
Numerical Optimisation as Grid Services for Engineering

Design

Gang Xue, Wenbin Song, Simon J Cox, and Andy Keane
School of Engineering Sciences, University of Southampton

Highfield, Southampton, U.K. SO17 1BJ

Email: {gx, w.song, sjc, ajk}@soton.ac.uk

Abstract. In this paper we discuss the use of Grid services, an emerging Internet-
based technology, to enable the application of numerical optimisation algorithms in
heterogeneous, distributed systems for engineering design optimisation tasks. By be-
ing presented as Grid services, numerical optimisation algorithms can be consumed
with a number of message interactions. The services are built using a combination
of standard Web services and newly developed Grid technologies, based on the
concept of Reverse Communication. The proposed approach eases the burden of
integration by encapsulating optimisation algorithms into generic interfaces, which
can be integrated into different client environments.
The design of the optimisation grid services is explained in detail, and is illus-

trated with concrete implementations. We also demonstrate the use of the opti-
misation services with real engineering design optimisation problems performed in
scripting problem solving environment.

Keywords: Grid services, PSE, optimisation, Reverse-Communication

1. Introduction

Engineering design is an iterative, multidisciplinary process that is
often data intensive and computationally expensive due to the appli-
cation of high fidelity analysis models for the simulations of physical
phenomena. In the past few decades, engineering design and problem
solving have become increasingly dependent on computing, which spans
from computer aided design (CAD) to simulation and visualisation. In
particular, the application of numerical optimisation [1] techniques in
engineering design that exploits sophisticated modelling and analysis
capabilities can provide an effective measure to produce better designs
in a reduced design cycle.
The increasing complexity of the simulation tools and data models

involved in the design process, together with the uniqueness of each
design problem that requires individual solution strategies, have made
it often a daunting task for design engineers to apply specialised optimi-
sation strategies in their daily design activities. Solving an optimisation
problem usually requires the integration of various elements into an
often heterogeneous and distributed design environment. It is also nec-

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

revision.tex; 18/11/2004; 18:13; p.1



2 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

essary to be able to formulate different solution strategies for different
design problems. In addition, easy to use is one of the most important
requirements for such systems. These requirements prompted the re-
search and development of dedicated systems for design optimisation,
such as SPINEware [2], iSIGHT [3], ModelCenter [4] and more recently,
FIPER [6], which attempt to provide an integrated environment for
engineering design optimisation.
A common requirement shared among these integrated design op-

timisation packages is that users need to provide the optimisation
modules with programmatic access to the modelling and analysis tools
that supply the objective functions. Nevertheless, such modelling and
analysis tools are in many cases developed with different technologies
and therefore require different software interfaces. For example, there
exist different CAD packages, finite element analysis (FEA) and com-
putational fluid dynamics (CFD) codes. It is therefore necessary to de-
velop wrappers for these packages to be used in integrated environments
mentioned earlier.
A variety of technologies have been applied to support the interac-

tions between incompatible software components. The most commonly
used method is to communicate via data files, which relies on shared
data types and formats, or specially developed parsers to interpret the
input/output files. There are sometimes standards available to help in
the exchange of such files. For example, the Standard for the Exchange
of Product Model Data (STEP) [5] was made to facilitate product data
exchanges. Another approach to integration is based on common object
interface technologies, such as CORBA [7], in which function calls to the
components are carried out as standard remote procedure calls (RPC).
These technologies have so far only achieved limited success. While the
use of exchange data files can be seen as a generic approach, the lack of
standard formats in native data description and semantic descriptions
of the file content means that extra layers of processing are required
almost every time a new component is introduced. And it lacks the
capability to deal with fault tolerance in a consistent manner. As for
the common interface technologies, the use of vendor-specific standards
and protocols makes it very difficult to achieve wider interoperability.
And the use of RPC risks tight coupling that makes the system less
flexible and scalable. Furthermore, since most of these technologies are
not firewall-friendly, it is not easy for them to be applied in a wider
distributed environment such as the Grid.
Recent advancement of Grid computing technologies has provided

the incentive for a new solution to integrate optimisation in engineering
design. The primary target of Grid technologies is to enable large-scale,
dynamic collaboration among participants from highly heterogeneous

revision.tex; 18/11/2004; 18:13; p.2



Numerical Optimisation as Grid Services for Engineering Design 3

and distributed computing environments. A number of attempts have
been made to achieve this before Web service technologies were intro-
duced. It is now widely recognized that a service-oriented approach, by
which all resources on the Grid are viewed as services built on stan-
dard interface definition and invocation mechanisms, is able to provide
the desired interoperability and facilitate collaboration. In adopting
service-orientation in Grid computing, Web services are extended to
the more sophisticated Grid services, such as those proposed in the
Open Grid Service Architecture (OGSA) [8] and the associated Open
Grid Service Infrastructure (OGSI) [9].
The idea of presenting numerical optimisation technologies as Grid

services arose from our efforts to adopt service-oriented Grid tech-
nologies for engineering design optimisation [10]. It offers a generic
and extensible framework to address the integration issues by com-
pletely decoupling the optimisation modules from the other software
components. The optimisation codes, regardless of what programming
language they are written in or what the platform they run on, are
encapsulated into standard Grid services that are universally accessi-
ble. The tightly-coupled programmatic links between the optimisation
modules and the modelling codes that used to be required for integra-
tion are replaced with loosely-coupled, standard based message level
interactions. It therefore becomes easier to adopt in one engineering
design system a number of different optimisation technologies, or to
apply one optimisation method to a variety of design problems. Further-
more, the use of standard communication protocols for Grid services
makes it firewall friendly and therefore appropriate for a distributed,
cross-institutional design environment.
The focus of the work presented in this paper is to expose op-

timisation services in a flexible, generic interface that can be easily
integrated into various environments and used to compose different
optimisation workflows. The rest of this paper is organised as follows: In
section 2, we review the related work by examining the advantages and
disadvantages of these technologies and tools. Section 3 discusses the
motivation and concept of Reverse Communication interface. In section
4, details are provided on the design of the optimisation grid services,
which is illustrated in section 5 with two sample implementation of
the services based on different optimisation algorithms. In section 6
we demonstrate the optimisation services with their applications in
solving different engineering design optimisation problems, and discuss
the service performance issues based on the experiences. We draw our
conclusions in section 7.

revision.tex; 18/11/2004; 18:13; p.3



4 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

2. Related Works

A number of attempts have been made to enable numerical optimisa-
tion in distributed environments. One of the most notable ones is the
NEOS project [11]. However, it requires that the design problems be
formulated in the AMPL languages [12] and submitted to the server for
execution. Therefore it is not applicable to cases where the objective
functions and constraints need to be computed using commercial or
proprietary codes.

