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Abstract 
 
In this paper we present our work on implementing 

elemental services for carrying out design optimisation 
on the Grid. The service-oriented approach makes it 
possible for to harness best available technologies that 
are usually incompatible due to heterogeneous 
software environments. It also facilitates the creation 
of integrated Problem Solving Environment (PSE) for 
design optimisation. We explain in details how state-
of-the-art Web services technologies are exploited to 
build these services and yield desired quality of service, 
and demonstrate how service based design 
optimisation workflows constructed using script 
languages are used to solve design optimisation 
problems from different paradigms.  

1. Introduction 

Computer based design optimisation processes are 
broadly employed in many scientific and engineering 
areas to solve complicated problems such as 
computational fluid dynamics (CFD) and finite element 
methods (FEM), so as to produce the optimal results for 
the designers. Bringing improvements to the design 
optimisation processes to make them more accurate and 
efficient can provide the cutting edge in research and 
industrial competitions. So far, there have been many 
results from efforts to enhance the design optimisation 
processes made in the following two directions: (i) to 
bring in more computation resources for better quality 
and higher performance; and (ii) to develop better 
design optimisation methods for more accurate design 
modelling and more efficient optimisation search. It has, 
however, become a daunting task for designers to take 
full advantage of all these achievements in their daily 
design activities, as it requires integration of various 
elements that are either developed using incompatible 
software technologies, or deployed in heterogeneous 
environments.  

The development and maturing of Grid computing 
technologies has provided a new solution to tackle the 
integration problem in design optimisation, as one of 
the main target of the Grid technologies is to enable 
large-scale, dynamic collaborations among participants 

from highly heterogeneous and distributed environ-
ments. The application of Grid technologies has 
facilitated the research and development of dedicated 
problem solving environments for design optimisation, 
such as the Geodise system [1].  

With the introduction of OGSA [2] and OGSI [3], as 
well as the following WS-Resource framework [4], 
service-oriented Grid computing has been widely 
accepted by the Grid community. The design 
optimisation processes built in Geodise is fully 
compliable with the service-oriented approach by using 
services to assist designer at all stages of the design 
process. All technologies applied in the processes, 
regardless of what programming language they are 
developed in or what the platform they run on, are 
encapsulated into standard Web/Grid services that are 
universally accessible. It is therefore possible to achieve 
seamless integration of these heterogeneous 
technologies. In addition, this also decouples design 
optimisation components from each other, and therefore 
makes the system more flexible and extensible.  

The service-oriented architecture itself, however, can 
not meet all demands for building design optimisation 
processes. The processes often include many 
sophisticated operations that require careful 
management of application state, guaranteed and 
faultless message delivery, and tightly controlled 
security. In implementing our design optimisation 
services, a number of advanced Web/Grid service 
technologies have been exploited to address these issues.  

The rest of this paper is organised as follows. In the 
next section we describe the services developed for 
important steps in the design optimisation processes, 
and explain the advantage of using service-orientation. 
Section 3 provides details of the service implementation, 
focusing mainly on the advanced Web/Grid service 
features introduced to the development. To illustrate the 
use of the services, sample operations from different 
stages of the design optimisation process are 
demonstrated in Section 4. We draw the conclusions in 
Section 5.  

2. Services for Design Optimisation  

Figure 1 shows the workflow of our service-oriented 
design optimisation processes. Essential functions in



 
 

Figure 1: The Design Optimisation Process Workflow

the process, including design of  experiment,  response  
surface modelling and optimisation search have all been 
implemented as services, so that it is feasible to apply 
alternative design optimisation technologies to get the 
best results.   

2.1. Service for Design of Experiment 

The design of experiment (DoE) service provides a 
range of experiment design methods that are used to 
produce starting points required for generation of initial 
design geometries. To get the designs, the users need to 
specify ranges of the design parameter values, as well as 
the number of designs needed.  

The DoE service is designed as a stateful service, 
which is able to store all designs generated based on a 
particular setting. Service users are therefore allowed to 
come back and require more designs based on the same 
settings without triggering another run of the applied 
DoE function. The usage of the service is therefore 
made more flexible and efficient. 

