

Developing Services for Design Optimisation on the Grid

Xue, G, Song, W, Keane, AJ and Cox, SJ
{gx, w.song, ajk, sjc}@soton.ac.uk

School of Engineering Sciences
University of Southampton

SO17 1BJ, UK

Abstract

In this paper we present our work on implementing

elemental services for carrying out design optimisation
on the Grid. The service-oriented approach makes it
possible for to harness best available technologies that
are usually incompatible due to heterogeneous
software environments. It also facilitates the creation
of integrated Problem Solving Environment (PSE) for
design optimisation. We explain in details how state-
of-the-art Web services technologies are exploited to
build these services and yield desired quality of service,
and demonstrate how service based design
optimisation workflows constructed using script
languages are used to solve design optimisation
problems from different paradigms.

1. Introduction

Computer based design optimisation processes are
broadly employed in many scientific and engineering
areas to solve complicated problems such as
computational fluid dynamics (CFD) and finite element
methods (FEM), so as to produce the optimal results for
the designers. Bringing improvements to the design
optimisation processes to make them more accurate and
efficient can provide the cutting edge in research and
industrial competitions. So far, there have been many
results from efforts to enhance the design optimisation
processes made in the following two directions: (i) to
bring in more computation resources for better quality
and higher performance; and (ii) to develop better
design optimisation methods for more accurate design
modelling and more efficient optimisation search. It has,
however, become a daunting task for designers to take
full advantage of all these achievements in their daily
design activities, as it requires integration of various
elements that are either developed using incompatible
software technologies, or deployed in heterogeneous
environments.

The development and maturing of Grid computing
technologies has provided a new solution to tackle the
integration problem in design optimisation, as one of
the main target of the Grid technologies is to enable
large-scale, dynamic collaborations among participants

from highly heterogeneous and distributed environ-
ments. The application of Grid technologies has
facilitated the research and development of dedicated
problem solving environments for design optimisation,
such as the Geodise system [1].

With the introduction of OGSA [2] and OGSI [3], as
well as the following WS-Resource framework [4],
service-oriented Grid computing has been widely
accepted by the Grid community. The design
optimisation processes built in Geodise is fully
compliable with the service-oriented approach by using
services to assist designer at all stages of the design
process. All technologies applied in the processes,
regardless of what programming language they are
developed in or what the platform they run on, are
encapsulated into standard Web/Grid services that are
universally accessible. It is therefore possible to achieve
seamless integration of these heterogeneous
technologies. In addition, this also decouples design
optimisation components from each other, and therefore
makes the system more flexible and extensible.

The service-oriented architecture itself, however, can
not meet all demands for building design optimisation
processes. The processes often include many
sophisticated operations that require careful
management of application state, guaranteed and
faultless message delivery, and tightly controlled
security. In implementing our design optimisation
services, a number of advanced Web/Grid service
technologies have been exploited to address these issues.

The rest of this paper is organised as follows. In the
next section we describe the services developed for
important steps in the design optimisation processes,
and explain the advantage of using service-orientation.
Section 3 provides details of the service implementation,
focusing mainly on the advanced Web/Grid service
features introduced to the development. To illustrate the
use of the services, sample operations from different
stages of the design optimisation process are
demonstrated in Section 4. We draw the conclusions in
Section 5.

2. Services for Design Optimisation

Figure 1 shows the workflow of our service-oriented
design optimisation processes. Essential functions in

Figure 1: The Design Optimisation Process Workflow

the process, including design of experiment, response
surface modelling and optimisation search have all been
implemented as services, so that it is feasible to apply
alternative design optimisation technologies to get the
best results.

2.1. Service for Design of Experiment

The design of experiment (DoE) service provides a
range of experiment design methods that are used to
produce starting points required for generation of initial
design geometries. To get the designs, the users need to
specify ranges of the design parameter values, as well as
the number of designs needed.

The DoE service is designed as a stateful service,
which is able to store all designs generated based on a
particular setting. Service users are therefore allowed to
come back and require more designs based on the same
settings without triggering another run of the applied
DoE function. The usage of the service is therefore
made more flexible and efficient.

The main DoE methods applied in the current service
implementation are supplied by the OPTIONS system
[5], including Latin Hypercube, Random, LP � , Central
Composite that are capable of meeting different design
requirements.