Problem
Description

Files

Computing ServersJob submission or
GridRPC

Optimisation
System

(GA, BFGS, etc)

Scheduler

Figure 1. Architecture of a Typical Optimisation System using Forward Communi-
cation

Other related work such as iSight, FIPER, ModelCenter and Nim-
rod/G [13] [14] mentioned earlier adopt a different approach: optimi-
sation is often an inherent part of an integrated environment, in which
modelling and analysis packages are often integrated using CORBA,
RMI or other RPC technologies. In such systems the optimisation
logic is usually closely coupled with the job submission and scheduling
functions. Apart from the numerical optimisation search, the optimiser
is also responsible for passing forward information on where the next set
of design points should be, and controlling the evaluation of objective
functions through job submission systems such as Netsolve [15], Globus
[16] or GridRPC [17]. This type of system is often called ”Forward
Communication”. The major disadvantage of such approach lies in the
following aspects: firstly, it is difficult to make use of the optimisation
algorithms from outside the integrated system, and to incorporate new
optimisation algorithms into the system by end users; secondly, it is
also difficult to replace the job submission and scheduling components;
and finally, users are restricted to formulate their problems within the
restrictions of the system. Figure 1 shows a typical architecture of such
systems.

revision.tex; 18/11/2004; 18:13; p.4



Numerical Optimisation as Grid Services for Engineering Design 5

Computing Servers

Optimisation
Services

Client environment

Optimisation
Service Client

Job
submission

Client

Job
Scheduler

SOAP Messages

Figure 2. Architecture of Service-Oriented Optimisation System

In systems as illustrated in Figure 1, users are required to wrap their
objective functions in a prescribed format and language for the optimi-
sation system to submit to computing resources. It lacks the flexibility
that is desired for accessing the optimisation algorithms from outside
the integrated environments, which makes it infeasible to share optimi-
sation methods among heterogeneous design environments distributed
across multiple administrative domains. Moreover, the proprietary in-
terfaces used by these systems also decide that users will have to
develop individual interfaces for different packages.
Our vision in solving these problems is to embrace recent develop-

ments in Web services and Grid technologies so as to deliver highly
scalable and flexible optimisation services to the design environments
using a generic, loosely-coupled interface. This approach makes numeri-
cal optimisation a stand alone module that can be accessed from various
programming languages, PSEs and middleware without knowledge of
the implementation details. Figure 2 illustrates the architecture of our
proposed system based on the use of ”Reverse Communication” in
interface design, which will be discussed in the next section. Users
can communicate with the optimisation services via standard SOAP
messages using client tools in a design environment of their own choice,
for example, Matlab [18] or Jython [19].

3. Service-Oriented Numerical Optimisation with Reverse

Communication

In this section, we explain the rationale behind the use of the Reverse
Communication interface [20] [21] which makes it possible to apply
service-orientation to present numerical optimisation algorithms.

revision.tex; 18/11/2004; 18:13; p.5



6 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

First it helps to have a brief review of the typical structure of
common numerical optimisation packages and their limitations. Nu-
merical optimisation is an iterative process whereby modelling and
analysis codes are exploited to produce improved designs. The mod-
elling and analysis codes are used to calculate the values of functions
that, in some sense, characterise the performance of the design. These
”measures-of-merit” or ”objective” functions and constraints are often
calculated using high-fidelity analysis codes in fields such as compu-
tational structural mechanics and computational fluid dynamics, and
normally require high performance computing facilities. A requirement
shared among most existing optimisation packages is that users need
to provide the optimisers with a ”hook” to users’ analysis codes. While
this can be implemented in various ways such as shared data files, mes-
sage passing and direct code linkage, a common feature can be observed:
the process is driven by the optimiser in a Forward Communication
style. As a result, users are required to conform to the strict interface
requirements when integrating their modelling and analysis codes into
the optimisation framework. Figure 3 shows a typical structure in which
users have to pass a function pointer to the optimiser.
In addition, in a forward communication optimisation system, the

optimiser not only process the application logics, but also have to man-
age job scheduling, computing resources allocation and visualisation.
Such system structure is only applicable to a single package, or when a
global standard exists. As it is usually unlikely to have such standards,
a more flexible model is needed to carry out the task of integrating
heterogeneous packages into the optimisation process.
We apply a service-oriented structure to the design optimisation

system, by which the optimisation codes are presented as independent
components with standard interfaces. Being Grid services, the optimis-
ers are driven by the optimisation process using standard XML based
messages, and are no longer responsible for the running of the other
parts of the process. It is therefore possible to integrate optimisation
codes with different design systems.
Service-oriented numerical optimisation is only feasible when using

the Reverse Communication mechanism, which establishes a server/client
relationship between the optimiser and its users. The idea of Reverse
Communication is not new. It has seen limited use in some numeri-
cal libraries [20] and optimisation implementations [21]. It provides a
flexible measure to couple the optimisers and analysis code. Reverse
Communication works by iteratively calling the optimiser with the aid
of a flag, which indicates the actions the user requires, such as process
initialisation. Each time the optimiser returns a result, it will indicate
to the user what operations must is expected next and what informa-

revision.tex; 18/11/2004; 18:13; p.6



Numerical Optimisation as Grid Services for Engineering Design 7

Optimiser(*fn, args)

New points to be analysed

Analysis code as
*fn(args)

