
PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 1 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Title: Provenance Store (Server) Implementation Design
Workpackage: WP9
Authors: John Ibbotson, Neil Hardman, Alexis Biller (IBM)
Editor: Alexis Biller
Reviewers: All project partners
Identifier: D9.3.2
Type: Deliverable
Version: 1.1
Date: 28 February 2006
Status: Public

Summary

This document provides an implementation design for the Provenance deliverable D9.3.2., the first
public release of Provenance Store Server Implementation. It includes a description of the major
interfaces, components and subcomponents together with a mapping to the architectural requirements
it supports. This is a working document and is subject to change before the deliverable is complete.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 2 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Members of the PROVENANCE consortium:

• IBM United Kingdom Limited United Kingdom
• University of Southampton United Kingdom
• University of Wales, Cardiff United Kingdom
• Deutsches Zentrum fur Luft- und Raumfahrt e.V. Germany
• Universitat Politecnica de Catalunya Spain
• Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutató Intézet Hungary

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 3 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Forward

This document describes:

• Component overview for the first public release of Provenance implementation, Provenance
Store Server version 1.0.

• How the Web Services Resources Framework (WSRF) has been applied to provide stateful
offering.

• The storing of Provenance records (p-assertion) to an XML database, followed by subsequent
retrieval and management.

• The considerations for set-up of a Provenance Store and runtime implications.

The primary audience of this document include: administrators and developers of the Provenance
Store; and developers of Provenance Client Library.
The document has been edited by Alexis Biller (IBM) based on input from project partners.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 4 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Change History

0.1 Initial draft document for review by project partners
0.2 Further documentation and initial partner feedback:

• Title: to specify Server Implementation and thus differentiate from Client code.
• Forward: included to summarise key topic matter
• Supported Requirements: moved to appendix section and includes pointer to component in

which requirement is met.
• Non-Supported Requirements: moved to appendix section and includes justification for

non-support in Grid Provenance Server Implementation version 1.0.
• Component Terminology: moved into List of Acronyms (after Table of Contents)
• The Provenance Store as a WS-Resource: restructured and expanded.
• Use of term “Provenance Store”: modified to Provenance Store Service
• GT4 package naming: altered to reflect server component
• Manage Operation: now includes justification following PASOA release and comments

from University of Southampton.
• Use of term “Provenance code”: re-phrased to be more explicit
• Use of term “Provenance information”: changed to p-assertions
• The eXist XML database: additional commentary regarding justification of use
• Data Storage: corrected invalid use of InteractionKey
• XML Insert and Append operations: additional remarks to emphasise difference between

the two operations
• Influences on the Component Design: removed High Availability, inserted additional

remarks to National Language Support, Test Considerations and Test Scenarios.
• Exception and Notification Handling: inserted details of Provenance Exception and use

throughout implementation, together with use in log4j logging.
0.3 Following further partner feedback

• Title: as Provenance Store (Server).
• Forward: primary audience
• Introduction: purpose and links to other Provenance documents
• Reference to GT4 in package naming: changed to WSRF to clearly indicate compliance
• Choice of Data Repository: created specific section for further clarification
• Provenance Exception: upon first use refers reader to section regarding such topic
• WSRF Factory pattern: additional figure and textual description.
• Shared Stateful Resource: removed. Was surplus information.
• Uniqueness of InteractionKey: relationship between architecture and implementation docs.
• WS-Security: added to both overview and design
• Conclusion and further work: included in an extra chapter before appendices
• WSDL in appendix: updated to PASOA version 0.22
• UML in appendix: added and referenced in body of document
• Sequence diagrams in appendix: added and referenced in body of document

1.0 Public release
• Test scenarios: reference specific section in Architecture
• InteractionKey: error conditions
• Security: further elaboration and details regarding properties in external files

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 5 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

1.1 Following Partner discussion
• New Terminology: added prior to Acronyms
• Consistency of terminology: reference to Provenance Store Server Implementation
• Links to other docs: refer to final architecture and include D4.2.1 security reference
• Component Requirements: added text to separate service and data store
• Provenance Store Factory: state what factory invocation returns and sets
• Fig 3: arrow from Destroy service to Resource
• Packaging and Delivery Considerations: binary and source download reference
• Conclusion and further work: enhanced application of WSRF as extension to 3 services
• Bibliography: Security Requirements added

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 6 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Contents