2.2. Service for Response Surface Modelling

The response surface modelling (RSM) service
implements various curve-fitting and regression
methods available from OPTIONS, including Radial
basis function, stochastic process modelling, and
polynomial regression models. Results from the DoE
service is passed onto response surface modelling
service to build response surface which can be then
tuned using additional design points when they become
available.

Unlike the optimisation services, the RSM service is
constructed as a normal service, as no internal state is
required for the modelling operations. However, in

order to support incremental response surface building
and tuning, the service has introduced mechanisms to
set up and manage operation context for a complete
RSM process.

2.3. Service for Optimisation Search

The optimisation services expose numerical
optimisation algorithms through reverse communication
interfaces [7], which facilitate the decoupling of the
optimisation system that drives the search process from
the modelling codes that evaluate objective functions
and constraints. It therefore becomes possible for the
best optimisation methods to be deployed for a variety
of design problems without any compatibility issues.

Strong support for state management is employed in
the optimisation services, as for reverse communication
based optimisations, the optimisers need to maintain
information such as the control parameter values, the
design parameter boundaries, and the search history
throughout the entire process. In addition, considering
that an optimisation operation usually involves a large
number of search steps, mechanisms to ensure secured,
reliable interactions between the client and the service
have also been introduced.

Our optimisation services are constructed based on a
framework which provides a generic abstraction of
numerical optimisation operations. It can therefore be
used to host diverse optimisation methods that can be
called through reverse communication interfaces. So far
we have built our optimisation services around the
OPTIONS genetic algorithms, as well as the open
source PORT library. The services have been
successfully applied to optimise different design
problems, such as those demonstrated in section 4, as
well as in [6] and [7].

Apart from the design optimisation services
described above, a number of general purpose services,
such as the computation service [8] and the data service
[9], have also been deployed to assist resource-intensive
operations in the process.

3. Implementation

Basic Web services technologies, including XML
Schema, SOAP and WSDL, have established a simple
but sound infrastructure for the exchange of XML
documents that are successfully used in our services to
provide access to design optimisation functionalities.
Yet operations for design optimisation are often
complicated, involving multiple stages and numerous
interactions with the services. It demands support for
stateful service interactions and mechanisms that ensure
right sequences of execution. In addition, security has
remained as a major concern. To address these
requirements, our service implementations have
incorporated a number of enhancements to the basic
Web services framework.

Apart from the efforts on the service layer, our
implementations also include work on the integration of
legacy design optimisation technologies, and the
development of service clients that facilitate
composition of services in design environments.

3.1. Enabling Stateful Service Interactions

The basic Web services specifications do not bear
any notion of application state, which is nevertheless
essential to many design optimisation operations such as
response surface modelling and optimisation search. In
general, two different approaches are applicable to
solve this problem: the transient grid service model and
the use of operation context.

The transient grid service model is first proposed
together with OGSA and then technically specified in
OGSI. The basic idea is to create ‘ instances’ of the
service that are responsible for maintaining all
operation-specific state. Similar to distributed objects,
the service instances are instantiated through a factory
service and are identified using the Grid Service
Handlers (GSH) [3]. All service interactions for a
particular operation are carried out toward the same
service instance. The instances only exist for the
lifetime of the operations and are destroyed once the
operations are finished. The use of transient grid
services is illustrated in Figure 2.

Figure 2: The OGSI Transient Service Model

Instead of building an external infrastructure like
OGSI, the WS-Context [10] specification attempts to
provide support for stateful service interactions within
the Web services framework. It adheres to the principle
that Web services are stateless, and tries to encapsulate
operation state in an XML based entity called ‘context’ .
Each interaction message for a particular operation
contains in the SOAP header its context, from which the
target service can retrieve state information so as to
restore the right conditions and settings. A context can
be created by the target service, or by a WS-Context
Service designed in the same specification. The context
may be augmented or modified each time the service is
invoked. The WS-Context Service is also used to
maintain the context entities. For operations with big
amounts of state information, the service messages can
only provide a URI reference to contexts stored on the
service. Figure 3 illustrates how context works, together
with a sample context entity in the SOAP header.