The main DoE methods applied in the current service 
implementation are supplied by the OPTIONS system 
[5], including Latin Hypercube, Random, LP � , Central 
Composite that are capable of meeting different design 
requirements. 

2.2. Service for Response Surface Modelling 

The response surface modelling (RSM) service 
implements various curve-fitting and regression 
methods available from OPTIONS, including Radial 
basis function, stochastic process modelling, and 
polynomial regression models. Results from the DoE 
service is passed onto response surface modelling 
service to build response surface which can be then 
tuned using additional design points when they become 
available. 

Unlike the optimisation services, the RSM service is 
constructed as a normal service, as no internal state is 
required for the modelling operations. However, in 

order to support incremental response surface building 
and tuning, the service has introduced mechanisms to 
set up and manage operation context for a complete 
RSM process.  

2.3. Service for Optimisation Search 

The optimisation services expose numerical 
optimisation algorithms through reverse communication 
interfaces [7], which facilitate the decoupling of the 
optimisation system that drives the search process from 
the modelling codes that evaluate objective functions 
and constraints. It therefore becomes possible for the 
best optimisation methods to be deployed for a variety 
of design problems without any compatibility issues.  

Strong support for state management is employed in 
the optimisation services, as for reverse communication 
based optimisations, the optimisers need to maintain 
information such as the control parameter values, the 
design parameter boundaries, and the search history 
throughout the entire process. In addition, considering 
that an optimisation operation usually involves a large 
number of search steps, mechanisms to ensure secured, 
reliable interactions between the client and the service 
have also been introduced.  

Our optimisation services are constructed based on a 
framework which provides a generic abstraction of 
numerical optimisation operations. It can therefore be 
used to host diverse optimisation methods that can be 
called through reverse communication interfaces. So far 
we have built our optimisation services around the 
OPTIONS genetic algorithms, as well as the open 
source PORT library. The services have been 
successfully applied to optimise different design 
problems, such as those demonstrated in section 4, as 
well as in [6] and [7]. 

Apart from the design optimisation services 
described above, a number of general purpose services, 
such as the computation service [8] and the data service 
[9], have also been deployed to assist resource-intensive 
operations in the process. 



3. Implementation 

Basic Web services technologies, including XML 
Schema, SOAP and WSDL, have established a simple 
but sound infrastructure for the exchange of XML 
documents that are successfully used in our services to 
provide access to design optimisation functionalities. 
Yet operations for design optimisation are often 
complicated, involving multiple stages and numerous 
interactions with the services. It demands support for 
stateful service interactions and mechanisms that ensure 
right sequences of execution. In addition, security has 
remained as a major concern. To address these 
requirements, our service implementations have 
incorporated a number of enhancements to the basic 
Web services framework. 

Apart from the efforts on the service layer, our 
implementations also include work on the integration of 
legacy design optimisation technologies, and the 
development of service clients that facilitate 
composition of services in design environments.  

3.1. Enabling Stateful Service Interactions 

The basic Web services specifications do not bear 
any notion of application state, which is nevertheless 
essential to many design optimisation operations such as 
response surface modelling and optimisation search. In 
general, two different approaches are applicable to 
solve this problem: the transient grid service model and 
the use of operation context.  

The transient grid service model is first proposed 
together with OGSA and then technically specified in 
OGSI. The basic idea is to create ‘ instances’  of the 
service that are responsible for maintaining all 
operation-specific state. Similar to distributed objects, 
the service instances are instantiated through a factory 
service and are identified using the Grid Service 
Handlers (GSH) [3]. All service interactions for a 
particular operation are carried out toward the same 
service instance. The instances only exist for the 
lifetime of the operations and are destroyed once the 
operations are finished. The use of transient grid 
services is illustrated in Figure 2. 