1 Introduction...10
1.1 Purpose of this document ...10
1.2 Links to other Provenance Documents..11

2 Component Functional Description12
2.1 Component Requirements ..12
2.2 The Provenance Store as a Stateful Web Service ..12
2.2.1 The Web Service Environment .. 12
2.2.2 Requirements for Modelling State in Web Services... 14
2.2.3 The Provenance Store as a WS-Resource ... 14
2.2.4 Provenance Store Factory .. 15
2.2.5 Web Services Security... 16

2.3 Component Overview ..17
3 Component Design ..18
3.1 Pre-requisite components...18
3.2 Component Details ..18
3.2.1 The ProvenanceStoreFactory component ... 18
3.2.2 The ProvenanceStoreResourceHome component... 19
3.2.3 The ProvenanceStoreResource component... 19
3.2.4 The ProvenanceStore component .. 20
3.2.4.1 The Record Operation .. 20
3.2.4.2 The Query Operation.. 20
3.2.4.3 The Manage Operation ... 20

3.2.5 The choice for data repository ... 21
3.2.6 The OGSA-DAI Data Service... 21
3.2.7 The eXist XML database .. 22
3.2.7.1 XML Namespaces.. 22
3.2.7.2 Data Storage .. 23
3.2.7.3 Recording Provenance .. 23
3.2.7.4 Insert operation ... 24
3.2.7.5 Append operation.. 24

3.3 Web Services Security ..25
3.4 Initialisation and Termination...25
3.4.1 Initialisation GT4 .. 25
3.4.2 Initialisation eXist ... 26
3.4.3 Termination GT4 .. 26
3.4.4 Termination eXist.. 26

3.5 Administration..26
3.5.1 Administration GT4 and OGSA-DAI.. 26
3.5.2 Administration eXist ... 26

3.6 Application Development Tooling..27
4 Influences on the Component Design.................................28
4.1 Security ...28
4.2 Reliability Availability and Serviceability (RAS) ...28
4.3 Performance ...28
4.4 Monitoring and Statistics ..28
4.5 Platform Considerations ...28
4.6 National Language Support (NLS) and Internationalisation Considerations28
4.7 Test Considerations ..28
4.7.1 Test Scenarios .. 28
4.7.2 JUnit Strategy.. 28
4.7.3 Test Hooks ... 29

5 Other Externals and Dependencies30

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 7 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

6 Supported and Non-Supported Requirements32

7 Packaging and Delivery Considerations.............................34

8 Known Outstanding Issues ...35
8.1 XQuery Support..35
8.2 Federated Query...35

9 Conclusion and further work...36

10 Bibliography ..37

11 Appendices..38
11.1 Appendix A – Sequence Diagrams...38
11.2 Appendix B – External APIs ..39
11.2.1 ProvenanceStoreFactory Interface .. 39
11.2.2 ProvenanceStore Interface ... 40
11.2.2.1 PRecord WSDL ... 41
11.2.2.2 WSXQuery WSDL .. 42
11.2.2.3 PManage WSDL.. 43

11.3 Appendix C – UML Class Diagrams ...44
11.3.1 Class diagram for org.gridprovenance.wsrf package, including security .. 44
11.3.2 Class diagram for org.gridprovenance.commonservices package .. 45
11.3.3 Class diagram for org.gridprovenance.exceptions package .. 46
11.3.4 Class diagram for org.gridprovenance.commonservices.test package ... 46

11.4 Exception and Notification Handling ...47

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 8 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

New Terminology
The following terminology is introduced within this document as an extension to those of the
Provenance Architecture [GJM+06]:

• ProvenanceStore: a WS-Resource, consisting of ProvenanceService and ProvenanceStore

Resources

• ProvenanceService: the stateless Web Service

• ProvenanceStore Resources: persistent contents of database: p-assertions, interaction records
and policies.

List of Acronyms
The following terms are used in this design document:

• ACL: Access Control List

• AXIS: The Apache SOAP engine provided as part of the GT4 release. See
http://ws.apache.org/axis/

• Collection: A subdivision of an XML database.

• CVS: Concurrent Versions System. Open source tool for source code versioning.

• DBMS: Database Management System.

• DOM: The Document Object Model used for containing and searching XML documents or
document fragments. See http://www.w3.org/DOM/

• EPR: Endpoint Reference. This document uses EPR to refer to a pointer to a WS-Resource.

• eXist: An open source implementation of an XML database. See http://exist.sourceforge.net/ and
http://exist-db.org/webdb.pdf

• GT4: The Globus Toolkit 4 is a software toolkit which can be used to build Grid systems. It
includes resources monitoring and discovery services, job submission infrastructure, security
infrastructure and data management infrastructure. See http://www.globus.org

• GT4 Container: refers to combination of SOAP engine and an application server. Optionally
also HTTP server. Provides runtime environment for a Web Service. GT4 includes a simple Java
Web Services container based on Apache Axis (version 1.2 RC3).