(a) Context based Stateful Interactions

(b) A Sample Context Element

Figure 3: Using Context for Stateful
Interactions

Both approaches described have been exploited in
our implementations to best suite the conditions of
individual services. For instance:

The OGSI transient grid service model has been used
in the implementation of the numerical optimisation

service, which needs to make quick response to service
invocations. An optimisation operation may involve
hundreds or thousands of search steps. It is therefore not
hard to see that for the optimisation service, the
transient service approach is far superior in
performance, since the service instance keeps all state
information which can be used directly each time it is
invoked. On the contrary, state of the optimisation
search needs to be loaded every time if the context
based approach is applied. Considering the large
number of service interactions, the aggregate impact on
performance is too significant to ignore.

Design optimisation services implemented in the
transient grid service model have bee deployed using
OGSI.NET [11] and MS.NETGrid [12]. Both platforms
use the .NET framework [13] to create hosting
environments for transient grid services and to provide
comprehensive programming support for grid service
development.

The context based approach for stateful service
interactions is more suitable for services that are less
critical in response time, and have large elements of
state information. A typical example is the RSM service,
which does not have frequent service interactions, but
needs all submitted objective function values for each
modelling action. Using WS-Context, the state
information is only loaded when the service invoked,
rather than staying in the system all the time. It reduces
the cost of resource for running the service, and makes
it more scalable.

Apart from performance considerations, the context
based approach is more compatible with the service-
oriented architecture defined in [14] and [15]. It puts
fewer burdens on the service hosts, not requiring
additional infrastructures such as OGSI. The
deployment of design optimisation services is made
simpler and easier.

Services using WS-Context have been deployed over
normal Web service platforms such as ASP.NET. To
handle the context element in the SOAP header, a
message filter is added to the WSE [16] pipeline, which
intercepts the context element and transform it to a
programmable format. A context service partially
implementing the WS-Context service has also been
constructed.

3.2. Enabling Reliable Service Interactions

Service-oriented optimisation search usually
involves numerous, repeated exchanges of similar
messages between the client and the optimisation
service. To carry out successful search operations, it is
important that these messages are sent and received in
the right sequence, and exactly once. However, in a
heterogeneous environment, many errors such as system
malfunction and network failure may occur to cause loss
or duplication of messages, which can impair the search
efficiency and even make the search fail.

In order to avoid potential errors caused by failed or
false message delivery, features from the WS-
ReliableMessaging [17] protocol have been
implemented in the optimisation service. The protocol
defines an XML element named ‘sequence’ to track and
manage message deliveries. All messages of a particular
operation should carry a sequence element, which
contains a unique sequence identifier assigned to the
operation, as well as an incremental message number.
The sequence identifier and the message number
combine to uniquely identify a message, while the
message numbers specify the right order of delivery.
Therefore, it is possible for the message receiver to
detect delivery errors with a wrong sequence identifier
or a non-incremental message number. Based on the
establishment of mutual understanding of the sequence,
WS-ReliableMessaging also defines mechanisms for
message senders and receivers to confirm successful
message deliveries, or report errors.

For our optimisation service, a sequence is
established when a new service instance is created.
Each request message to the service includes a sequence
element in the SOAP header, and a request for
acknowledgement of message delivery. In the response
message, the service adds in information about all
received messages, which can be used by the client to
judge whether the response is rightly delivered
corresponding to the request.

Figure 4: Creating Sequence on Service
Instantiation

For example, in Figure 5, the client can conclude that
the response message is wrongly delivered, as the range
of received messages acknowledged does not match the
message number of the request. The client then arranges
a re-transmission to get the right response. To avoid

confusing the service, a Retransmission element is
added to differentiate from a duplicate message delivery.

���������
	���
��������������������
�������������������! �"�#�$�%��&��'
������(�)+* ,���	�������)��-���������.*/����(�)�����0�1�1�)2*/3�3�����0�����(���� ����������(�)2� ��
���3�����(�)�3�����	�������)���3���'
������(�)+* 4���(�����

����������* 5���
!�����!0�1�1�)+*!3�3�0�1�1�)+*�3�3�����0�����(��.� ����������(�)+� ��
���3!5���3�6�����7�3���8�3�
�����'
�����
��5���
��9* :���;�<���������'
��5���<+*/=�������1���>�����
�'�0�1�1�)2*/3�3�(�
�������������1����?�/(��.� <�@�3�A�)�1���������(�1�������3

