
The GRID: Computational and Data Resource Sharing in 
Engineering Optimisation and Design Search

Cox SJ, Fairman, MJ, Xue, G, Wason, JL, +Keane, AJ
Department of Electronics and Computer Science

+School of Engineering Sciences
University of Southampton

{sc, mjf00r, gx00r, jlw98r}@ecs.soton.ac.uk, ajk@soton.ac.uk

Abstract

In this paper we present our GRID architecture for 
engineering optimisation and design search. We are 
developing a system that will allow seamless access to 
an intelligent knowledge repository, a state-of-the-art 
collection of optimisation and search tools, industrial 
strength analysis codes, and distributed computing and 
data resources. We focus on the underlying open 
standards technologies required to implement our 
system, and give exemplars of how they are being 
exploited at present. Of particular importance is the 
interchange of data throughout the system, for which 
we have adopted W3C standards (e.g. XML), and the 
ability to link together each of the components in the 
form of web services.

1. Introduction

Engineering optimisation and design search is the 
process whereby existing engineering modelling and 
analysis capabilities are exploited to yield improved 
designs. In the next 2-5 years intelligent search tools 
will become a vital component of all engineering design 
systems. Such facilities will steer the user through the 
process of setting up, executing and post-processing 
design search and optimisation activities in a variety of 
disciplines. 

A major driving force in these developments is the 
need to allow distributed design teams from multiple 
enterprises to access design and analysis capabilities via 
the GRID. The GRID has been characterised by a 3 
layer model which consists of (i) a computation / data 
grid, (ii) an information grid, and (iii) a knowledge grid 
(Figure 1.)

In this paper we focus on the technologies which we 
are using to implement our grid-based system. In 
section 2 we introduce the Grid architecture for our 
optimisation system. Section 3 discusses the open 
standards technologies which we are using. We discuss 

the computation, data, information and knowledge 
layers of the grid in sections 4-7 and draw our 
conclusions in section 8.
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Figure 1: GRID Architecture

2. Optimisation and Design Search Grid

2.1. Architecture
Figure 2 shows our grid-based system. In a typical 

scenario of, for example, wing design, an engineer may 
couple together Computer Aided Design (CAD) tools, 
analysis codes for Computational Fluid Dynamics 
(CFD), or Finite Element Analysis (FEA), and tools for 
optimisation.  The resulting sequence of computations 
may be performed on local or national machines, or on 
pay-per-use internet cluster resources e.g. [1].

One important new component in the higher levels of 
the GRID is the application of database technology, 
which has conventionally only been used to store 
information about the products designed using the 
system. Key questions in the process of, say a typical 
wing design optimisation, are: What previous designs 
have been explored and how can I develop them 
further? Which optimisation strategies are likely to 
prove effective? Which computational resources have 
the analysis codes I require, and when will my results be 
ready? Here there are new requirements for information 
and knowledge to be extracted from 



APPLICATION 
SERVICE 

PROVIDER
COMPUTATION

PORTAL
Reliability
Security

QoS

OPTIMISATION

Engineer

Parallel machines
Clusters
Internet Resource Providers
Pay-per-use

Optimisation 
archive

Intelligent 
Application 
Manager

Intelligent 
Resource 
Provider

Licenses 
and code

Session 
database

Design 
archive

CAD System
CADDS
IDEAS
ProE

Analysis
CFD
FEA
FM

OPTIONS
System

Knowledge 
repository

Traceability

Legend:
Exemplars

Issues

Visualization

GLOBUS/Condor

Ontology and 
Language for 
Engineering & 
Optimisation and 
Design Search  

Figure 2: Engineering Optimisation and Design Search Architecture

automatically generated databases. Encapsulating and 
exploiting knowledge at all levels of the grid will enable 
new designs to be developed more rapidly, or at lower 
cost. Our system therefore includes a knowledge 
repository which may be queried.

The architecture of the system consists of four main 
components which we now discuss in turn.