Analysis results as objective
function or constraints

Figure 3. A typical structure for numerical optimisation with the analysis code
specified as a function pointer(∗fn(args))

tion is required to be passed back. It is essentially a client-server style
of interactions between the optimiser and the user supplied analysis
code, which provides maximum flexibility for the implementation of
the iterative process. The user has complete control over when and
where to request the service (i.e., the optimiser). And it is possible to
provide multiple client tools for different target design environments.
This type of interface avoids the need for tight coupling between the

optimisers and the user’s analysis codes. Therefore it provides a gen-
eral infrastructure for implementing various optimisation algorithms as
server-side services. The concept of implementing optimisers as services
is well-matched to the typical scenarios in a Grid computing environ-
ment (GCE), in which, the ability to perform compositional modelling
is the key for building complex modelling capabilities. The implementa-
tion of optimisation as a Grid service also makes it easy to plug in new
functionalities such as parallelisation and scheduling of computational
jobs and archiving of computational results, which usually rely on the
implementation within the optimisers themselves. Other benefits in-
clude: it becomes unnecessary to keep alive the communication channel
between the optimiser and analysis codes on the computational servers;
it is much easier to implement parallel algorithms in user’s codes; it is
easier to add or replace scheduling algorithms for multiple computing
jobs or exploit best-of-breed third party systems; and optimisation can
be implemented to deal with multiple tasks simultaneously.

revision.tex; 18/11/2004; 18:13; p.7



8 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

A problem of applying Reverse Communication, nevertheless, is that
it may require the re-engineering of the optimisation code in a way that
might only be possible with the availability of source code.
A generic Reverse Communication interface for an optimiser can be

represented as follows.

ret = opt(task, x, f, g, p) (1)

where, on entry, task is the character string indicating the task
required to the optimiser, x represents the current values of the design
vector, f denotes the current function value, g denotes the gradient
vector at the current point, and p denotes the control parameters
provided by the user. The return value ret indicate the status of the
call to the optimiser.

Table I. List of Service Tasks on Invocation

Task Description

“start” Initialise optimisation process from the value provided in x.

“new” Objective function value provided at point x.

“grad” Gradient vector provided at point x.

On return, task contains the next task required by the optimiser, it
can be the following.

Table II. List of Service Status on Return

Task Description

“new” Function value required at the point x, which has been modified

by the optimiser opt.

“grad” Gradient vectors required at the point x.

“stop” Solution converged with results stored in x.

“fail” Optimiser fails to converge, adjust the convergence criteria.

The workflow of the optimisation process using service-orientation
is illustrated in Figure 4, in which the invocations of the service are
controlled by the process, instead of the other way around. Details on
the design and implementation of optimisation as Grid services in this
way are discussed in the following sections.

revision.tex; 18/11/2004; 18:13; p.8



Numerical Optimisation as Grid Services for Engineering Design 9

Analysis codes

Service invocation
(first invocation with  start)

Terminate?

Yes

No

End

Start

Figure 4. Illustrative Flowchart using Optimisation Grid Services

4. Design of the Optimisation Grid Services

This section discusses the design of the optimisation services which
aim to offer a variety of numerical optimisation methods. There are
four major issues: the design of the service architecture, the design of
a generic optimisation service class, the integration of native, propri-
etary numerical optimisation codes, and security management for the
optimisation services.

4.1. Architecture of the Optimisation Service

Numerical optimisation services are stateful Grid services. A complete
optimisation process usually involves multiple interactions with the
optimisation service. The service needs to maintain information con-
cerning the optimisation process, including the choice of optimisation
method, bounds of design variables, control parameters of the method,
and search history of the optimisation process between service invoca-
tions. To ensure service performance, the services need to be able to
restore states quickly once a new request is received. In the case of a
system failure, the services should be capable of recovering previous
states when the system is restored.
When designing the architecture of the optimisation services, the

primary concern is whether it can provide a simple and efficient model
for service state management. Traditional Web services are stateless.

revision.tex; 18/11/2004; 18:13; p.9



10 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

The standard Web services specifications do not bear any notion of
application state. There are mainly two different approaches for state
management of Web services: the transient Grid service model [9] and
the use of operation context.
The transient grid service model is based on OGSA and is technically

specified in OGSI. The basic idea is to create service ’instances’ that en-
capsulate all operation-specific state information. Similar to distributed
objects, the service instances are instantiated through a factory service
and are uniquely identified using Grid Service Handlers (GSH) [8]. All
service interactions for a particular operation are carried out towards
the same service instance. The instances only exist for the lifetime of
the operations and are destroyed once the operations are finished.
Instead of introducing an additional infrastructure like OGSI, the

operation context based approach attempts to provide support for
stateful service interactions within the Web services framework, using
specifications such as WS-Context [22]. Operation states are encapsu-
lated in XML based entities called ”context”. Each service message for
a particular operation contains in its SOAP header a context, or a URI
link to it. The target service retrieves state information through the
context to handles the requests [23].
Between the two approaches, the OGSI transient grid service model

has been selected as the basic infrastructure for our numerical optimi-
sation service for two reasons. Firstly, it can be far superior in system
performance to the context based approach. A complete optimisation
procedure may involve hundreds or thousands of search steps. When
using context, all state information needs to be loaded to the system
every time a request comes in. Compared to the transient service model,
by which the service instance is always maintained in the system and
can be accessed immediately, the accumulative increase on system load
can be significant. Secondly, state management with the transient grid
service model is less complicated. Since all states are maintained by the
service instances, it is not necessary to introduce additional specifica-
tions or to define new data structures. And, unlike the context based
approach, the service clients do not participate in state management.
This simplifies the integration with the optimisation services.
The design of the optimisation service architecture based on the

transient grid service model is shown in Figure 5.
The optimisation service is composed of both stateful and stateless

parts. The stateful part of the service is the instance object that is
responsible for carrying out service operations and keeping the service
state data. Created from the optimisation service class, the instance
objects are maintained in an object repository within the OGSI Con-
tainer for the lifetime of the transient service. And each instance object

