
The GRID: Computational and Data Resource Sharing in
Engineering Optimisation and Design Search

Cox SJ, Fairman, MJ, Xue, G, Wason, JL, +Keane, AJ
Department of Electronics and Computer Science

+School of Engineering Sciences
University of Southampton

{sc, mjf00r, gx00r, jlw98r}@ecs.soton.ac.uk, ajk@soton.ac.uk

Abstract

In this paper we present our GRID architecture for
engineering optimisation and design search. We are
developing a system that will allow seamless access to
an intelligent knowledge repository, a state-of-the-art
collection of optimisation and search tools, industrial
strength analysis codes, and distributed computing and
data resources. We focus on the underlying open
standards technologies required to implement our
system, and give exemplars of how they are being
exploited at present. Of particular importance is the
interchange of data throughout the system, for which
we have adopted W3C standards (e.g. XML), and the
ability to link together each of the components in the
form of web services.

1. Introduction

Engineering optimisation and design search is the
process whereby existing engineering modelling and
analysis capabilities are exploited to yield improved
designs. In the next 2-5 years intelligent search tools
will become a vital component of all engineering design
systems. Such facilities will steer the user through the
process of setting up, executing and post-processing
design search and optimisation activities in a variety of
disciplines.

A major driving force in these developments is the
need to allow distributed design teams from multiple
enterprises to access design and analysis capabilities via
the GRID. The GRID has been characterised by a 3
layer model which consists of (i) a computation / data
grid, (ii) an information grid, and (iii) a knowledge grid
(Figure 1.)

In this paper we focus on the technologies which we
are using to implement our grid-based system. In
section 2 we introduce the Grid architecture for our
optimisation system. Section 3 discusses the open
standards technologies which we are using. We discuss

the computation, data, information and knowledge
layers of the grid in sections 4-7 and draw our
conclusions in section 8.

COMPUTATION/DATA

INFORMATION

KNOWLEDGE

Figure 1: GRID Architecture

2. Optimisation and Design Search Grid

2.1. Architecture
Figure 2 shows our grid-based system. In a typical

scenario of, for example, wing design, an engineer may
couple together Computer Aided Design (CAD) tools,
analysis codes for Computational Fluid Dynamics
(CFD), or Finite Element Analysis (FEA), and tools for
optimisation. The resulting sequence of computations
may be performed on local or national machines, or on
pay-per-use internet cluster resources e.g. [1].

One important new component in the higher levels of
the GRID is the application of database technology,
which has conventionally only been used to store
information about the products designed using the
system. Key questions in the process of, say a typical
wing design optimisation, are: What previous designs
have been explored and how can I develop them
further? Which optimisation strategies are likely to
prove effective? Which computational resources have
the analysis codes I require, and when will my results be
ready? Here there are new requirements for information
and knowledge to be extracted from

APPLICATION
SERVICE

PROVIDER
COMPUTATION

PORTAL
Reliability
Security

QoS

OPTIMISATION

Engineer

Parallel machines
Clusters
Internet Resource Providers
Pay-per-use

Optimisation
archive

Intelligent
Application
Manager

Intelligent
Resource
Provider

Licenses
and code

Session
database

Design
archive

CAD System
CADDS
IDEAS
ProE

Analysis
CFD
FEA
FM

OPTIONS
System

Knowledge
repository

Traceability

Legend:
Exemplars

Issues

Visualization

GLOBUS/Condor

Ontology and
Language for
Engineering &
Optimisation and
Design Search

Figure 2: Engineering Optimisation and Design Search Architecture

automatically generated databases. Encapsulating and
exploiting knowledge at all levels of the grid will enable
new designs to be developed more rapidly, or at lower
cost. Our system therefore includes a knowledge
repository which may be queried.

The architecture of the system consists of four main
components which we now discuss in turn.

2.2. Portal
This is the web-based point of access to the system,

which allows engineers to locate and combine the
services they require, giving advice as necessary. It
provides grid-based seamless access to an intelligent
knowledge repository, a state-of-the-art collection of
optimisation and search tools, industrial strength
analysis codes, and distributed computing and data
resources.

It provides the information capabilities of a system
like Tambis [2] which “aims to aid researchers in
biological science by providing a single access point
for biological information sources round the world. The
access point will be a single interface (via the World
Wide Web) which acts as a single information source. It
will find appropriate sources of information for user
queries and phrase the user questions for each source,
returning the results in a consistent manner which will
include details of the information source.”