• GT4 WS Core: a Java Runtime on which all the Globus-supplied Web Services resources have
bee implemented. Examples include GRAM and RTF.

• GAR: Grid Archive. A single file containing all the data required by the Web Services container
to deploy the service. The structured file includes the WSDL bindings, compiled stub classes
from WSL and compiled service implementation.

• OGSA: Open Grid Services Architecture, defines a common, standard, and open architecture for
grid based applications.

• OGSA-DAI: OGSA Data Access and Integration. Open source software that provides an
abstraction layer from an underlying database technology. This includes a client API to provide
a simpler interface to access the OGSA-DAI services. See http://www.ogsadai.org

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 9 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

• PASOA: Provenance Aware Service Orientated Architecture. See http://www.pasoa.org

• Pivot Point: The position in a Web Services interaction where AXIS handlers are invoked.

• Tomcat: The Apache Java based application server. The GT4 WS-RF implementation may be
run as a service within Tomcat. See http://tomcat.apache.org/

• XMLDB: A programmatic interface to XML databases.

• XPath: An XML based language for searching XML documents and databases. See
http://www.w3.org/TR/xpath

• XUpdate: An XML based language for updating XML documents/databases. See http://xmldb-
org.sourceforge.net/xupdate/

• WS: Web Services, a service provided over the internet using protocols such as SOAP and
HTML.

• WS-Addressing: Specifies a construct called an endpoint reference, containing at least a URL
pointer to a Web Service.

• WS-Resource: The pairing of a Web Service with a resource. From the different mechanisms of
addressing a WS-Resource the preferred way is by use of WS-Addressing specification.

• WS-RF: Specifies stateful Web Services through the management of WS-Resources. Formed as
collection of specifications: WS-ResourceProperties, WS-ResourceLifetime, WS-ServiceGroup
and WS-BaseFaults. WSRF can be expressed as the infrastructure for the OGSA architecture.
See http://www.oasis-open.org/

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 10 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

1 Introduction

The components of the Provenance Store server implementation, the server setup and runtime, are
presented within the framework of Web Services specifications and the architecture of Provenance.
This document is aimed at a target audience of:

• Administrators of a Provenance Store: with responsibility for defining policy and
executing set-up and review of runtime.

• Developers of the Provenance Store: those who continue to extend the features available
from the server and apply corrections.

• Developers of Provenance Client Library: who will make server implementation features
easier to use for developers of client applications.

• Client Application Developers: implementing actors which will interact with a Provenance
Store, through the defined Provenance interfaces. Developers using Client Library API would
not be direct consumers of this document.

• Developers of PASOA: to observe use of technology and contribute to further development
and deployment progress.

1.1 Purpose of this document
This document outlines components that form the server implementation of a Provenance Store.
These components are built on Web Service standards and apply models which are advised when
applying WS specifications. The implementation must be seen in the context of Provenance
Architecture, with extension for compliance with Web Services Resource Framework (WSRF).

The document is structured to convey an understanding of the implementation, with functional
description, chapter 2, acting as preface to component design, chapter 3. The Web Services initially
described in chapter 2 are cast into implementation for each component and extended from initial
invocation to back-end updates to a database, including security considerations. Chapter 3 also
details initiation, runtime and termination of key components such as Services container and XML
database. Influences on implementation design are discusses in chapter 4, with external dependencies
listed in chapter 5. Requirements provided by WP2 [And05] are tabulated in chapter 6. Two tables
are included, the first for requirements which have been incorporated into the implementation; the
second contains those which have not been included. Chapter 7 details packaging and delivery for
the implementation, how to obtain resources for both running a Provenance system and further
developing the implementation. Conclusion and future work are communicated in chapter 9.
Outstanding issues are listed in chapter 10, detailing impact and mitigation. Building on the work of
others has saved us from losing too much hair, to recognise this help a bibliography is provided in
chapter 11. An appendix contains diagrams such as sequence diagrams, WSDL, UML and exception
handling.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 11 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

1.2 Links to other Provenance Documents

This document makes use of content in the following existing Provenance project documents:

• WP2: Requirements identified in D2.2.1. Those requirements which have been incorporated
into the implementation are listed, together with components in which they can be found.
Requirements which have not been incorporated are also listed, together with a justification.

• WP3: The final architecture document D3.1.1. This architecture is implemented, with
extension for compliance with WS-RF. Test scenarios are built from discussion points in the
architecture document.