 
 

Figure 2: The OGSI Transient Service Model 

Instead of building an external infrastructure like 
OGSI, the WS-Context [10] specification attempts to 
provide support for stateful service interactions within 
the Web services framework. It adheres to the principle 
that Web services are stateless, and tries to encapsulate 
operation state in an XML based entity called ‘context’ . 
Each interaction message for a particular operation 
contains in the SOAP header its context, from which the 
target service can retrieve state information so as to 
restore the right conditions and settings. A context can 
be created by the target service, or by a WS-Context 
Service designed in the same specification. The context 
may be augmented or modified each time the service is 
invoked. The WS-Context Service is also used to 
maintain the context entities. For operations with big 
amounts of state information, the service messages can 
only provide a URI reference to contexts stored on the 
service. Figure 3 illustrates how context works, together 
with a sample context entity in the SOAP header.  

 
 

(a) Context based Stateful Interactions 
 

 
(b) A Sample Context Element 

Figure 3: Using Context for Stateful 
Interactions 

Both approaches described have been exploited in 
our implementations to best suite the conditions of 
individual services. For instance:  

The OGSI transient grid service model has been used 
in the implementation of the numerical optimisation 



service, which needs to make quick response to service 
invocations. An optimisation operation may involve 
hundreds or thousands of search steps. It is therefore not 
hard to see that for the optimisation service, the 
transient service approach is far superior in 
performance, since the service instance keeps all state 
information which can be used directly each time it is 
invoked. On the contrary, state of the optimisation 
search needs to be loaded every time if the context 
based approach is applied. Considering the large 
number of service interactions, the aggregate impact on 
performance is too significant to ignore.  

Design optimisation services implemented in the 
transient grid service model have bee deployed using 
OGSI.NET [11] and MS.NETGrid [12]. Both platforms 
use the .NET framework [13] to create hosting 
environments for transient grid services and to provide 
comprehensive programming support for grid service 
development.  

The context based approach for stateful service 
interactions is more suitable for services that are less 
critical in response time, and have large elements of 
state information. A typical example is the RSM service, 
which does not have frequent service interactions, but 
needs all submitted objective function values for each 
modelling action. Using WS-Context, the state 
information is only loaded when the service invoked, 
rather than staying in the system all the time. It reduces 
the cost of resource for running the service, and makes 
it more scalable.  

Apart from performance considerations, the context 
based approach is more compatible with the service-
oriented architecture defined in [14] and [15]. It puts 
fewer burdens on the service hosts, not requiring 
additional infrastructures such as OGSI. The 
deployment of design optimisation services is made 
simpler and easier.  

Services using WS-Context have been deployed over 
normal Web service platforms such as ASP.NET. To 
handle the context element in the SOAP header, a 
message filter is added to the WSE [16] pipeline, which 
intercepts the context element and transform it to a 
programmable format. A context service partially 
implementing the WS-Context service has also been 
constructed.  

3.2. Enabling Reliable Service Interactions 

Service-oriented optimisation search usually 
involves numerous, repeated exchanges of similar 
messages between the client and the optimisation 
service. To carry out successful search operations, it is 
important that these messages are sent and received in 
the right sequence, and exactly once. However, in a 
heterogeneous environment, many errors such as system 
malfunction and network failure may occur to cause loss 
or duplication of messages, which can impair the search 
efficiency and even make the search fail.  

In order to avoid potential errors caused by failed or 
false message delivery, features from the WS-
ReliableMessaging [17] protocol have been 
implemented in the optimisation service. The protocol 
defines an XML element named ‘sequence’  to track and 
manage message deliveries. All messages of a particular 
operation should carry a sequence element, which 
contains a unique sequence identifier assigned to the 
operation, as well as an incremental message number. 
The sequence identifier and the message number 
combine to uniquely identify a message, while the 
message numbers specify the right order of delivery. 
Therefore, it is possible for the message receiver to 
detect delivery errors with a wrong sequence identifier 
or a non-incremental message number. Based on the 
establishment of mutual understanding of the sequence, 
WS-ReliableMessaging also defines mechanisms for 
message senders and receivers to confirm successful 
message deliveries, or report errors.  

For our optimisation service, a sequence is 
established when a new service instance is created. 
Each request message to the service includes a sequence 
element in the SOAP header, and a request for 
acknowledgement of message delivery. In the response 
message, the service adds in information about all 
received messages, which can be used by the client to 
judge whether the response is rightly delivered 
corresponding to the request.  