The service portal has the following roles:
? The engineer interacts with the system through the

service portal.
? To advise the engineer which optimisations work

well with which applications on which resources.
? It houses an intelligent knowledge repository to

determine which web service databases contain the
information required to answer questions it is
posed. The knowledge base is built up over time in
a manner similar to that used to cache queries on
web search engines.

? To provide traceability and security for results
produced on the system

? To negotiate quality of service (QoS) and
reliability guarantees with other service providers.

2.3. Application Service Provider
The engineer requires access to both design and

analysis tools, supported by a database which will
provide information about previous designs. Whilst
some tools may run adequately as a user application
across a server, commercial compute-intensive analysis
codes should be also available on a pay-per-use basis to
run on external computational facilities provided by the
resource provider. An early exemplar of this was
developed at Southampton [3].

2.4. Optimisation service provider
The optimisation technology is provided by the

OPTIONS [4] system, which has been continually
developed over the last 15 years. OPTIONS is used for
design optimisation and includes a variety (over 40 at
present) of different optimisation algorithms.

At the start of the optimisation process, the engineer
needs to provide initialisation information– in particular
the analysis codes to be coupled together, the permitted
methods by which a design may be modified, and an
objective function by which each design may be
evaluated. The optimisation service will then coordinate
the maximization (or minimization) of the objective
function to improve the design.

In our current implementation, the optimisation
service has a knowledge repository of recommended
settings to use for each optimisation control variable.
Depending on the level of automation, the optimisation
service may automatically enter or suggest to the
engineer suitable values to use. The optimisation
service then retrieves the required program from the
application provider and executes it on computation
resources provided by the resource provider.

The optimisation process is divided into several
‘stages’, which require single or multiple evaluations of
the objective function. Each stage is a transactional unit
and after successful completion the optimisation’s
related state and current data is automatically archived.
Our framework fits into the model of web orientated
application architectures such as Sun Microsystem’s
Java Enterprise Server where each optimisation code
would be an Enterprise Java Bean. Since each step is a
transactional unit we can provide consistency and
durability and allow for the possibility of multiple
independent objective function evaluations to be made
in a naturally parallel way.

Furthermore since all data is stored along with
session identity information it is flexible enough to meet
the requirements of different requesters and can deal
with multiple requests at the same time.

2.5. Resource Provider
The resource provider’s main role is to execute code

to return the value of the objective function which is
being optimised. It has a database of computational
resources which it provides and may in addition need to
negotiate any licences required from the application
service provider when commercial code is used.

2.6. Business Process
In the process of service integration and

collaboration, the service providers and requesters must
come to an agreement about how the interactions will be
conducted. This is done through negotiation between
the two sides. To carry out the negotiations, both sides
should have a common protocol to understand messages

from the other side and access to a knowledge base to
inform the decision process.

A computer resource in a large-scale computational
environment is expected to have such negotiations and
interactions with different kinds of service requesters.
To make a true sharing and integration of the resources,
it is necessary to have a standard business process - the
knowledge for negotiating and interacting - for all web
services and service consumers.

The business process model for web service
integration in an engineering design optimisation
environment can be abstracted from practical
experience in various applications of web services. A
standard workflow for interactions is to be built as well
as a framework for message deliveries. In addition, the
model should be able to adapt itself to meet new
demands from the system. This requires an extensible
workflow and message framework.

The BizTalk system brought forward by Microsoft
[5] provides a good reference to the design of a
business process model for the engineering design
optimisation system. BizTalk brings a whole solution to
carry out e-business among different web services
providing tools for defining business workflows and
message framework. It is also scalable and flexible to
meet specific requirements and future extension.

3. Open Standards Technology

Engineering design optimisation requires various
computational and data resources to be integrated. To
achieve this, technical obstacles brought about by the
differences between system environments, software and
programming languages must be overcome. One
solution to this problem is to wrap various computer
systems in a common interface, which ‘talks’ with the
others in a standard format. The recent progress in
several XML-based open standard technologies [6] has
brought major advances in this approach. These contrast
with traditional Java/ Jini based approaches by adopting
very simple lightweight protocols. Figure 3 shows how
the technologies discussed in the next sections are
related to each other.