B (�C�D���������$���C�(���$�7�8�����$�(�6�C�C�$�8�E���F���C�%�D�>�7�E�����3�5���<?*!=�������1���>�����
�'
��5���
��2* G�������(�����H�<���C���
�'�������3�5���
��2* G�������(�����H�<���C���
�'
��I�J+K L�M�N�O�P�Q�R�S�T�R�R�T�U�Q

����������*/��������0�1�1�)+*!3�3�5�5�52� �������������?� ��
���3���)�1��!������(�1���������3�'
��3�5���
��2*/:���;�<���������'
��5���
��9* V���@�W���;�<�����1�����'
��5���<?*�=�������1���>�����
�'�0�1�1�)+*!3�3�(�
������.�/����1����+� (��X� <�@�3�A�)�1���������(�1�������3

B (�C�D���������$���C�(���$�7�8�����$�(�6�C�C�$�8�E���F���C�%�D�>�7�E�����3�5���<?*!=�������1���>�����
�'
��3�5���
��2* V���@�W���;�<�����1�����'
�����

��3�����(�)2* 4���(�����
�'
������(�)+* Y�����Z�'
��A�)�1����������-�������������!0�1�1�)2*/3�3!5�5�52� �������������X� ��
���3���)�1��!������(�1���������'
�����

��3�A�)�1��!��������'
��3�����(�)2* Y�����Z�'

��3�����(�)2* ,���	�������)���' �����������	
����
��
��

Figure 5: Use of WS-Reliable Messaging

In addition to ensuring message delivery, the
sequence mechanism can also used to trace the
optimisation search route. Since the message numbers
are unique in the sequence, they are used to index the
search history kept at the service. Using such indexes,
users can easy request the restart of optimisation at a
specified point.

Like the context element, sequence and
acknowledgement elements are all processed by a
customised WSE filter. Since it is not feasible to use
customised filter under OGSI.NET, the implementation
is so far only available on the MS.NETGrid platform.

3.3. Enforcing Security

Our design optimisation services follow the WS-
Security [18] specification to control access to the
services, as well as to protect message integrity and
privacy. The implementations select to use X.509 [20]
certificates for signing and encrypting SOAP messages.

In order to publish the security requirements, our
design optimisation services make use of the WS-
SecurityPolicy [20] specification, which identifies a

number of WS-Policy [21] assertions for security issues.
These assertions allow the service to state what security
tokens are acceptable and what are the requirements for
message integrity and confidentiality.

Figure 6: WS-SecurityPolicy Assertions for the
Design Optimisation Services

Figure 6 shows typical examples of WS-
SecurityPolicy assertions used by the design
optimisation services. They specify that an X.509 v3
certificate issued by the UK e-Science CA is required as
the security token, that the services only accept
messages which have the SOAP body element signed
using Exclusive Canonicalisation and the RSA-SHA1
algorithms with an X.509 certificate, and that the SOAP
body element must be encrypted using the RSAES-
PKCS1-v1_5 algorithm.

Security features for the design optimisation services
have been implemented with supports from the WSE
package. Depending on the underlying service hosting
environment, the security policies are created
differently. On OGSI.NET, they are constructed
programmatically using customised .NET attributes [22].
For services built on ASP.NET and MS.NETGrid,
policy documents need to be created explicitly, and
mapped to the services in the service configuration, as
illustrated by Figure 7.

Figure 7: Mapping Security Policies to Services

3.4. Integrating Legacy Technologies

An important issue in building the design
optimisation services is how to integrate design
optimisation programs developed in the earlier stage
with new software technologies used for service
development. Most of these legacy technologies are
only available either as source code in native
programming languages such as FORTRAN and C that
are much different from those used to build Grid/Web
services, or as native binary libraries. There are
generally two approaches that can be used to link the
service programming environment and the legacy
technologies, as shown in Figure 8.

Figure 8: Integrating Service with Legacy
Design Optimisation Technologies

The first approach to breach the division between
existing native source code and new programming
languages makes use of the Common Language
Runtime (CLR) [23], which provide multi-language
support and seamless integration of code written in
various languages, such as FORTRAN, C/C++ and C#.
It is therefore possible to have existing source code
compiled into CLR libraries, and accessed directly by
service also developed in CLR environment. This
approach has been applied in the implementation of the
optimisation service for grading based optimisation
algorithms from the open-source PORT library [27], as
well as the computation service for interactions with
local resource management systems [8].