revision.tex; 18/11/2004; 18:13; p.10



Numerical Optimisation as Grid Services for Engineering Design 11

Client

Web
Server OGSI Container

Get

refer-
ence

SOAP

HTTP

Object Repository

Optimisation

Service

Instance Object

Optimisation
Service

Instance Object

Optimisation

Service

Instance Object

Operation

CallsO
p
t
i
m
i
s
a
t
i
o
n
 
S
e
r
v
i
c
e


I
n
t
e
r
f
a
c
e


Database

File

System

Storage

Service

Figure 5. Architecture of the Optimisation Grid Service

registers with the container using a unique ID that can used to lo-
cate the object in the repository. The service interface is the stateless
part of the service, which serves as a bridge between the web server
and the OGSI container. It interfaces to the optimisation service by
handling the standard SOAP protocol [27] and associated protocols
for security and data transmission. Each time the service is invoked,
the service interface processes the request message, interacts with the
OGSI Container to locate the target instance object based on the Grid
service handle (GSH) provided by the client, starts the operation on
the instance object, and finally send the results back to the client in
SOAP messages.
The OGSI Container usually maintains the service instance objects

in the system memory so as to minimise response time. It is nevertheless
not reliable since all the service states can be lost when there is a
system failure. Consequently, our design includes permanent storage
mechanisms such as databases, file systems, and data (Grid) services
[28], where data from the service instance objects can be serialised. The
backup operation can be carried out automatically by the optimisation
service, or when the client requires.

4.2. Design of the Optimisation Service Class

The service instance objects constitute the principal part of an opti-
misation service. Each object is an instance of an optimisation service
class, which defines the data structure and behaviour of the service.
In order to facilitate and standardise the service development, a pre-
defined abstract class named OptimisationGridServiceSkeleton is de-
signed to be implemented and extended by new optimisation service
classes. It provides a generic abstraction of optimisation services by

revision.tex; 18/11/2004; 18:13; p.11



12 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

defining standard data fields and interfaces shared by most optimisation
methods. In addition, the abstract class also implements general Grid
services features, which are required for the optimisation services to be
hosted by the selected OGSI environment.
To support optimisation in the Reverse Communication style, the

OptimisationGridServiceSkeleton class includes the following data fields:

− methodType, an integer, which indicates the category that the
optimisation method belongs to.

− optimisationMethod, an integer, which indicates the optimi-
sation method current service instance employs. It is only used
when the service provides multiple optimisation methods.

− designV ectorSize, an integer, which indicates the size of the
design vector.

− designV ector, a double array, which stores the current value of
design variables

− boundSet, a boolean array, which indicates if bounds exist on
design variables

− bounds, a double array, which can be used to set the bounds on
design variables for optimisation methods with simple bounds on
design variables.

− gradientSet, a boolean variable, which indicates whether gradi-
ent information is used by the method

− gradientV ector, a double array, which stores the current value
of the gradient vector. It is used by gradient-based optimisation
routines such as hill climbing

− hessianSet, a boolean variable, which indicates whether the Hes-
sian is used by the methods

− hessianMatrix, a double array, which stores the value of the
Hessian matrix, it is only used by methods which use second order
derivatives

− scaleV ector, a double array, which stores the current value of
the scale vector, and can be set by the client

− objFuncV ector, a double array, which stores the current value
of the objective functions.

revision.tex; 18/11/2004; 18:13; p.12



Numerical Optimisation as Grid Services for Engineering Design 13

− constraintsV ector, a double vector, which stores the current
value of all constraints if these exist

− iterationsRequested, an integer, which stores the number of
iterations requested by the user.

− optimisationHistory, which logs each step of the optimisation,
including values of the design variables, the objective function
values, constraints, and the control parameter values.

− serviceOwner, which records the identity of the owner of the
current service instance. The identity can be a username, or the
subject line of a digital certificate.

The abstract class also defines the following operations:

− Optimise. This operation is called to start or continue the optimi-
sation. Input and output parameters can be defined with reference
to the tasks listed in Table I and II in the previous section. All
optimisation services are required to implement this method.

− Reset. This operation reloads the initial service state that is set
up when the service instance is created, or restores a previous
service state of the service instance. It can be implemented to
enable customized service restart.

− SetServiceParameter and GetServiceParameter. These
two methods allow users to access control parameters of the op-
timisation process. As control parameters of different optimisa-
tion methods are diverse in their formats, no specific data field is
defined for them in the abstract class.

− SaveServiceState. This operation allows users to explicitly re-
quire the current service state to be saved. An index symbolising
the saved state is usually returned, which can later be used by the
RESET method to find the required state information.

In addition, the abstract class also comes with a default constructor,
which can be used to initialise the service instance object when it is
created. It allows users to specify the choice of optimisation method and
the size of the design vector. It also initialises the pre-defined vectors, as
well as the service history log. When required, customised constructors
can also be made to extend or replace the default constructor.
The use of the abstract class for services with different optimisa-

tion methods is demonstrated in the next section with our sample
optimisation services.

revision.tex; 18/11/2004; 18:13; p.13



14 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

4.3. Integration of Legacy Numerical Optimisation Code

An important issue in the development of the optimisation services is
how to integrate the target optimisation methods with the services,
using advanced development environments and tools. Most existing
optimisation methods are written in native programming languages
such as FORTRAN and C/C++ that are different from those used to
build Grid/Web services. Two approaches can be applied to seamlessly
integrate the service programming environment and the optimisation
codes, as shown in Figure 6.

