have been also observed with finer compu-
tational meshes and for other test cases. The linear flutter analysis
has been carried out for four points of a constant-speed working line
using hyd and hydlin. The computed pressure ratio β is plotted vs
the computed mass flow ṁ in Fig. 7a. Their definition is

β = p02

p01
, ṁ =

∫
S2

ρ2u2 · dS2

All variables in the two preceding expressions refer to the base flow:
p01 and p02 are, respectively, the inlet and outlet mass-averaged total
pressure, S2 is the area of the outlet boundary, ρ2 is the outlet density,
and u2 is the outlet velocity vector. Note that the values of both β
and ṁ in Fig. 7a are given as percentage deviations from their design
values. For all four working conditions the residual of the nonlinear
steady equations drops by four orders of magnitude (Fig. 7b), ending
in a low-amplitude limit cycle.

The analysis of the flutter stability of the first flap mode has been
carried out for all four working conditions, and the computed loga-
rithmic decrement is plotted in Fig. 8a. As expected, the least stable
aeroelastic modes are those associated with the first few IBPAs,
and the blades undergo flutter in the 2 nodal diameter mode at the
base flow conditions D, which are the closest to stall. All linear
calculations have been performed using RPM or GMRES, as they
were otherwise unstable. This is visible in the convergence plots
of hydlin reported in Fig. 8b, which refer to the base flow condi-
tions D and to IBPA = 180 deg. This figure shows that the GMRES
solver stagnates if ncl = 1 and an acceptable convergence rate can
be achieved only by using ncl = 3 and nKr ≥ 30. As in the preced-
ing example, both the exponential growth of the residual using the
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a)

b)

Fig. 7 Steady flow anaysis of the three-dimensional fan: a) constant
speed working line of the three-dimensional fan and b) convergence
histories of hyd for four working points.

standard iteration and the discontinuities in the slope of the conver-
gence history using RPM can be explained analyzing the dominant
eigenmodes of M−1 A for ncl = 1. The plot of the first 150 dominant
eigenvalues in Fig. 9 (determined by means of GMRES) highlights
the existence of four complex conjugate pairs of outliers, labeled
from 1 to 4 in order of decreasing distance from the center of the
unit disk in Fig. 9. The empty circles refer to the RPM estimates of
the four dominant eigenpairs, and again a very good agreement with
the GMRES result is observed. Inserting in Eq. (12) the computed
data relative to the slope of the ascending branch 0A of the resid-
ual curve of the standard iteration (Fig. 8b) and the spectral radius
of M−1 A (radius of the outlier 1) yields 38.82e − 3 ≈ 40.17e − 3,
which confirms once more the correctness of the mathematical anal-
ysis. The discontinuities of the RPM convergence curve occurring
at the iterations labeled from 1 to 4 in Fig. 8b occur when the first
four dominant modes are included in the unstable eigenspace P .
The improvement of convergence rate at the iteration labeled with
5 occurs when also the eigenvalue 5 is appended to P . In fact, the
branch 5E1 is steeper than the branch 5E0 because their slope is
determined by the eigenvalues 6 and 5 respectively, and the former
is closer to the center of the unit disk. Inserting in Eq. (12) the
computed data relative to the branch 5E1 and the distance of the
eigenvalue 6 from the center leads to −7.96e − 3 ≈ −8.16e − 3.

Both the modal analysis based on Eq. (11) and that reported in
Ref. 17 show that the eigenvectors associated with the eigenpairs 1
and 2 correspond to a mild hub corner stall, whereas those associ-
ated with the pairs 3 and 4 correspond to a separation bubble on the
suction side close to the leading edge in the hub region. The numer-
ical instabilities of the standard linear iteration are therefore due to
the fact that the linearization of the unsteady equations is performed
about of a base flow containing traces of these two unsteady phe-
nomena. The eigenmode corresponding to the complex conjugate
pair 5 takes nonzero values both at the same locations as the first four

a)

b)

Fig. 8 Flutter analysis of the three-dimensional fan: a) logarithmic
decrement for the four working conditions and b) convergence histories
of hydlin using the standard, RPM, and GMRES iteration (mean flow
D, IBPA = 180 deg).

and in the proximity of a shock on the suction side close to the blade
tip. Similarly to the turbine test case, the dominant eigenmodes just
described have been found to be independent of the IBPA, and this
might be caused again by their high spatial localization.