2.2. Portal
This is the web-based point of access to the system, 

which allows engineers to locate and combine the 
services they require, giving advice as necessary. It 
provides grid-based seamless access to an intelligent 
knowledge repository, a state-of-the-art collection of 
optimisation and search tools, industrial strength 
analysis codes, and distributed computing and data 
resources. 

It provides the information capabilities of a system 
like Tambis [2] which “aims to aid researchers in 
biological science by providing a single access point 
for biological information sources round the world. The 
access point will be a single interface (via the World 
Wide Web) which acts as a single information source. It 
will find appropriate sources of information for user 
queries and phrase the user questions for each source, 
returning the results in a consistent manner which will 
include details of the information source.”

The service portal has the following roles:
? The engineer interacts with the system through the 

service portal. 
? To advise the engineer which optimisations work 

well with which applications on which resources.
? It houses an intelligent knowledge repository to 

determine which web service databases contain the 
information required to answer questions it is 
posed. The knowledge base is built up over time in 
a manner similar to that used to cache queries on 
web search engines.

? To provide traceability and security for results 
produced on the system

? To negotiate quality of service (QoS) and 
reliability guarantees with other service providers. 

2.3. Application Service Provider
The engineer requires access to both design and 

analysis tools, supported by a database which will 
provide information about previous designs. Whilst 
some tools may run adequately as a user application 
across a server, commercial compute-intensive analysis 
codes should be also available on a pay-per-use basis to 
run on external computational facilities provided by the 
resource provider. An early exemplar of this was 
developed at Southampton [3].



2.4. Optimisation service provider
The optimisation technology is provided by the 

OPTIONS [4] system, which has been continually 
developed over the last 15 years. OPTIONS is used for 
design optimisation and includes a variety (over 40 at 
present) of different optimisation algorithms.

At the start of the optimisation process, the engineer 
needs to provide initialisation information– in particular 
the analysis codes to be coupled together, the permitted 
methods by which a design may be modified, and an 
objective function by which each design may be 
evaluated. The optimisation service will then coordinate 
the maximization (or minimization) of the objective 
function to improve the design.

In our current implementation, the optimisation 
service has a knowledge repository of recommended 
settings to use for each optimisation control variable. 
Depending on the level of automation, the optimisation 
service may automatically enter or suggest to the 
engineer suitable values to use. The optimisation 
service then retrieves the required program from the 
application provider and executes it on computation 
resources provided by the resource provider. 

The optimisation process is divided into several 
‘stages’, which require single or multiple evaluations of 
the objective function. Each stage is a transactional unit 
and after successful completion the optimisation’s 
related state and current data is automatically archived. 
Our framework fits into the model of web orientated 
application architectures such as Sun Microsystem’s 
Java Enterprise Server where each optimisation code 
would be an Enterprise Java Bean. Since each step is a 
transactional unit we can provide consistency and 
durability and allow for the possibility of multiple 
independent objective function evaluations to be made 
in a naturally parallel way.

Furthermore since all data is stored along with 
session identity information it is flexible enough to meet 
the requirements of different requesters and can deal 
with multiple requests at the same time.

2.5. Resource Provider
The resource provider’s main role is to execute code 

to return the value of the objective function which is 
being optimised. It has a database of computational 
resources which it provides and may in addition need to 
negotiate any licences required from the application 
service provider when commercial code is used.

2.6. Business Process
In the process of service integration and 

collaboration, the service providers and requesters must 
come to an agreement about how the interactions will be 
conducted. This is done through negotiation between 
the two sides. To carry out the negotiations, both sides 
should have a common protocol to understand messages 

from the other side and access to a knowledge base to 
inform the decision process. 

A computer resource in a large-scale computational 
environment is expected to have such negotiations and 
interactions with different kinds of service requesters. 
To make a true sharing and integration of the resources, 
it is necessary to have a standard business process - the 
knowledge for negotiating and interacting - for all web 
services and service consumers. 