The CLR approach requires direct access to source
code of the legacy technologies. In many cases,
however, they are only available as compiled native
binary libraries. The second approach addresses this
problem by building native interfaces to the binaries
using technologies such as Java Native Interface (JNI)
[25] and Common Object Model (COM) [27], so that
the native binaries can also run under the selected
platforms. If JNI is involved, the services need to be
built on Java based Grid/Web services environments,
while the COM based approach allows CLR based
service environments to be used. This approach has
been applied in the implementation of optimisation
service for genetic algorithms from OPTIONS, as well
as the RSM service and the DoE service.

3.5. Building Service Based Workflow

We choose to apply script languages such as Matlab
and Jython for the construction of the service based
workflow for design optimisation operations, instead of
Web services orchestration technologies such as
BPEL4WS [27]. Compared to business processes,
design optimisation operations are often more
complicated, which requires the flexibility of scripting
languages. In addition, scientists and engineers carrying
out design optimisation are usually more familiar with
scripting languages and design environments such as
Matlab.

In order to facilitate service interactions from the
scripting environments, clients for the design
optimisation services have all been constructed in Java,
which connects to the scripting languages seamlessly as
the Java virtual machine has been integrated into
environments including Jython and Matlab. The service
clients follow the dynamic, filter based structure
described in [8] for flexibility and adaptability.
Messages from the clients are created through layered
processing by the following message filters:
�

 The SOAP Filter, which constructs the SOAP
envelopes and serialise the service messages
following WSDL of the target services.

�
 The Context Filter, which serialises the operational

context information to context elements and insert
them into the SOAP headers. When necessary, it is
also responsible to send detailed context information
to the context service.

�
 The Sequence Filter, which serialises information

for reliable messaging to sequence elements and
acknowledgment requests, and put them in the
SOAP headers.

�
 The Security Filter, which implements XML-

Signature and XML-Encryption functions in WS-
Security to sign and encrypt the SOAP messages
using security tokens specified by the users.

�
 The Dime Filter, which handles the DIME [28]

protocol that is used for delivering of large sets of
data alongside the SOAP messages.

It is obvious that not all the filters are required for
each operation on design optimisation services. The use
of the filters and the usage sequence can be specified in
the client configuration files.

4. Exemplars

In this section we demonstrate the use of our services
deployed using technologies described in previous
sections. Three categories of methods that are
commonly used in engineering design optimisation are
exposed in previous sections as services: design of
experiments (DoE), response surface modelling (RSM),

and genetic algorithm (GA). In engineering design
optimisation, high-fidelity analysis codes such as FEM
and CFD are often used to provide definitions of the
measure of merits for the product. Due to the high
computational cost of these high fidelity codes, a
strategy of combining DoE/RSM is commonly applied
to work together with evolutionary optimisation
methods such as genetic algorithm.

In our exemplar, this strategy is applied to a
numerical test function problem of a two-dimensional
parameter space [29] to illustrate the use of our service-
oriented design optimisation process orchestrated using
the Matlab scripting language:

� ��

1

2

11

))cossin(-)�cos�sin(()(
n

i

n

j
jijjij

n

j
jijjij xbxabaxF

= ==

++=

Figure 9 shows the sample points in the design space

generated by the DoE service, and response surface
model built using the RSM service. Twenty points are
initially used in the process of building the response
surface. The GA service is subsequently invoked on the
response surface model, and best points found on the
response surface are evaluated using the true objective
function, and response surface model are then updated
using those points where the true objective function
performs better than the response surface evaluation.
These results are also shown in Figure 9.

Figure 9: Application of Service-Oriented
Design Optimisation Process for a Test

Function

The second example involves a more complex
engineering design problem. A parametric ProEngineer
model of airfoil is used to generate different designs
using the DoE services. After generating the design
points, the geometry is evaluated in parallel on a
Condor pool via our computational client service. Four
of the geometries are shown in Figure 10.