Optimisation

Source Code

Common Language

Runtime (CLR)

Compiler
Service Class

in CLR

Languages

Complied

Binary

JNI
Service

Class in

Java

OGSI.NET /

MS.NETGrid

Globus V.3

COM

Figure 6. Encapsulating Existing Optimisation Code into Service Classes

The first one makes use of the Common Language Runtime (CLR)
[29], which provide multi-language support and seamless integration of
code written in different programming languages, such as FORTRAN,
C/C++, VB and C#. It is therefore possible to have existing source
code compiled into CLR libraries, and be accessed through CLR by
service classes written in different languages. The CLR approach re-
quires access to the source code of the optimisation methods. In many
cases, however, the optimisation methods are only available as binary
libraries. The second approach addresses this problem by using native
interface technologies such as Java Native Interface (JNI) [30] and COM
[31] in the service classes to access the compiled binaries.
Choice between these two approaches can be made based on perfor-

mance, source code availability, and most importantly the selection of
the service hosting environment. When .NET based Grid service envi-
ronments such as OGSI.NET [26] and MS.NETGrid [25] are selected,
legacy optimisation codes can be integrated using either CLR or COM.
On the other hand, if the optimisation services are to be deployed over

revision.tex; 18/11/2004; 18:13; p.14



Numerical Optimisation as Grid Services for Engineering Design 15

Java based Grid service environments such as Globus v.3 [24], JNI will
have to be applied.
In the next section, the use of CLR and COM are demonstrated

through our sample optimisation services. Examples for the use of JNI
can be found in [33].

4.4. Security Management

Security management for the optimisation grid services are mainly con-
cerned with the following three issues: message integrity, privacy, and
service ownership. The service needs to make sure that the messages it
receives have not been damaged or altered, the content of the messages
are only accessible by the sender and the service instance, and only the
requests from the owner of the service instance are accepted.
For Web services, security mechanisms are available at both the

communication level and the message level to ensure message integrity
and privacy. Deploying security over the communication layer risks the
tight coupling of the optimisation services to a particular protocol, and
thus makes the solution less generic. We therefore deploy WS-Security
[34], an XML-based message level security protocol, to address the se-
curity requirements of the optimisation services. WS-Security specifies
how XML signatures should be created to guarantee the authenticity
and integrity of the SOAP messages, and how the messages can be
encrypted to maintain the privacy. The X.509 v3 certificates have been
selected as the security token for the optimisation service. Details on
how WS-Security and X.509 work can be found in [35].

5. Implementations of the Optimisation Grid Services

In this section we demonstrate how the optimisation grid services can
be implemented to provide various numerical optimisation methods.
Two typical examples have been selected, including a gradient based
optimisation routine from the PORT library [36], and a genetic al-
gorithm (GA) from the OPTIONS system [40]. Both services have
been constructed under .NET based OGSI platforms, with the gradient
based service on MS.NETGrid, and the GA service on OGSI.NET.

5.1. Building the Gradient Optimisation Service

As part of this work we have developed a demonstrative optimisation
service based on optimisation routines from the PORT Mathematical
Subroutine Library [36]. The PORT library contains routines that im-
plement Reverse Communication versions of optimisation algorithms

revision.tex; 18/11/2004; 18:13; p.15



16 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

for general constrained / unconstrained minimisation. Source codes of
these routines are available in FORTRAN 77. With the help of the CLR
compiler for FORTRAN, we were able to convert these into libraries
accessible to the service class written in C#, and to construct the
service based on the .NET Grid service hosting environment.
The following optimisation routines are encapsulated in the sample

service:

− RMNF and RMNFB, which minimise general constrained /
unconstrained objective functions using finite-difference gradients
and secant Hessian approximations.

− RMNG and RMNGB, which minimise general constrained
/ unconstrained objective functions using double-dogleg/BFGS
steps.

− RMNH and RMNHB, which minimise general constrained /
unconstrained objective functions using a Hessian matrix provided
by the caller.

Each instance of the gradient service is bound to a particular opti-
misation method. When starting an optimisation process, the message
that requests the creation of a new service instance specifies the target
optimisation method, the size of the design vector, and the boundaries
of the search parameter space. Data fields within the service instance
object will be initialised accordingly. Figure 7 shows the request mes-
sage to create an instance of the gradient optimisation service that uses
RMNF. It also specifies that the optimisation is to be carried out in an
unconstrained 3-dimension parameter space.
The gradient service implements all methods defined in the Op-

timisationGridServiceSkeleton abstract class. In particular, the Set-
ServiceParameter and GetServiceParameter methods have been imple-
mented to handle two extra data fields that are added to the service
class to control the optimisation process:

− taskControl, an integer vector, which contains control variables
for the optimisation.

− convergence, a double vector, which stores convergence criteria
for the problem.

The service has been deployed on the MS.NETGrid platform, which
integrates with IIS [37] and ASP.NET [38]. It is therefore feasible to
implement the service security management by directly exploiting sup-
ports for WS-Security from the Web services enhancement package
[39].

revision.tex; 18/11/2004; 18:13; p.16



Numerical Optimisation as Grid Services for Engineering Design 17

<?xml version="1.0" encoding="utf-8" ?>

  <soap:Envelope

    xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:xsd="http://www.w3.org/2001/XMLSchema">

+ <soap:Header>
  <soap:Body wsu:Id="Id-7946865e-472c-4b9d-b2cc-2b7df53e6ead"

       xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

    <createService xmlns="http://ogsa.gridforum.org/factory">

      <creation xmlns="http://www.gridforum.org/namespaces/2002/10/

                              gridServices">
        <serviceParameters

           xmlns="http://www.gridforum.org/namespaces/2003/03/OGSI">
          <ServiceSettings xmlns="http://www.geodise.org/optimisation">

            <OptimisationMethod> RMNF </OptimisationMethod>

            <DesignVectorSize> 3</DesignVectorSize>

          </ServiceSettings>

        </serviceParameters>

      </creation>
    </createService>

  </soap:Body>

</soap:Envelope>

Figure 7. Request Message to Instantiate the Optimisation Grid Service

5.2. Building the GA Grid Service

The GA grid service provides generic access to well-established imple-
mentation of a genetic algorithm from the design exploration system
OPTIONS [40], therefore allowing users to apply the algorithm in
various computing environments of user’s choice.
The service has been built based on existing compiled Win32 li-

braries, which are not directly accessible by the .NET based service
implementation. To solve this problem, a wrapper library has been
built using the Salford FTN95 compiler. It interacts with the Win32
libraries using COM, while interfacing itself as a .NET library.
The workflow for a typical conventional genetic algorithm is shown

in Figure 8(a). To implement it as a service, it is necessary to convert
it to the workflow shown in Figure 8(b), which effectively divides each
iteration into two steps after the initialisation of the first population
and evaluation of the fitness functions. The first step in one generation
is to request the design variables for the next generation based on
the GA’s evolution mechanisms (selection, crossover and mutation), in
the second step, the values of the fitness functions are sent back to
the Grid service. The main difference between these two workflows is
exactly where the GA operators are applied.
The converted GA provides the following three routines that have

been applied in the implementation of the GA optimisation service.