The business process model for web service 
integration in an engineering design optimisation 
environment can be abstracted from practical 
experience in various applications of web services. A 
standard workflow for interactions is to be built as well 
as a framework for message deliveries. In addition, the 
model should be able to adapt itself to meet new 
demands from the system. This requires an extensible 
workflow and message framework. 

The BizTalk system brought forward by Microsoft 
[5] provides a good reference to the design of a 
business process model for the engineering design 
optimisation system. BizTalk brings a whole solution to 
carry out e-business among different web services 
providing tools for defining business workflows and 
message framework. It is also scalable and flexible to 
meet specific requirements and future extension. 

3. Open Standards Technology

Engineering design optimisation requires various 
computational and data resources to be integrated. To 
achieve this, technical obstacles brought about by the 
differences between system environments, software and 
programming languages must be overcome. One 
solution to this problem is to wrap various computer 
systems in a common interface, which ‘talks’ with the 
others in a standard format. The recent progress in 
several XML-based open standard technologies [6] has 
brought major advances in this approach. These contrast 
with traditional Java/ Jini based approaches by adopting 
very simple lightweight protocols. Figure 3 shows how 
the technologies discussed in the next sections are 
related to each other.



UDDI Regis try UD DI R egistry
UD DI R egistry

XML
Schem a

W SDL File

W eb Services

SO AP
M essageSO AP

M essageSO AP
M essage

Service U sers

Figure 3: Use of XML technologies to provide 
web services

3.1. XML and XML Schema
XML provides a method to contain data of structured 

format in plain text. Data in the form of XML are 
transferable between almost any computer system and 
software application that have the ability to read plain 
text. XML, as plain text, also works well with existing 
Internet Protocols like HTTP or SMTP. Thus XML is 
an ideal medium for communication between different 
computer systems. Furthermore security can be 
provided by tunnelling the XML through a secure layer 
such as SSL [7].

XML Schema is a W3C alternative specification to 
the Document Type Definition (DTD) for describing the 
structure of an XML instance document. Compared to 
the DTD, XML Schema is both more powerful, 
incorporating a set of rich data types, and more flexible, 
supporting sophisticated user-defined data structures. 
So with XML Schema, it is possible to use XML to 
reflect the complexity of the existing computer 
resources. Also by using XML Schema, validation of 
data is transferred from the application role to the 
parser, thus making the separation between data logic 
and application logic possible.

3.2. SOAP and XML Protocol
The Simple Object Access Protocol (SOAP) [8], 

provides a simple and extensible framework to define 
how an XML message is structured. It is a lightweight 
protocol for the exchange of information in a 
decentralized, distributed environment and is easily 
carried via various Internet protocols, such as HTTP 
and SMTP. SOAP allows security systems like a 
firewall to identify an XML message without needing to 
understand its contents, thus it is feasible to prevent the 
blocking of unknown HTTP requests. SOAP also 
provides rich semantics for indicating encoding style, 
array structure, and data types. SOAP is currently under 
inspection by the W3C consortium and is a prototype of 
the future XML Protocol.

3.3. Web Service and WSDL
With XML Schema, SOAP and their supporting 

software, it is feasible to wrap various computer 
resources into similar XML-interfaced web 
components, which are called web services. These 
communicate with each other using XML messages. To 
access a web service properly, description about the 
service interface is required.

Web Service Description Language (WSDL) is one 
of the emerging technologies for this purpose. WSDL, 
written in XML, describes a web service as a set of 
endpoints. Each endpoint consists of several operations 
and is bound to a specific network protocol (e.g. HTTP 
or SMTP). The input and output messages are defined 
for an operation and XML Schema is used in the WSDL 
file to provide the data types and structures to define the 
messages. Together with the XML Schema, it provides 
a complete definition for the interface of a web service 
and allows programmatical access to the service, in the 
manner of an API. Tasks like data requests or execution 
of a piece of code are then performed by sending and 
receiving XML messages using the SOAP mechanism. 
For the publishing, discovery and integration of a web 
service, additional technologies are needed.