UDDI Regis try UD DI R egistry
UD DI R egistry

XML
Schem a

W SDL File

W eb Services

SO AP
M essageSO AP

M essageSO AP
M essage

Service U sers

Figure 3: Use of XML technologies to provide
web services

3.1. XML and XML Schema
XML provides a method to contain data of structured

format in plain text. Data in the form of XML are
transferable between almost any computer system and
software application that have the ability to read plain
text. XML, as plain text, also works well with existing
Internet Protocols like HTTP or SMTP. Thus XML is
an ideal medium for communication between different
computer systems. Furthermore security can be
provided by tunnelling the XML through a secure layer
such as SSL [7].

XML Schema is a W3C alternative specification to
the Document Type Definition (DTD) for describing the
structure of an XML instance document. Compared to
the DTD, XML Schema is both more powerful,
incorporating a set of rich data types, and more flexible,
supporting sophisticated user-defined data structures.
So with XML Schema, it is possible to use XML to
reflect the complexity of the existing computer
resources. Also by using XML Schema, validation of
data is transferred from the application role to the
parser, thus making the separation between data logic
and application logic possible.

3.2. SOAP and XML Protocol
The Simple Object Access Protocol (SOAP) [8],

provides a simple and extensible framework to define
how an XML message is structured. It is a lightweight
protocol for the exchange of information in a
decentralized, distributed environment and is easily
carried via various Internet protocols, such as HTTP
and SMTP. SOAP allows security systems like a
firewall to identify an XML message without needing to
understand its contents, thus it is feasible to prevent the
blocking of unknown HTTP requests. SOAP also
provides rich semantics for indicating encoding style,
array structure, and data types. SOAP is currently under
inspection by the W3C consortium and is a prototype of
the future XML Protocol.

3.3. Web Service and WSDL
With XML Schema, SOAP and their supporting

software, it is feasible to wrap various computer
resources into similar XML-interfaced web
components, which are called web services. These
communicate with each other using XML messages. To
access a web service properly, description about the
service interface is required.

Web Service Description Language (WSDL) is one
of the emerging technologies for this purpose. WSDL,
written in XML, describes a web service as a set of
endpoints. Each endpoint consists of several operations
and is bound to a specific network protocol (e.g. HTTP
or SMTP). The input and output messages are defined
for an operation and XML Schema is used in the WSDL
file to provide the data types and structures to define the
messages. Together with the XML Schema, it provides
a complete definition for the interface of a web service
and allows programmatical access to the service, in the
manner of an API. Tasks like data requests or execution
of a piece of code are then performed by sending and
receiving XML messages using the SOAP mechanism.
For the publishing, discovery and integration of a web
service, additional technologies are needed.

3.4. UDDI
The Universal Description, Discovery and

Integration (UDDI) specification defines a way to
publish and discover information about web services
[9]. It is a collaboration between Ariba, IBM and
Microsoft who each provide UDDI services. The UDDI
project includes a UDDI business registry and a set of
operations on it. The UDDI registry, an XML file,
identifies a web service and provides information about
the service. Other programs use the registry to get the
information about the web service and check
compatibility with it. Categorisation of web services in
the registry enables location and discovery. UDDI
together with WSDL, provides the ability to locate and
programmatically interface to the web service. This
allows the web service to be used in a program in a
similar way to a software component, and hence
simplifies the service collaboration.

We now discuss the levels of the grid in more detail.

4. GRID: Computation

This section considers the concept of resource
management and computational resources. Condor [10]
is used as an example of an existing resource sharing
system. It is chosen because its concepts and
architecture are well suited to the GRID model and are
applicable to other and new resource sharing systems.
We demonstrate how it can be wrapped and offered as a
generic web service.

4.1. Condor Introduction
Condor is a software system that creates a High-

Throughput Computing (HTC) environment by
harnessing the power of UNIX and NT clusters and
workstations. It can manage dedicated clusters however
its main appeal is that it is able to use pre-existing
resources in a distributed ownership context where
computers are sitting on people’s desks.

When jobs are submitted to Condor it finds an
available machine in its organisation’s pool to run the
job. Machines become available once they have been
idle for a specified period for example when the owner
goes to lunch. Jobs are migrated over the network to the
machine. If the machine becomes unavailable and the
job has not finished (such as if a user returns to their
desk after lunch), Condor checkpoints it and either
migrates the job to another machine or queues it to disk
until a machine becomes free.