• WP4: Security D4.2.1. Harnessing standard security features of Globus Toolkit permits
authentication and authorisation to be achieved. Privacy concerns are also addressed.

• WP5: Scalability D5.2.2. By applying WS-RF model the deployment of Provenance into
more demanding systems becomes feasible more easily.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 12 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

2 Component Functional Description

2.1 Component Requirements

The purpose of the Provenance Services provide three Web-Service interfaces:

1. Record: provides an interface through which provenance assertions can be recorded.
2. Query: provides an interface through which the data in the provenance store can be queried.
3. Manage: provides an interface through which the administration of the Provenance Store can

be performed.
The component provides access to the Provenance Store and through which the underlying data store
for recording and retrieval of data. This component uses the services of the security component to
establish the authenticity and authentication of users of the component.
The supported requirements and non-supported requirements are tabled in Section 5. This includes
justification for non-support.

2.2 The Provenance Store as a Stateful Web Service

In their 2004 white paper Foster et al describe how stateful resources may be modelled with Web
Services. In the paper, they describe a set of conventions intended to formalise how a service
requestor interacts with state as represented by a set of stateful resources visible through an
associated Web Service. This modelling approach leads to a set of conventions on using Web Service
technologies.

In this section, we review this modelling approach and show how it can be used to describe the
resources provided by a Provenance Store. The term “Provenance Store Resource” is introduced to
refer to the extension to provide WSRF support. These resources then provide the basis for
developing a scalable implementation of the Provenance architecture. For additional information see
Scalability document [Ibb06].

2.2.1 The Web Service Environment

There are several components associated with a Web Service. These are shown in the following
figure and then described in more detail.

4

5

5

2

1

3

1

3

1

3

6

7

Figure 1 Components related to a Web Service

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 13 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

In Figure 1, a Web Service (1) is a software component that performs some function. It provides a set
of operations which access or manipulate the state held in other resources managed within the
system. The Web Service is a component that is deployed within some runtime infrastructure (2). An
example of this runtime infrastructure is an Application Server such as Tomcat or a proprietary
product such as IBM’s Websphere Application Server. The runtime environment is responsible for
hosting the Web Service code and dispatching messages to the Web Service. The environment may
also provide other qualities of service such as security and transactions.

The Web Service’s interface (3) is described by an interface description language such as WSDL. It
defines the Web Service’s capabilities in terms of a collection of operations that can be invoked by
service requestors in a distributed system. Each operation is described in terms of message exchanges
that define the format of the message used to invoke an operation and the format(s) of messages
returned by the Web Service as responses to the requestor; these also include the format of any fault
messages.

The runtime environment also provides a message processing facility (4) that can receive messages
(5) from service requestors. This component may support one or more transport protocols such as
HTTP, SMTP or IIOP. The term endpoint is often applied to this component since it is made
available to the distributed computing fabric at an advertised network address. Other responsibilities
of the endpoint component include translating the message into a format that is understandable by the
Web Service. For example, this may include converting the on-the-wire XML representation into a
collection of Java objects and dispatching them (6) to the Web Service. The target Web Service is
identified by the endpoint address (URI) and other components of the message. Note that the Web
Services are deployed within a particular runtime environment at a particular network address, each
Web Service in turn is itself uniquely identified by an address that combines the endpoint address
together with some additional identification specific to each deployed Web Service.

The Web Service implementation is responsible for receiving the message and processing it. The
processing may include interactions with other Web Services and stateful resources (7). Following
the processing, the Web Service may format and send a response message to the client requesting the
service. Note that these stateful resources can be shared between different Web Services; the decision
to share a resource is made as part of an overall system design.

For Provenance, we need to consider a Web Service that provides access to or manipulates a set of
logical stateful resources based on messages it sends and receives. Under these circumstances, the
Web Service implementation itself is stateless since it delegates all management of state to another
resource such as a database or file system. A stateless implementation of the Web Service enhances
its security and scalability and is generally viewed as good engineering practice for Web Service
implementations. A consequence of this statelessness requirement is that any dynamic state needed
for a given message exchange must be:

• Provided explicitly within a request message whether directly by-value or indirectly by-
reference, and/or

• Maintained implicitly within other system components with which the Web Service can
interact.

Since the stateless Web Service implementation is interacting with a set of stateful resources, the
identity of the stateful element(s) may either be passed as part of the Web Service request message or
maintained as static data by the Web Service. Finally it is worth noting that although the
implementation of the Web Service is stateless, the interface offered is clearly stateful since its
behaviour is defined with respect to the underlying state.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 14 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

2.2.2 Requirements for Modelling State in Web Services

Web services are an inherently stateless medium. All data passed during invocation is contained in
the WS request. Persistence of data between interactions is therefore restricted. A stateful resource
exists between interactions even when you're not interacting with it. As an analogy, a database exists
even when you're not querying it. That state is defined by a group of properties. Change a property
and the state changes, and vice-versa. A WS-Resource is the combination of a stateful resource and a
Web service that interacts with it.