3.4. UDDI
The Universal Description, Discovery and 

Integration (UDDI) specification defines a way to 
publish and discover information about web services 
[9]. It is a collaboration between Ariba, IBM and 
Microsoft who each provide UDDI services. The UDDI 
project includes a UDDI business registry and a set of 
operations on it. The UDDI registry, an XML file, 
identifies a web service and provides information about 
the service. Other programs use the registry to get the 
information about the web service and check 
compatibility with it. Categorisation of web services in 
the registry enables location and discovery. UDDI 
together with WSDL, provides the ability to locate and 
programmatically interface to the web service. This 
allows the web service to be used in a program in a 
similar way to a software component, and hence 
simplifies the service collaboration.

We now discuss the levels of the grid in more detail.

4. GRID: Computation

This section considers the concept of resource 
management and computational resources. Condor [10] 
is used as an example of an existing resource sharing 
system. It is chosen because its concepts and 
architecture are well suited to the GRID model and are 
applicable to other and new resource sharing systems. 
We demonstrate how it can be wrapped and offered as a 
generic web service.



4.1. Condor Introduction
Condor is a software system that creates a High-

Throughput Computing (HTC) environment by 
harnessing the power of UNIX and NT clusters and 
workstations. It can manage dedicated clusters however 
its main appeal is that it is able to use pre-existing 
resources in a distributed ownership context where 
computers are sitting on people’s desks.

When jobs are submitted to Condor it finds an 
available machine in its organisation’s pool to run the 
job. Machines become available once they have been 
idle for a specified period for example when the owner 
goes to lunch. Jobs are migrated over the network to the 
machine. If the machine becomes unavailable and the 
job has not finished (such as if a user returns to their 
desk after lunch), Condor checkpoints it and either 
migrates the job to another machine or queues it to disk 
until a machine becomes free.

4.2. Resource Management
Condor provides a distributed resource management 

system, which matches the resource consumer’s needs 
with the resource owners. Instead of attaching 
properties to a job queue directly, Condor implements a 
publishing system where each machine advertises their 
resource properties called ClassAds. Each submitted job 
specifies a resource request ad, which defines the 
required and preferred run properties of the job. Condor 
performs brokering by matching and ranking the 
ClassAds with a job’s resource requests.

4.3. Condor and the GRID
Whilst we treat Condor as fundamentally a resource 

provider at the lowest level of the GRID, its overall 
architecture fits into the component layers of the GRID 
model. If we view the model from the bottom up, at the 
computation resource level are the machines in 
Condor’s pool with data and control between machines 
and the Condor control daemons being performed 
through Remote Procedure Calls. Each machine’s 
ClassAds publishing provides resource description and 
discovery at the information layer. Condor provides the 
resource integration of the information layer with its 
resource management and migration. At the knowledge 
layer is the resource manager, which performs 
sophisticated resource brokering. 

Organisational
Pool

ClassAds

Resource
Manager

Execution

Submission
Description

Sumbit
Machine

Negotiation

Scheduling

System CallsMigration &
Checkpointing

Matching

Knowledge

Information

Computation

Condor Application

Figure 4: Condor GRID Model

There are however some fundamental differences 
between Condor and the GRID. As a project it began 
development before the concept of the GRID came into 
existence. As such parts of the system, for example the 
communication system use older technologies (RPC) 
and Condor uses its own proprietary systems for 
resource description, discovery and integration. 
Furthermore, unlike the components in our GRID 
architecture, Condor does not expose a programmatic 
interface as a web service: it is more UNIX-like in that 
interaction between users and Condor are through the 
command line.

4.4. Condor as a Web Service
It is feasible to integrate Condor into the GRID 

because of its clear separation of its computational and 
information layers. We now show how it is possible to 
expose Condor’s resource management ability 
programmatically. Using Microsoft’s .NET framework 
[11] and Visual Studio.NET, Condor has been 
successfully wrapped as a C# web service.
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Figure 5: Condor Web Service

4.5. Legacy System Integration
The two most important Condor programs are 

condor_submit and condor_status. The first 
provides the user with the ability to monitor and query 
the machine pool. Submision of jobs is performed by 
the condor_submit command, which requires a 



submit-description file. Other commands provide 
control, monitoring and querying of submitted jobs.