Note that solving the linear equations about a pseudo-time-
averaged base flow, obtained by averaging the nonlinear solution
over one numerical limit cycle of hyd, has not removed the insta-
bility of the linear calculations using the standard iteration. It might
be more appropriate to linearize the flow unsteadiness either about
the stabilized solution of the nonlinear equations, determined by
using GMRES27 or about the true time-averaged flow. This can be
obtained either by introducing unsteady stress terms in the nonlin-
ear equations28 or solving the time-dependent nonlinear equations
and then time averaging the flow solution. It is the authors’ view,
however, that these approaches would also not remove the linear
instabilities of the standard linear solver. In fact, the limit cycles
under discussion are stable, and the theory of dynamical systems
foresees that the underlying steady solutions are unstable29 leading
to the exponential growth of their linear perturbations.

All calculations have been run with four grid levels for the multi-
grid scheme on the SUN cluster described in the preceding subsec-
tion. The CPU time of one multigrid cycle depends on the number
of iterations performed on each grid level. The values chosen for
this test case have led to a CPU time of about 56 s for one multi-
grid cycle of hydlin using eight processors for both the RPM and
GMRES code. (By comparison, the CPU time for one multigrid
cycle of hyd is about half of that needed by hydlin.) The 800 cy-
cles needed for a good convergence of each linear calculation have
thus required an overall time of about 12 h using GMRES. The
RPM code has needed about 1500 multigrid iterations to achieve
the same convergence level of the GMRES code. This is because of
the numerical transient of the RPM solver, during which the resid-
ual keeps growing until all outliers are included in P . This transient



CAMPOBASSO AND GILES 1773

Fig. 9 Flutter analysis of the three-dimensional fan: first 150 dominant eigenvalues of M−1A (ncl = 1) determined with GMRES (·) and four pairs of
complex conjugate outliers determined with RPM (◦) (mean flow D, IBPA = 180 deg).

could be significantly shortened by searching more than two out-
liers at a time. The memory requirements of the standard, RPM,
and GMRES 30 code using four grid levels are 441, 600, and 888
Mbytes, respectively. The extra memory requirement of RPM with
respect to the standard code is used for the 10 vectors of the basis
Z associated with the five dominant complex conjugate eigenpairs.

V. Conclusions
This paper has presented the application of the RPM algorithm

to stabilize an existing linear flow solver for the analysis of tur-
bomachinery aeroelasticity. Such stabilization had previously been
possible only by using GMRES. Similarly to the GMRES-stabilized
iteration, the use of RPM allows the aeroelastic analysis to be car-
ried out even in the presence of small periodic flow instabilities in
the base flow, which are believed not to have any significant effect
on the aeroelastic behaviour of the component under investigation.

The CPU time required for one multigrid cycle by both the RPM
and GMRES solver is only from 1 to 3% higher than with the stan-
dard iteration. For a given set of multigrid parameters, the conver-
gence rate of RPM depends on the spectral radius of the projection of
the linear operator M−1 A onto the stable subspace Q, and therefore
a significant convergence speed up can be achieved by appending
to the unstable subspace P , not only the outliers but also the first
few dominant modes in the unit circle. The extra memory allocation
depends on the overall number of eigenmodes included in P , which
is greater or equal to the number of outliers. The additional memory
required by a run in which 10 modes are included in P is about 35%
that of the standard code, and it corresponds to the extra memory us-
age of GMRES 10. The asymptotic convergence rate of the restarted
GMRES solver depends on both the number of GMRES iterations
per restarted cycle and the number of multigrid cycles per GMRES
iteration. Increasing the former parameter always improves the con-
vergence rate, whereas optimal case-dependent values seem to exist
for the latter one.17 The extra memory allocation depends only on
the chosen number of Krylov vectors and not on the number of
outliers. The extra memory allocations associated with GMRES 10
and GMRES 30 are about 35 and 100% of that used by the standard
fixed-point iteration respectively.

For test cases without unstable modes, the same convergence
level can be obtained in considerably fewer iterations using the
RPM or the GMRES iteration rather than the standard code and
in this circumstance RPM requires significantly less memory than
GMRES. In the presence of outliers, the more convenient choice of
the solver depends on the number of unstable modes and the number

of Krylov vectors required for avoiding numerical stagnation of
the residual. Both parameters are case-dependent variables, but the
experience gained so far shows that the number of outliers for typical
three-dimensional turbomachinery problems lies usually below 10,
and the code can be prevented from stagnating only by using 30 or
more Krylov vectors. These numbers are in the range in which the
use of RPM results in significant computational savings over that of
GMRES.
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