 Figure 10: Four airfoil shapes produced by
DoE service

5. Conclusions and Future Work

The demands for improved design optimisation
processes have prompted our efforts on applying
service-oriented Grid technologies to provide seamless
system integration and access to additional computation
resources. In this paper, we introduce our work in
developing essential services that are used to construct
the design optimisation process. The usage of advanced
Web/Grid services technologies for supporting
complicated design optimisation operations are
explained in detail. Applications of our services in
different stages of the design optimisation process are
demonstrated with concrete examples.

Future work on the service development will focus
on adapting the current implementation to new Web
services architectures for Grid computing, such as the
WS-Resource framework. We will also attempt to
migrate the services to other Web services platforms to
facilitate wider adoption.

Acknowledgement

This work is supported by the UK e-Science Pilot
project (UK EPSRC GR/R67705/01).

References

[1] The Geodise Project. http://www.geodise.org

[2] Foster, I., Kesselman C., Nick, J., and Tuecke, S., “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,” 2002.

[3] Open Grid Services Infrastructure (OGSI),
http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-
gridservice-29 2003 04 05.pdf, 2004

[4] Ian Foster,et. al. Modeling Stateful Resources with Web
Services. http://www.globus.org/wsrf/ModelingState.pdf

[5] Keane, A. J., OPTIONS: Design Exploration System,
http://www.soton.ac.uk/ ajk/options.ps, 2003

[6] Xue, G., Song, W., Cox, S. J., and Keane, A.J.
Numerical Optimisation as Grid Services. Submitted to
the Journal of Grid Computing.

[7] Song, W., Xue, G., Keane, A.J. and Cox, S. J.
Implementation of a Genetic Algorithm as a Grid Service.
Submitted to Europar 2004, Pisa, Italy.

[8] Xue, G., Fairman, M.J., Pound, G.E., and Cox, S.J.
Implementation of a Grid Computation Toolkit for
Design Optimisation with Matlab and Condor.
Proceedings of Europar 2003, Klagenfurt, Austria.

[9] Wason, J.L, Molinari, M, Jiao, Z & Cox, S.J. Delivering
Data Management for Engineers on the Grid.
Proceedings of Europar 2003, Klagenfurt, Austria.

[10] Web Services Context (WS-Context) Specification.
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-
CTX.pdf

[11] The OGSI.NET project.
http://www.cs.virginia.edu/~humphrey/GCG/ogsi.net.ht
ml

[12] The MS.NETGrid project.
http://www.epcc.ed.ac.uk/~ogsanet/

[13] The Microsoft .NET Framework.
http://msdn.microsoft.com/netframework/

[14] Web Services Architecture. http://www.w3.org/TR/ws-
arch

[15] Service-Oriented Architecture (SOA) Definition.
http://www.service-architecture.com/web-
services/articles/service-oriented_architecture_soa_
definition.html

[16] Web Services Enhancement.
http://msdn.microsoft.com/webservices/building/wse/def
ault.aspx

[17] Web Services Reliable Messaging.
http://www-106.ibm.com/developerworks/library/ws-rm/

[18] The WS-Security Specification.
http://www.ibm.com/developerworks/library/ws-secure/

[19] Public Key Infrastructure.
http://www.ietf.org/html.charters/pkix-charter.html

[20] Web Services Security Policy. http://www-
106.ibm.com/developerworks/webservices/library/ws-
secpol/

[21] Web Services Policy Framework. http://www-
106.ibm.com/developerworks/library/ws-polfram/

[22] Wasson, G. and Humphrey, M. Attribute-Based
Programming for Grid Services. 2003, GGF9 Workshop
on Designing and Building Grid Services.

[23] Common Language Runtime (CLR) Overview.
http://msdn.microsoft.com/library/en-us/cpguide/html/
cpconCommonLanguageRuntimeOverview.asp

[24] PORT Mathematical Subroutine Library.
http://www.netlib.org/port/

[25] Java Native Interface (JNI). http://java.sun.com/

[26] Microsoft COM Technologies.
http://www.microsoft.com/com/

[27] Business Process Execution Language for Web Services.
http://www-106.ibm.com/developerworks/library/ws-
bpel/

[28] DIME. http://www.ietf.org/internet-drafts/draft-nielsen-
dime-02.txt

[29] Schwefel, H.P. Evolution and Optimum Seeking, John
Wiley & Sons (1995).