It is possible to launch any command line executable 
as a process from another program. Input to the 
command line executable is through the standard input, 
read files, pipes, and process start properties. Output is 
retrieved from the standard output, standard error, 
written files, and pipes. Construction of an API is then 
achieved using standard IO and process function calls.

Code wrapped around Condor by modelling each of 
its programs as a process, facilitates the creation of an 
API. It then becomes possible to make use of these 
APIs in the web service code to expose a programmatic 
interface to Condor on the Internet.

ClassAds and Submission Description files (Job 
Requirement descriptors) are flat files, which are 
translatable to and from XML documents and have 
structures that are directly describable as XML Schema 
documents, as shown in Figure 6. 
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WSDL provides a standard way for the Condor web 
service to describe its abilities. Contained in the WSDL 
document is Condor’s functionality, method of 
interaction (SOAP), job sessions, and the structure of 
the data types it exchanges.

4.6. Submitting Jobs
Submitting jobs to Condor requires both a 

submission description file and an executable. Condor 
allows heterogeneous submission of executables on 
differing platforms. No special coding is required; the 
only restriction is that to support check pointing, the 
code must be statically re-linked with Condor’s 
libraries. Where this is not possible e.g. in the case 
where the source code is not available, then check 
pointing is not available and the executable must run 
until it completes, fails or is stopped by Condor to allow 
the resource owner to use their machine.

Condor uses the concept of universes to cater for the 
differing execution environments. For non-parallel 
code, there are the standard and vanilla universes, 

supporting re-linkable and non re-linkable code 
respectively. The MPI, PVM and Globus universes give 
support for parallel code.

From a commercial usage point of view, the vanilla 
universe is ideal in that the program supplier does not 
have to reveal the source code. When using Condor as a 
web service, the most basic level of executable 
environment is the vanilla universe because it requires 
the resource consumer to perform the compilation and 
linking. The main disadvantage of the vanilla universe, 
from the web service provider point of view, is that to 
provide an adequate level of service, a dedicated pool 
of executing machines is necessary because otherwise 
jobs would be regularly killed as owners used their 
machine for other purposes.

Where an organisation has a large number of non-
dedicated machines it wishes to cycle steal from, then 
the web service must be capable of supporting re-
linking of source code. It is possible to run an 
executable in the standard universe which has be linked 
by the resource consumer, however this is not ideal as it 
requires Condor’s libraries and compiler. We have been 
concentrating on Condor but it is not the only resource 
management system. Is is desirable that a resource 
consumer need no knowledge of internal workings of a 
resource management service otherwise each consumer 
would need to support every resource managers method 
of linking. Instead the web service should describe in its 
WSDL the supported programming languages in its 
standard universe and perform the compilation itself.  

4.7. Separation of Management from 
Computational Resource

It is desirable to be able to separate Condor’s 
resource manager system from the resource pool. 
Condor’s architecture requires that each machine within 
the system (including submission machines) run Condor 
control daemons, which communicate with a central 
manager and the submission machine through RPC. 
This architecture is not suited to large numbers of 
distributed computational resources on an Internet 
scale. While the problem of remote submission of jobs 
from an non-Condor machine is possible through legacy 
system integration (section 4.5), it is difficult to add 
machines to Condor’s organisational pool which are not 
on a local network because of the usage of RPC and the 
possibility of firewalls. Also machines in the pool are 
available only to Condor and a single Condor central 
manager (i.e. there is no sharing among Condor 
systems.)



Central Manager

Condor_Collector
Condor_Negotiator

Submit Machine

Controlling Daemons

Condor_Shadow Process

Execution Machine

Controlling Daemons

User's Job

User's Code

Condor_Syscall_Library

Checkpoint File

Figure 7: Condor Pool Architecture

Separation of resource manager from computational 
resources would allow sharing of resources amongst 
brokers, while at the same time providing an 
architecture that is capable of achieving a much more 
scalable system of distributed computational resources. 
With this it becomes possible to introduce a business 
process at the level of computational resources where 
each resource could charge for computation time used. 
The resource manager and computational resources 
become separate services on the Internet each with a 
defined role and business process. 