− ga optdbs, which initialise the internal data structure used by the
optimisation package.

revision.tex; 18/11/2004; 18:13; p.17



18 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

gen=1
Pop(gen) = randomly generate first generation
evaluate fitness of all individuals in the population
while (termination condition = false)

gen = gen + 1
apply generic operators to pop(gen)
evaluate fitness of the population

end

(a) Conventional GA

Get the initial generation from GA service (ga_next (first =1))
while (termination condition = false)

evaluate fitness of the population
notify the GA service on the fitness values (ga_objs)
get the next generation from GA service (ga_next(first=0))

end

(b) Re-engineered service-oriented GA

Figure 8. A Comparison of Conventional and Converted GAs

− ga next, which evolves the GA by one generation.

− ga objs, which returns objective functions and constraints for the
current population to the GA.

The ga optdbs routine is used by the service constructor to initialise
the service instance. It is also used in the implementation of the RESET
service method when a restart of the optimisation process is required.
The ga objs and ga next routines are used in the implementation of
the Optimise service method.
The GA optimisation service has been deployed on the OGSI.NET

platform, which provides a robust attribute-based programming model
for service development. OGSI.NET also provides implementation of
WS-Security, as well as mechanisms to declare the service’s security
policy.

6. Experiences and Discussion

In this section we demonstrate the use of the optimisation services
implemented in the previous section with concrete engineering design

revision.tex; 18/11/2004; 18:13; p.18



Numerical Optimisation as Grid Services for Engineering Design 19

optimisation problems. The experiences show that running optimisa-
tion as grid services can provide a successful solution to the seam-
less integration of numerical optimisation methods for engineering de-
sign optimisation. We also discuss performance considerations for our
service-oriented approach based on the demonstrations.
Both engineering design optimisation problems demonstrated here

are orchestrated using the Matlab scripting language, which is one of
the most commonly used scripting environments to engineers. To access
the optimisation services from Matlab, a Java based service client has
been constructed to handle the interactions and the client-side security
management. Since Matlab runs its own Java Virtual Machine, the
service client can be used the same way as common Matlab commands.

6.1. Airfoil Optimisation Based on Orthogonal Basis

Functions

Shape optimisation of airfoils has been extensively studied in the aerospace
industry, and was chosen here to demonstrate the effective use of our
optimisation services in a concrete engineering design study. The airfoil
geometry is defined as a linear combination of basis functions, as shown
in Equation 5. More details of the problem can be found in [41].

f =
n∑

i=1

wifi (2)

The coefficients of these basis functions are specified as design vari-
ables, and the geometry is modelled in the CAD package ProEngineer
[42]. The lift/drag ratio is designated as the objective function and
computed using the computational fluid dynamics code Fluent [43]. In
order to overcome the problem of the high computational cost of the
CFD analysis, a combination of design of experiments and response
surface modelling methods is used to build a surrogate model, and
then the search is carried out on the response surface model. Detailed
discussion on how these methods can be employed can be found in a
number of papers, for example, [45]. The response surface model for a
two-variable problem (the first two coefficients in the definition) and
corresponding search path is shown in Figure 9. The original and final
airfoil sections are shown in Figure 10 along with the plots of pressure
around these sections.

revision.tex; 18/11/2004; 18:13; p.19



20 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

Figure 9. Response surface model and search path for the two-variable airfoil prob-
lem with the starting point at w1 = 0.6;w2 = 0.1815; l/d = 9.9238. Final point
found at w1 = 1.14;w2 = −0.031; l/d = 12.2636

The Matlab script used to operate the sample service for the airfoil
optimisation is shown in Figure 11. It shows how the optimisation
services can be seamlessly integrated into customised design environ-
ments. Scripts marked out with bold font indicate interactions with the
services.

a. Airfoil Shapes b. Pressure Coefficient

Figure 10. Result of the Airfoil Optimisation

revision.tex; 18/11/2004; 18:13; p.20



Numerical Optimisation as Grid Services for Engineering Design 21

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Java client need to be in the classpath
import optimisationGS_javaclient.*;

% create Client object with specified problem dimension
service = Client(2, false);
optimiser=Optimiser.RMNFB;

% set boundary
boundary=[lvars(1), uvars(1), lvars(2), uvars(2)];
service.setBoundary(boundary);
service.createService(optimiser);

d=[1,1];  % scaling point
service.SetServiceParameter(ServiceParameter.SCALE, d);
service.SetSingleParameter(ServiceParameter.CONVERGENCE, 34, 10.0);

output = OptimisationOutput;
% first call to service
output =  service.Optimise(ServiceTask.START, x, [], [], obj);
x=output.DesignVector;

nfcall =5;
toobig =2;
% main optimisation loop
nloop = 1;
while ( ClientTask.NEW.toString == output.task.toString)

    nf =  service.GetSingleIntParameter(ServiceParameter.TASKCONTROL, nfcall);
    orthfoilRSM.vars=x;
    opt.Search(orthfoilRSM);
    obj = -orthfoilRSM.objfn;

    objhis(nloop)=double(obj);
    if nf <= 0

service.SetSingleParameter(ServiceParameter.TASKCONTROL, (toobig-1), 1) ;
    end
    output= service.Optimise(ServiceTask.FUNC, x, [], [], obj);
    x=output.DesignVector;
    nloop= nloop+1;
    xhis(:,nloop)=double(x);
end
service.destroy ;

Figure 11. Matlab Script for Airfoil Optimisation on the Sample Service

6.2. Optimisation with the GA Grid Service

The implemented GA optimisation service is applied to another more
complicated engineering design optimisation problem, in which parame-
ters in a parametric engine nacelle geometry are modified to study their
effect on the aerodynamic performance of the design. A fully paramet-
ric model was built in ProEngineer, and then linked to the meshing
package Gambit and the solver Fluent to calculate the aerodynamic
performance in terms of the total pressure recovery at the fanface. The
GA service is then used to carry out the optimisation search on the
model. The whole process is automated within the Matlab environment.
The response surface model of the objective function (total pressure

recovery) is shown in Figure 12, together with the best point found
using the GA service.