 

Figure 4: Creating Sequence on Service 
Instantiation 

For example, in Figure 5, the client can conclude that 
the response message is wrongly delivered, as the range 
of received messages acknowledged does not match the 
message number of the request. The client then arranges 
a re-transmission to get the right response. To avoid 



confusing the service, a Retransmission element is 
added to differentiate from a duplicate message delivery.  
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Figure 5: Use of WS-Reliable Messaging 

In addition to ensuring message delivery, the 
sequence mechanism can also used to trace the 
optimisation search route. Since the message numbers 
are unique in the sequence, they are used to index the 
search history kept at the service. Using such indexes, 
users can easy request the restart of optimisation at a 
specified point.  

Like the context element, sequence and 
acknowledgement elements are all processed by a 
customised WSE filter. Since it is not feasible to use 
customised filter under OGSI.NET, the implementation 
is so far only available on the MS.NETGrid platform.  

3.3. Enforcing Security 

Our design optimisation services follow the WS-
Security [18] specification to control access to the 
services, as well as to protect message integrity and 
privacy. The implementations select to use X.509 [20] 
certificates for signing and encrypting SOAP messages.   

In order to publish the security requirements, our 
design optimisation services make use of the WS-
SecurityPolicy [20] specification, which identifies a 

number of WS-Policy [21] assertions for security issues. 
These assertions allow the service to state what security 
tokens are acceptable and what are the requirements for 
message integrity and confidentiality. 

 

Figure 6: WS-SecurityPolicy Assertions for the 
Design Optimisation Services 

Figure 6 shows typical examples of WS-
SecurityPolicy assertions used by the design 
optimisation services. They specify that an X.509 v3 
certificate issued by the UK e-Science CA is required as 
the security token, that the services only accept 
messages which have the SOAP body element signed 
using Exclusive Canonicalisation and the RSA-SHA1 
algorithms with an X.509 certificate, and that the SOAP 
body element must be encrypted using the RSAES-
PKCS1-v1_5 algorithm.  

Security features for the design optimisation services 
have been implemented with supports from the WSE 
package. Depending on the underlying service hosting 
environment, the security policies are created 
differently. On OGSI.NET, they are constructed 
programmatically using customised .NET attributes [22]. 
For services built on ASP.NET and MS.NETGrid, 
policy documents need to be created explicitly, and 
mapped to the services in the service configuration, as 
illustrated by Figure 7.  

 

Figure 7: Mapping Security Policies to Services 



3.4. Integrating Legacy Technologies 

An important issue in building the design 
optimisation services is how to integrate design 
optimisation programs developed in the earlier stage 
with new software technologies used for service 
development. Most of these legacy technologies are 
only available either as source code in native 
programming languages such as FORTRAN and C that 
are much different from those used to build Grid/Web 
services, or as native binary libraries. There are 
generally two approaches that can be used to link the 
service programming environment and the legacy 
technologies, as shown in Figure 8. 

 

Figure 8: Integrating Service with Legacy 
Design Optimisation Technologies 

The first approach to breach the division between 
existing native source code and new programming 
languages makes use of the Common Language 
Runtime (CLR) [23], which provide multi-language 
support and seamless integration of code written in 
various languages, such as FORTRAN, C/C++ and C#. 
It is therefore possible to have existing source code 
compiled into CLR libraries, and accessed directly by 
service also developed in CLR environment. This 
approach has been applied in the implementation of the 
optimisation service for grading based optimisation 
algorithms from the open-source PORT library [27], as 
well as the computation service for interactions with 
local resource management systems [8]. 

The CLR approach requires direct access to source 
code of the legacy technologies. In many cases, 
however, they are only available as compiled native 
binary libraries. The second approach addresses this 
problem by building native interfaces to the binaries 
using technologies such as Java Native Interface (JNI) 
[25] and Common Object Model (COM) [27], so that 
the native binaries can also run under the selected 
platforms. If JNI is involved, the services need to be 
built on Java based Grid/Web services environments, 
while the COM based approach allows CLR based 
service environments to be used. This approach has 
been applied in the implementation of optimisation 
service for genetic algorithms from OPTIONS, as well 
as the RSM service and the DoE service.  