4.8. Computation Issues
At the knowledge level sits the resource manager, 

which provides a brokering service to match resource 
requests with resource offers. However, now that each 
computational resource is separate from any particular 
resource manager, a user or other GRID service may 
wish to access the computational resource directly or in 
combination with the resource manager. This creates an 
environment where resource managers and 
computational resources compete to provide superior 
services and lower costs. 

 A question not answered here is support for check 
pointing and migration. If computational resources are 
to be shared among resource managers, then it is 
necessary to define a standard mechanism for this. Who 
does the linking, the resource manager or the 
computation resource, or neither? What about code 
security and how to prevent malicious or bad code from 
effecting a computational resource or interfering with 
another’s code? A solution to these issues may be to use 
a platform independent programming solution such as 
Java [12] or the Microsoft Common Language Runtime 
System [13], which both run code in a sand box 
environment with a definable access policy. 

5. GRID: Data

5.1. Metadata
Data is an essential part of the optimisation and 

design search process. Integration of the Grid relies 
heavily on the data exchanged between various 
computer systems. Definitions of types and structures of 
the data are required to ensure a correct operation. The 
web services use XML for data exchange. So it is 
necessary to provide a generic, cross-platform method 
to define the XML data types and structures.

The solution is still XML, or more specifically, XML 
Schema. XML Schema uses XML itself to define the 
types and structures of XML data. It provides rich 
support for basic data types like integer and string as 
well as common data structures available in computer 
programming languages. It is also possible to construct 
user defined data formats, such as postcodes. 

The flexibility of XML enables the XML Schema to 
support the sophisticated data structures necessary to 
define complex user types for web services. As an 
example, a reply to the Condor_Status operation is to 
bring a list of “ClassAd”s consists of two attributes: 
“Arch” and “OpSys”, corresponding to the system 
architecture and operating system, which are assigned 
specific values. A fragment of the XML Schema 
describing the message is shown in Figure 8. 

Another advantage of using XML Schema as the 
data type and structure information provider is that 
XML Schema works with the XML parser, rather than 
the application. This provides a separation between the 
application logic and the data logic, which simplifies 
(and reduces) any maintenance required as a result of 
changes on either the data or application side.

XML Schema is designed to be reusable. A new 
piece of schema can be built based on several existing 
ones. This brings more efficiency and basic elements 
for a knowledge system. There have already been 
several services for publishing XML Schemas on the 
Internet, (such as BizTalk.org).



<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
                       elementFormDefault="qualified">

<!-- The other pars... -->
      <xsd:element name="Condor_State">

<xsd:complexType>
<xsd:sequence>
   <xsd:element name="ClassAd" type="ClassAdType" minOccurs="1"/>

         </xsd:sequence>
</xsd:complexType>

       </xsd:element>

<xsd:complexType name="ClassAdType">
     <xsd:sequence>

<xsd:element name="Arch" type="Architecture" minOccurs="1"
                                 maxOccurs="1"/>
          <xsd:element name="OpSys" type="OperatingSystem" minOccurs="1"
                                 maxOccurs="1"/>
     </xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="Architecture">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Intel"/>
<xsd:enumeration value="Sun"/>
<!-- and so on ...  -->

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="OperatingSystem">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Windows"/>
<xsd:enumeration value="Linux"/>
<!-- and so on ...  -->

</xsd:restriction>
</xsd:simpleType>

<!-- The other pars... -->
</xsd:schema>

Figure 8: Example XMLSchema Listing

5.2. Role of Databases
Knowledge, information, data and computation exist 

at various points in the architecture; for example, 
intelligent decisions must be made to carry out resource 
management. It is desirable to database information at 
each web service for the following reasons:
1. Each web service (resources, application service 
provision and optimisation) can use the archive itself to 
make intelligent decisions about its own function.
2. The entry portal may query these databases to build a 
knowledge archive for the system. Queries may be 
offered as part of the WSDL specification for the 
service.
3. Information about users, times, machines,
optimisation strategies and results can be transparently 
logged by the web service as XML conforming to an 
XML Schema and automatically archived using JDBC 
[14, 15]. If a database does not yet exist for this data it 
can be generated automatically from the XML Schema. 
When the structure of the XML Schema changes, for 
example if a new optimisation method is added; the 
database must also evolve– we are currently working on 
this.