4.2. Resource Management
Condor provides a distributed resource management

system, which matches the resource consumer’s needs
with the resource owners. Instead of attaching
properties to a job queue directly, Condor implements a
publishing system where each machine advertises their
resource properties called ClassAds. Each submitted job
specifies a resource request ad, which defines the
required and preferred run properties of the job. Condor
performs brokering by matching and ranking the
ClassAds with a job’s resource requests.

4.3. Condor and the GRID
Whilst we treat Condor as fundamentally a resource

provider at the lowest level of the GRID, its overall
architecture fits into the component layers of the GRID
model. If we view the model from the bottom up, at the
computation resource level are the machines in
Condor’s pool with data and control between machines
and the Condor control daemons being performed
through Remote Procedure Calls. Each machine’s
ClassAds publishing provides resource description and
discovery at the information layer. Condor provides the
resource integration of the information layer with its
resource management and migration. At the knowledge
layer is the resource manager, which performs
sophisticated resource brokering.

Organisational
Pool

ClassAds

Resource
Manager

Execution

Submission
Description

Sumbit
Machine

Negotiation

Scheduling

System CallsMigration &
Checkpointing

Matching

Knowledge

Information

Computation

Condor Application

Figure 4: Condor GRID Model

There are however some fundamental differences
between Condor and the GRID. As a project it began
development before the concept of the GRID came into
existence. As such parts of the system, for example the
communication system use older technologies (RPC)
and Condor uses its own proprietary systems for
resource description, discovery and integration.
Furthermore, unlike the components in our GRID
architecture, Condor does not expose a programmatic
interface as a web service: it is more UNIX-like in that
interaction between users and Condor are through the
command line.

4.4. Condor as a Web Service
It is feasible to integrate Condor into the GRID

because of its clear separation of its computational and
information layers. We now show how it is possible to
expose Condor’s resource management ability
programmatically. Using Microsoft’s .NET framework
[11] and Visual Studio.NET, Condor has been
successfully wrapped as a C# web service.

Condor Web Service

Condor

Web Service
Condor Wrapper API

Condor Process
Calls

Submission
Machine

 Central Manager Execution Machine

Checkpoint Server

Internet

Organisational
Network

Figure 5: Condor Web Service

4.5. Legacy System Integration
The two most important Condor programs are

condor_submit and condor_status. The first
provides the user with the ability to monitor and query
the machine pool. Submision of jobs is performed by
the condor_submit command, which requires a

submit-description file. Other commands provide
control, monitoring and querying of submitted jobs.

It is possible to launch any command line executable
as a process from another program. Input to the
command line executable is through the standard input,
read files, pipes, and process start properties. Output is
retrieved from the standard output, standard error,
written files, and pipes. Construction of an API is then
achieved using standard IO and process function calls.

Code wrapped around Condor by modelling each of
its programs as a process, facilitates the creation of an
API. It then becomes possible to make use of these
APIs in the web service code to expose a programmatic
interface to Condor on the Internet.

ClassAds and Submission Description files (Job
Requirement descriptors) are flat files, which are
translatable to and from XML documents and have
structures that are directly describable as XML Schema
documents, as shown in Figure 6.

XML Document
Extractaction

Condor Translation

SOAP Document

Submission
Description File

SubmitDescription
Class Mapping

ClassAd Files

XML Translation

ClassAd Class
Mapping

SOAP Document

XML Document
Wrapping

Figure 6: XML Wrapping Process

WSDL provides a standard way for the Condor web
service to describe its abilities. Contained in the WSDL
document is Condor’s functionality, method of
interaction (SOAP), job sessions, and the structure of
the data types it exchanges.

4.6. Submitting Jobs
Submitting jobs to Condor requires both a

submission description file and an executable. Condor
allows heterogeneous submission of executables on
differing platforms. No special coding is required; the
only restriction is that to support check pointing, the
code must be statically re-linked with Condor’s
libraries. Where this is not possible e.g. in the case
where the source code is not available, then check
pointing is not available and the executable must run
until it completes, fails or is stopped by Condor to allow
the resource owner to use their machine.

Condor uses the concept of universes to cater for the
differing execution environments. For non-parallel
code, there are the standard and vanilla universes,

supporting re-linkable and non re-linkable code
respectively. The MPI, PVM and Globus universes give
support for parallel code.