3.5. Building Service Based Workflow 

We choose to apply script languages such as Matlab 
and Jython for the construction of the service based 
workflow for design optimisation operations, instead of 
Web services orchestration technologies such as 
BPEL4WS [27]. Compared to business processes, 
design optimisation operations are often more 
complicated, which requires the flexibility of scripting 
languages. In addition, scientists and engineers carrying 
out design optimisation are usually more familiar with 
scripting languages and design environments such as 
Matlab.  

In order to facilitate service interactions from the 
scripting environments, clients for the design 
optimisation services have all been constructed in Java, 
which connects to the scripting languages seamlessly as 
the Java virtual machine has been integrated into 
environments including Jython and Matlab.  The service 
clients follow the dynamic, filter based structure 
described in [8] for flexibility and adaptability. 
Messages from the clients are created through layered 
processing by the following message filters: 
�

 The SOAP Filter, which constructs the SOAP 
envelopes and serialise the service messages 
following WSDL of the target services. 

�
 The Context Filter, which serialises the operational 

context information to context elements and insert 
them into the SOAP headers. When necessary, it is 
also responsible to send detailed context information 
to the context service.  

�
 The Sequence Filter, which serialises information 

for reliable messaging to sequence elements and 
acknowledgment requests, and put them in the 
SOAP headers.  

�
 The Security Filter, which implements XML-

Signature and XML-Encryption functions in WS-
Security to sign and encrypt the SOAP messages 
using security tokens specified by the users.  

�
 The Dime Filter, which handles the DIME [28] 

protocol that is used for delivering of large sets of 
data alongside the SOAP messages.  

It is obvious that not all the filters are required for 
each operation on design optimisation services. The use 
of the filters and the usage sequence can be specified in 
the client configuration files.  

4. Exemplars 

In this section we demonstrate the use of our services 
deployed using technologies described in previous 
sections. Three categories of methods that are 
commonly used in engineering design optimisation are 
exposed in previous sections as services: design of 
experiments (DoE), response surface modelling (RSM), 



and genetic algorithm (GA). In engineering design 
optimisation, high-fidelity analysis codes such as FEM 
and CFD are often used to provide definitions of the 
measure of merits for the product. Due to the high 
computational cost of these high fidelity codes, a 
strategy of combining DoE/RSM is commonly applied 
to work together with evolutionary optimisation 
methods such as genetic algorithm. 

In our exemplar, this strategy is applied to a 
numerical test function problem of a two-dimensional 
parameter space [29] to illustrate the use of our service-
oriented design optimisation process orchestrated using 
the Matlab scripting language: 
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Figure 9 shows the sample points in the design space 

generated by the DoE service, and response surface 
model built using the RSM service. Twenty points are 
initially used in the process of building the response 
surface. The GA service is subsequently invoked on the 
response surface model, and best points found on the 
response surface are evaluated using the true objective 
function, and response surface model are then updated 
using those points where the true objective function 
performs better than the response surface evaluation. 
These results are also shown in Figure 9. 

 

 
 

Figure 9: Application of Service-Oriented 
Design Optimisation Process for a Test 

Function 

The second example involves a more complex 
engineering design problem. A parametric ProEngineer 
model of airfoil is used to generate different designs 
using the DoE services. After generating the design 
points, the geometry is evaluated in parallel on a 
Condor pool via our computational client service. Four 
of the geometries are shown in Figure 10.  

 
 

 Figure 10: Four airfoil shapes produced by 
DoE service 

5. Conclusions and Future Work 

The demands for improved design optimisation 
processes have prompted our efforts on applying 
service-oriented Grid technologies to provide seamless 
system integration and access to additional computation 
resources. In this paper, we introduce our work in 
developing essential services that are used to construct 
the design optimisation process. The usage of advanced 
Web/Grid services technologies for supporting 
complicated design optimisation operations are 
explained in detail. Applications of our services in 
different stages of the design optimisation process are 
demonstrated with concrete examples.  

Future work on the service development will focus 
on adapting the current implementation to new Web 
services architectures for Grid computing, such as the 
WS-Resource framework. We will also attempt to 
migrate the services to other Web services platforms to 
facilitate wider adoption.  
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