5.3. Automated Databasing Methods
Each web service is described by a WSDL document 

(see section 3.3) which includes an XML Schema to 
describe the data types in the SOAP messages. We have 
developed methods to generate a new database 
automatically from the XML Schema contained in a 

web service’s WSDL [14]. Subsequently, any XML 
request and response data can be transparently logged 
and archived in this database, using the XML Schema 
as a guide.

The rich data type and structural support of XML 
Schema makes it a good candidate for automatic 
conversion to a database schema, and its original 
language requirements specify a type system adequate 
for import/export from database systems [16]. The fact 
that it is also defined in XML means it can be parsed 
using existing, generic tools. Other features such as the 
ability to define default values, scoped unique values, 
keys and relationships can also be employed for use 
with databases. 

Relational databases can be manipulated with SQL 
using JDBC, which a Java API for accessing databases 
which is independent of vendor and platform. We have 
implemented a set of tools for database generation and 
data storage using an XML Schema with a combination 
of JDBC, XML parsing, and some conversion rules. 
Due to the component like nature of our architecture the 
data could also be stored in an object-oriented or XML 
database, so long as the equivalent schema generation 
and archiving tools were implemented. 

As a simple relational database example, the XML 
Schema fragment in Figure 8 can be translated into a 
table called ClassAd with two columns of type 
varchar called Arch and OpSys. Each of these 
columns has a check constraint to ensure the validity of 
its data values, for example column Arch can only 
contain one of the values ‘Intel’, ‘Sun’, etc. However, it 
must be noted that these check constraints are unlikely 
to fail, as the parser will already have validated data 
against the XML Schema before it is automatically 
archived. The table will also include a column to 
uniquely identify a record, such as a session ID, from 
further up in the XML Schema hierarchy.

6. GRID: Information Layer

We have shown that systems like Condor for 
managing computer resources can be exposed and 
offered as a web service accessible to applications on 
the internet. However, to realize a true integration of the 
GRID, additional information about the web services is 
required. This divides into three elements; a definition 
of data types and structures, a description of the service 
interfaces, and the categorization information of the 
web services. Together these three elements comprise 
the information layer of the GRID model. Figure 9
shows how the open standards described in section 3
provide the functionality we require.
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Figure 9: Information Elements 

7. GRID: Knowledge

The information layer adds meaning to data and 
computation and the ability to access it 
programmatically. The knowledge layer provides an 
intelligent problem solving environment to guide the 
engineer through the process of combining the different 
components required to perform optimisation and 
design search efficiently. The intelligent knowledge 
repository is built by querying the archives of each web 
service from which, for example, new heuristics about 
optimisation can be deduced and used to improve future 
design processes. This may be achieved using formal 
knowledge elicitation methods and held in rule bases. 
Design activity also creates domain specific knowledge 
that designers may wish to archive and reuse in various 
ways to enhance their design capabilities in the future. 
Various knowledge management and re-use tools can be 
used to underpin this process.

8. Conclusions

We have demonstrated that open standards can be 
used at all layers of the GRID to provide transparent 
access to applications, optimisation codes, distributed 
computational resources and knowledge repositories. 
We view each of the components in the GRID model as 
web services which may be integrated together to 
provide, in our case, the framework for an engineering 
optimisation and design search system. In particular we 
have demonstrated how the Condor system for 
exploiting idle compute cycles can be offered as a web 
service and how automated databasing techniques fit 
naturally into the web service architecture.
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