From a commercial usage point of view, the vanilla
universe is ideal in that the program supplier does not
have to reveal the source code. When using Condor as a
web service, the most basic level of executable
environment is the vanilla universe because it requires
the resource consumer to perform the compilation and
linking. The main disadvantage of the vanilla universe,
from the web service provider point of view, is that to
provide an adequate level of service, a dedicated pool
of executing machines is necessary because otherwise
jobs would be regularly killed as owners used their
machine for other purposes.

Where an organisation has a large number of non-
dedicated machines it wishes to cycle steal from, then
the web service must be capable of supporting re-
linking of source code. It is possible to run an
executable in the standard universe which has be linked
by the resource consumer, however this is not ideal as it
requires Condor’s libraries and compiler. We have been
concentrating on Condor but it is not the only resource
management system. Is is desirable that a resource
consumer need no knowledge of internal workings of a
resource management service otherwise each consumer
would need to support every resource managers method
of linking. Instead the web service should describe in its
WSDL the supported programming languages in its
standard universe and perform the compilation itself.

4.7. Separation of Management from
Computational Resource

It is desirable to be able to separate Condor’s
resource manager system from the resource pool.
Condor’s architecture requires that each machine within
the system (including submission machines) run Condor
control daemons, which communicate with a central
manager and the submission machine through RPC.
This architecture is not suited to large numbers of
distributed computational resources on an Internet
scale. While the problem of remote submission of jobs
from an non-Condor machine is possible through legacy
system integration (section 4.5), it is difficult to add
machines to Condor’s organisational pool which are not
on a local network because of the usage of RPC and the
possibility of firewalls. Also machines in the pool are
available only to Condor and a single Condor central
manager (i.e. there is no sharing among Condor
systems.)

Central Manager

Condor_Collector
Condor_Negotiator

Submit Machine

Controlling Daemons

Condor_Shadow Process

Execution Machine

Controlling Daemons

User's Job

User's Code

Condor_Syscall_Library

Checkpoint File

Figure 7: Condor Pool Architecture

Separation of resource manager from computational
resources would allow sharing of resources amongst
brokers, while at the same time providing an
architecture that is capable of achieving a much more
scalable system of distributed computational resources.
With this it becomes possible to introduce a business
process at the level of computational resources where
each resource could charge for computation time used.
The resource manager and computational resources
become separate services on the Internet each with a
defined role and business process.

4.8. Computation Issues
At the knowledge level sits the resource manager,

which provides a brokering service to match resource
requests with resource offers. However, now that each
computational resource is separate from any particular
resource manager, a user or other GRID service may
wish to access the computational resource directly or in
combination with the resource manager. This creates an
environment where resource managers and
computational resources compete to provide superior
services and lower costs.

 A question not answered here is support for check
pointing and migration. If computational resources are
to be shared among resource managers, then it is
necessary to define a standard mechanism for this. Who
does the linking, the resource manager or the
computation resource, or neither? What about code
security and how to prevent malicious or bad code from
effecting a computational resource or interfering with
another’s code? A solution to these issues may be to use
a platform independent programming solution such as
Java [12] or the Microsoft Common Language Runtime
System [13], which both run code in a sand box
environment with a definable access policy.

5. GRID: Data

5.1. Metadata
Data is an essential part of the optimisation and

design search process. Integration of the Grid relies
heavily on the data exchanged between various
computer systems. Definitions of types and structures of
the data are required to ensure a correct operation. The
web services use XML for data exchange. So it is
necessary to provide a generic, cross-platform method
to define the XML data types and structures.

The solution is still XML, or more specifically, XML
Schema. XML Schema uses XML itself to define the
types and structures of XML data. It provides rich
support for basic data types like integer and string as
well as common data structures available in computer
programming languages. It is also possible to construct
user defined data formats, such as postcodes.

The flexibility of XML enables the XML Schema to
support the sophisticated data structures necessary to
define complex user types for web services. As an
example, a reply to the Condor_Status operation is to
bring a list of “ClassAd”s consists of two attributes:
“Arch” and “OpSys”, corresponding to the system
architecture and operating system, which are assigned
specific values. A fragment of the XML Schema
describing the message is shown in Figure 8.

Another advantage of using XML Schema as the
data type and structure information provider is that
XML Schema works with the XML parser, rather than
the application. This provides a separation between the
application logic and the data logic, which simplifies
(and reduces) any maintenance required as a result of
changes on either the data or application side.