6.3. Discussion of Performance

The impact on optimisation process performance brought by our service-
oriented approach, i.e. the prolonged optimisation search cycles, can be

revision.tex; 18/11/2004; 18:13; p.21



22 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

0

2

4

6

8

10

0
5

10
15

20
25

0.915

0.9155

0.916

0.9165

0.917

0.9175

0.918

0.9185

axial offset (mm)

The response surface model of the object function (Total Pressure Recovery)

negative scarf angle (deg)

Figure 12. Response surface model of the objective function (Total Pressure
Recovery, *: highlighted maximum)

ascribed to two reasons. The first one is the use of network communi-
cation for interactions between system components. In order to provide
generic and firewall-friendly access to the optimisation services, all in-
teractions are carried out via HTTP, which is inferior in performance
to other low-level protocols. The second reason is the message overhead
brought in by the use of XML and SOAP. For example, for the first
demonstration, to deliver the input data (about 13 bytes), a message of
374 bytes is sent to the service. The overhead is even more significant
when security features like XML Signature and XML Encryption are
applied.
Nevertheless, it should be pointed out that in practical application

of the optimisation services, the performance penalty brought by the
services is relatively insignificant from the users’ perspective. Records
from the first demonstration show that an interaction with the optimi-
sation service takes on average 0.04687 seconds, while each calculation
of the objective function takes approximately 1800 seconds. It is obvious
that performance of the optimiser is not critical with regard to the
entire optimisation process, and the performance impact can actually
be ignored.

7. Conclusions and Future Developments

In this paper, we have introduced a generic, service-oriented approach
for applying numerical optimisation algorithms in engineering design.

revision.tex; 18/11/2004; 18:13; p.22



Numerical Optimisation as Grid Services for Engineering Design 23

Presenting numerical optimisation as Grid services makes it possible to
integrate desired optimisation methods with target engineering design
environment, regardless of the differences in programming languages or
executing environments. It also makes it feasible to build engineering
design systems in a truly distributed environment.
The optimisation service relies on the Reverse Communication model,

which makes it possible for optimisation codes to be implemented as
services. The architecture of the optimisation service was designed
to provide strong support for management of the optimisation states
that are essential to Reverse Communication. Issues including the de-
sign of the service class, integration of existing optimisation packages,
and security management of the services were discussed in detail to
provide guidance for implementing optimisation as grid services. We
demonstrated our approach by showing optimisation services built from
existing numerical optimisation packages with different levels of ac-
cessibility. Results of the applications of the services in solving real
engineering design optimisation problems were presented to validate
the approach.
Future work will focus on the adaptation of the optimisation services

alongside the development of grid service infrastructures within the
Grid computing community. Currently, the service has been designed
and developed based on the OGSI. With the introduction of the WS-
Resource Framework (WSRF) [46], which is a refactoring and evolution
of OGSI towards open standard Web services, the optimisation ser-
vices will be revised to adapt to new service hosting environments.
However, as explained in [47], the transition from OGSI to WSRF is
not revolutionary but evolutionary. Therefore the basic architecture of
the optimisation services and the way the services operate will not be
affected. Changes will mainly be applied to the implementation details.
In addition, we will also attempt to apply our approach to more

optimisation algorithms. Application of the optimisation services in
areas other than engineering design, such as structural problems and
photonic devices, will also be investigated.

Acknowledgements

This work is supported by UK e-Science Pilot Project ”Grid-Enabled
Optimisation and Design Search for Engineering (Geodise)” (UK EP-
SRC GR/R67705/01). We also gratefully acknowledge support from
Microsoft.

revision.tex; 18/11/2004; 18:13; p.23



24 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

References

[1] Papalambros, P.Y., and Wilde, D.J. Principle of Optimal Design. ISBN
0-521-62727-2. Cambridge University Press, 2000.

[2] Baalbergen, E.H., and Van der Ven, H. SPINEware: A framework for
user-oriented and tailorable metacomputers, NLR-TP-98463, National
Aerospace Laboratory, NLR, 1998

[3] Interdigitation for Effective Design Space Exploration Using iSIGHT.
Journal of Structural and Multidisciplinary Optimization, Vol. 23, No. 2,
pp. 111-126, 2002

[4] ModelCenter. http://www.phoenix-int.com/2004/

[5] STEP. http://www.steptool.com/, 2004

[6] Rohl, P.J., Kolonay, R.M., Irani, R.K., Sobolewski, M., Kao, K.,
and Bailey, M.W. A Federated Intelligent Product Environment. 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Long Beach, CA, September 6-8, 2000

[7] Fintan Bolton. Pure CORBA. ISBN 0672318121. Sams, 2001.

[8] Foster, I., Kesselman, C., Nick, J.M., and Tuecke, S. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration. Open Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002.

[9] Tuecke, S. et. al. Open Grid Service Infrastructure (OGSI) Version 1.0.
Global Grid Forum. http://www.gridforum.org/ogsi-wg/

[10] Cox, S.J, Chen, L, Campobasso, S, Duta, M.H, Eres, M.H, Giles, M.B,
Goble, C, Jiao, Z, Keane, A.K, Pound, G.E, Roberts, A, Shadbolt,
N.R, Tao, F, Wason, J.L, Xu, F. (2002) Grid Enabled Optimisation and
Design Search (GEODISE). UK e-Science All Hands, Sheffield, 2-4 Sept 2002

[11] Michael C. Ferris, Michael P. Mesnier, and Jorge J. More, NEOS and Condor:
Solving Optimization Problems Over the Internet, ACM Transactions on
Mathematical Software, Vol. 26, No.1, March 2000, pp 1-18.