XML Schema is designed to be reusable. A new
piece of schema can be built based on several existing
ones. This brings more efficiency and basic elements
for a knowledge system. There have already been
several services for publishing XML Schemas on the
Internet, (such as BizTalk.org).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 elementFormDefault="qualified">

<!-- The other pars... -->
 <xsd:element name="Condor_State">

<xsd:complexType>
<xsd:sequence>
 <xsd:element name="ClassAd" type="ClassAdType" minOccurs="1"/>

 </xsd:sequence>
</xsd:complexType>

 </xsd:element>

<xsd:complexType name="ClassAdType">
 <xsd:sequence>

<xsd:element name="Arch" type="Architecture" minOccurs="1"
 maxOccurs="1"/>
 <xsd:element name="OpSys" type="OperatingSystem" minOccurs="1"
 maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="Architecture">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Intel"/>
<xsd:enumeration value="Sun"/>
<!-- and so on ... -->

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="OperatingSystem">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Windows"/>
<xsd:enumeration value="Linux"/>
<!-- and so on ... -->

</xsd:restriction>
</xsd:simpleType>

<!-- The other pars... -->
</xsd:schema>

Figure 8: Example XMLSchema Listing

5.2. Role of Databases
Knowledge, information, data and computation exist

at various points in the architecture; for example,
intelligent decisions must be made to carry out resource
management. It is desirable to database information at
each web service for the following reasons:
1. Each web service (resources, application service
provision and optimisation) can use the archive itself to
make intelligent decisions about its own function.
2. The entry portal may query these databases to build a
knowledge archive for the system. Queries may be
offered as part of the WSDL specification for the
service.
3. Information about users, times, machines,
optimisation strategies and results can be transparently
logged by the web service as XML conforming to an
XML Schema and automatically archived using JDBC
[14, 15]. If a database does not yet exist for this data it
can be generated automatically from the XML Schema.
When the structure of the XML Schema changes, for
example if a new optimisation method is added; the
database must also evolve– we are currently working on
this.

5.3. Automated Databasing Methods
Each web service is described by a WSDL document

(see section 3.3) which includes an XML Schema to
describe the data types in the SOAP messages. We have
developed methods to generate a new database
automatically from the XML Schema contained in a

web service’s WSDL [14]. Subsequently, any XML
request and response data can be transparently logged
and archived in this database, using the XML Schema
as a guide.

The rich data type and structural support of XML
Schema makes it a good candidate for automatic
conversion to a database schema, and its original
language requirements specify a type system adequate
for import/export from database systems [16]. The fact
that it is also defined in XML means it can be parsed
using existing, generic tools. Other features such as the
ability to define default values, scoped unique values,
keys and relationships can also be employed for use
with databases.

Relational databases can be manipulated with SQL
using JDBC, which a Java API for accessing databases
which is independent of vendor and platform. We have
implemented a set of tools for database generation and
data storage using an XML Schema with a combination
of JDBC, XML parsing, and some conversion rules.
Due to the component like nature of our architecture the
data could also be stored in an object-oriented or XML
database, so long as the equivalent schema generation
and archiving tools were implemented.

As a simple relational database example, the XML
Schema fragment in Figure 8 can be translated into a
table called ClassAd with two columns of type
varchar called Arch and OpSys. Each of these
columns has a check constraint to ensure the validity of
its data values, for example column Arch can only
contain one of the values ‘Intel’, ‘Sun’, etc. However, it
must be noted that these check constraints are unlikely
to fail, as the parser will already have validated data
against the XML Schema before it is automatically
archived. The table will also include a column to
uniquely identify a record, such as a session ID, from
further up in the XML Schema hierarchy.

6. GRID: Information Layer

We have shown that systems like Condor for
managing computer resources can be exposed and
offered as a web service accessible to applications on
the internet. However, to realize a true integration of the
GRID, additional information about the web services is
required. This divides into three elements; a definition
of data types and structures, a description of the service
interfaces, and the categorization information of the
web services. Together these three elements comprise
the information layer of the GRID model. Figure 9
shows how the open standards described in section 3
provide the functionality we require.