[12] Fourer, R., Gay, D.M., and Kernighan, B.W. AMPL: A Modeling Language
for Mathematical Programming,Duxbury Press, Brooks/Cole Publishing
Company, 2002

[13] Abramson, D, Lewis, A. and Peachy, T., ”Nimrod/O: A Tool for Automatic
Design Optimization”, The 4th International Conference on Algorithms &
Architectures for Parallel Processing (ICA3PP 2000), Hong Kong, 11 - 13
December 2000

revision.tex; 18/11/2004; 18:13; p.24



Numerical Optimisation as Grid Services for Engineering Design 25

[14] Shields, M.S., Rana, O.F., Walker, D.W., Li, M., and Golby, D. A
Java/CORBA-Based Visual Program Composition Environment for PSEs,
Concurrency: Practice and Experience, Vol. 12, pages 687-704, 2000.

[15] Arnold, D., Dongarra, J. ”The NetSolve Environment: Progressing Towards
the Seamless Grid,” 2000 International Conference on Parallel Processing
(ICPP-2000), Toronto, Canada, August 21-24, 2000.

[16] Foster, I., Kesselman, C., Tuecke, S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International J. Supercomputer Applica-
tions, 15(3), 2001.

[17] Nakada, H., Matsuoka, S., Seymour, K., Dongarra, J., Lee, C., and
Casanova, H. GridRPC: A Remote Procedure Call API for Grid Computing.
http://www.eece.unm.edu/ apm/docs/APM GridRPC 0702.pdf

[18] Hunt, B., Lipsman, R., and Rosenberg, J. A Guide to MATLAB:
for Beginners and Experienced Users. ISBN 0521-00859-X. Cambridge
University Press, 2001.

[19] Bill, R. Jython for Java Programmers. ISBN0735711119. Pearson Education,
2001.

[20] Dongarra, J., Eijkhout, V., and Kalhan, A. Reverse Communication Interface
for Linear Algebra Templates for Iterative Methods, UT, CS-95-291, May,
1995

[21] Gay, D.M. Usage Summary for Selected Optimisation Routines.
http://netlib.bell-labs.com/cm/cs/cstr/153.pdf

[22] OASIS(WS-CAF), Web services Context (WS-CTX).
www.iona.com/devcenter/standards/WS-CAF/WSCTX.pdf

[23] Parastatidis, S., Webber, J., Watson, P., and Rischbeck, T. A Grid
Application Framework based on Web Services Specifications and Practices.
http://www.neresc.ac.uk/projects/gaf

[24] The Globus Alliance. Globus Toolkit 3.2 Documentation. http://www-
unix.globus.org/toolkit/docs/3.2/index.html

[25] The MS.NETGrid Project. http://www.epcc.ed.ac.uk/∼ogsanet/

[26] The OGSI.NET Project.
http://www.cs.virginia.edu/∼humphrey/GCG/ogsi.net.html

[27] Simple Object Access Protocol (SOAP) and XML Protocol (XMLP).
http://www.w3.org/2000/xp/Group/

[28] Wason, J.L, Molinari, M, Jiao, Z and Cox, S.J. (2003) Delivering
Data Management for Engineers on the Grid. Euro-Par 2003 Parallel

revision.tex; 18/11/2004; 18:13; p.25



26 Gang Xue, Wenbin Song, Simon Cox, and Andy Keane

Processing,413-416

[29] Common Language Runtime (CLR) Overview. http://msdn.microsoft.com/
library/en-us/cpguide/html/cpconCommonLanguageRuntimeOverview.asp

[30] Java Native Interface (JNI). http://java.sun.com/

[31] Microsoft Common Object Model. http://www.microsoft.com/Com/default.asp

[32] Java Virtual Machine (JVM).
http://java.sun.com/docs/books/vmspec/html/VMSpecTOC.doc.html

[33] Song, W, Keane, A.J, and Cox, S.J. CFD-Based Shape Optimisation with
Grid-Enabled Design Search Toolkits. Proceedings of UK e-Science All
Hands Meeting 2003, pp. 619-626.

[34] The Web Service Security (WS-Security) Specification. http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/

[35] Chappell, D. WS-SECURITY New Technologies Help You Make Your Web
Services More Secure. MSDN Magazine, April 2003.

[36] PORT Mathematical Subroutine Library. http://www.netlib.org/port/

[37] Microsoft Internet Information Services (IIS).
http://www.microsoft.com/WindowsServer2003/iis/default.mspx

[38] Microsoft ASP.NET. http://www.asp.net/Tutorials/quickstart.aspx

[39] Ewald, T. Programming with Web Services Enhancements 1.0 for Microsoft
.NET. http://msdn.microsoft.com/webservices/building/wse/default.aspx?
pull=/library/en-us/dnwse/html/progwse.asp

[40] Keane,A. J. OPTIONS Design Exploration System.
http://www.soton.ac.uk/ ajk/options.ps

[41] Song,W, Keane, A.J, Eres, M.H, Pound, G.E, Cox, S.J. Two Dimensional
Airfoil Optimisation using CFD in a Grid Computing Envirionment.
Euro-Par 2003 Parallel Processing, Lecture Notes in Computer Science,
2790, 525-532

[42] ProEngineer. http://www.ptc.com, 2004

[43] Introduction to Fluent. http://www.fluent.com/software/fluent/

[44] Schwefel, H. Evolution and Optimum Seeking. Wiley, New York (1995).

[45] Keane,A. J. ”Wing Optimization Using Design of Experiment, Response
Surface, and Data Fusion Methods”, J. Aircraft 40(4) pp. 741-750 (2003)

revision.tex; 18/11/2004; 18:13; p.26



Numerical Optimisation as Grid Services for Engineering Design 27

[46] Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin,
I., Snelling, D., Vambenepe, W. The WS-Resource Framework. http://www-
106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf

[47] Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Maguire,
T., Snelling, D., and Tuecke, S. From Open Grid Services Infrastruc-
ture to WSResource Framework: Refactoring & Evolution. http://www-
106.ibm.com/developerworks/library/ws-resource/ogsi to wsrf 1.0.pdf

revision.tex; 18/11/2004; 18:13; p.27



revision.tex; 18/11/2004; 18:13; p.28