In fo r m a t io n
E le m e n ts

D a ta T y p e a n d
D a ta S tru c tu re X M L S c h e m a

C o n te n t a n d
C a te g o r iz a t io n

In fo rm a t io n

S e rv ic e In te r fa c e
D e s c r ip t io n

U D D I

W S D L

T e c h n ic a l
Im p le m e n ta to n

Figure 9: Information Elements

7. GRID: Knowledge

The information layer adds meaning to data and
computation and the ability to access it
programmatically. The knowledge layer provides an
intelligent problem solving environment to guide the
engineer through the process of combining the different
components required to perform optimisation and
design search efficiently. The intelligent knowledge
repository is built by querying the archives of each web
service from which, for example, new heuristics about
optimisation can be deduced and used to improve future
design processes. This may be achieved using formal
knowledge elicitation methods and held in rule bases.
Design activity also creates domain specific knowledge
that designers may wish to archive and reuse in various
ways to enhance their design capabilities in the future.
Various knowledge management and re-use tools can be
used to underpin this process.

8. Conclusions

We have demonstrated that open standards can be
used at all layers of the GRID to provide transparent
access to applications, optimisation codes, distributed
computational resources and knowledge repositories.
We view each of the components in the GRID model as
web services which may be integrated together to
provide, in our case, the framework for an engineering
optimisation and design search system. In particular we
have demonstrated how the Condor system for
exploiting idle compute cycles can be offered as a web
service and how automated databasing techniques fit
naturally into the web service architecture.

9. References

[1] http://www.entropia.com/
[2] P.G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton,
R. Stevens, TAMBIS: Transparent Access to Multiple
Bioinformatics Information Sources. An Overview in
Proceedings of the Sixth International Conference on
Intelligent Systems for Molecular Biology, ISMB98,
Montreal, 1998

http://img.cs.man.ac.uk/tambis/
[3] M J Addis, P J Allen, M Surridge. Negotiating for
Software Services (2000) Proc. IEEE 11th International
Workshop on Database and Expert System Applications
p.1039-43 (DISTAL project)
[4] Keane, A.J. (1999) The Options Design Exploration
System – Reference Manual and User Guide, Computational
Engineering and Design Centre, University of Southampton.
http://www.soton.ac.uk/~ajk/options.ps
http://www.soton.ac.uk/~ajk/options/welcome.ht
ml
[5]
http://www.microsoft.com/biztalk/productdoc/fr
amework20.html
[6] W3C - World Wide Web Consortium (1998). Extensible
Markup Language (XML) 1.0. Editors Bray, T., Paoli, J &
Sperberg-McQueen, C.M
http://www.w3.org/TR/REC-xml
[7] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL
protocol version 3.0. Netscape, Transport Layer Security
Working Group, November 1996
http://home.netscape.com/eng/ssl3/draft302.txt
http://www.netscape.com/eng/ssl3/
[8] Simple Object Access Protocol (SOAP) 1.1, W3C Note
08 May 2000
http://www.w3.org/TR/SOAP/
[9] Ariba, IBM, Microsoft. UDDI Executive White Paper, 6th
Sept 2000. From:
http://www.uddi.org
[10] J Basney and M Livny, Deploying a High
Throughput Computing Cluster, in High Performance
Cluster Computing, Rajkumar Buyya, Editor, Vol. 1,
Chapter 5, Prentice Hall PTR, May 1999.
http://www.cs.wisc.edu/condor/
[11]
http://msdn.microsoft.com/net/framework/defaul
t.asp
[12] Java TM 2 Platform, Standard Edition White Papers
http://java.sun.com/j2se/1.3/white.html
[13]
http://msdn.microsoft.com/library/dotnet/cpgui
de/cpconwhatiscommonlanguageruntime.htm
[14] JL Wason, SJ Cox, and AJ Keane, "Flexible Knowledge
Repositories for Problem Solving Environments," pp. 199-
205 in Proc. Int. Workshop on Advanced Data Storage /
Management Techniques for High Performance Computing,
ed. R. Allan and K. Kleese,CLRC, Daresbury, ISSN 1362-
0223 (2000).
[15] Sun (2000) JDBC TM Data Access API, Sun
Microsystems, Inc.
http://java.sun.com/products/jdbc/index.html
 [16] Malhotra, A. & Malonay, M. (editors) (1999) XML
Schema Requirements, W3C NOTE, NOTE-xml-schema-req-
19990215, February 1999
http://www.w3.org/TR/NOTE-xml-schema-req