The following section extracts a set of requirements for modelling state within a Web Service and
introduces the term WS-Resource.

• A WS-Resource is composed of a Web Service and a stateful resource such as a database or
file system. The stateful resource has a specific set of state data that can be expressed as an
XML document. The stateful resource has a well defined lifecycle and can be acted upon by
one or more Web Services.

• WS-Resources can be created or destroyed.

• The definition of a stateful resource can be associated with the interface definition of a Web
Service to enable well-formed queries to be submitted to the WS-Resource. The state of the
WS-Resource can be queried and modified via Web Services message exchanges.

2.2.3 The Provenance Store as a WS-Resource

The implication of using WS-RF is that a WS-Resource needs to be created and destroyed. Creation
is achieved by use of a Factory pattern and is further described in section 1.2.5. Destruction is
requested by a calling application when submissions are complete, thus freeing server resources. The
destroy operation is not implemented to delete any p-assertions held in an XML database; it simply
removes the instance of a WS-Resource created on the server.

4

5

5

2

1

3
6

DB
7b

DB
7a

DB
7c

7

Figure 2 Components related to a Provenance Store

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 15 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Figure 2 illustrates the components of a Provenance Store implemented using the WS-RF; it
combines the Web Service (1) with a set of stateful resources (7). The interface (3) reflects the
Submission, Query and Management operations identified in the Provenance Architecture.

The operations advertise the stateful interface to the underlying resources which typically consist of a
set of databases though an implementation may include file systems as an alternative form of
persistent store.

The databases may be positioned anywhere within a distributed computing infrastructure based on
system design requirements and connected to the Web Service implementation by a remote
connection mechanism. An alternative implementation strategy would be to treat the stateful
resources as data services such as OGSA-DAI. In this case, the connection would be via a Web
Services based protocol. Three examples of database positioning are illustrated:

• Within the same container as the Provenance Store (7a)

• As a completely separate managed component (7b)

• Within a separate, remote container (7c)

Note that these represent physical instances of a database management system (DBMS). WS-
Resources may be mapped to these physical instances for finer granularity. For example, the
following WS-Resources may be implemented by the same physical DBMS:

• Personal WS-Resources for different Actors and Users

• WS-Resources with different security policies

• WS-Resources that have different views of the Provenance Store (XML or Relational)

In general a physical instance of a DBMS can implement multiple stateful resources within a
Provenance Store. For example, this can be observed by defining multiple collections in a single
XML database, where each collection holds p-assertion related to a private instance of a Provenance
Store.
Note that the general model of the WS-ResourceFramework (WSRF) is not restricted to data storage. Any
architectural object such as a Provenance interaction or query result set can be considered a WS-Resource.
The WS-RF supports the concept of notifications. This allows notifications to be published whenever a WS-
Resource is changed. This pattern will be investigated in later versions of the Provenance Store
implementation.

2.2.4 Provenance Store Factory

The factory pattern is the recommended approach for WS-RF in GT4; it has therefore been applied to
the implementation for Provenance Server version 1.0. The factory pattern is commonly used in
software development to create objects and is appropriate for creating instances of a Resource. A
Resource factory is a Web Service that is capable of creating a Resource. To pair a Web Service with
a resource the factory links the WS address with a resource ID, producing an Endpoint Reference
(EPR). The factory is responsible for creating a ProvenanceStore Resource, achieved by:

1. Create the new stateful resource

2. Assigning an identity to the new resource

3. Create the association between the new resource and its Web Services implementation

The response message of the Resource factory contains a qualified EPR containing an identifier that
refers to the newly created stateful resource. The factory returns the identifier to an Actor that
requested the creation of the resource and places the identifier into a registry for later retrieval.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 16 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Actor

Resources

Factory
Create resource

Instance Service
record()
query()
manage()

Operation call
Resource 3

Request resource
creation

Request
operation on
specific resource

Resource Home

Resource 2
Resource 1

Find resource Manages

Figure 3: Resource Factory Pattern

The factory interface is provided to facilitate the creation of a new ProvenanceStore Resource. The
factory is only used for the creation of new resources. It results in the creation of a container service.
These new resources can be accessed through separate services, namely the standard Provenance
defined service.

There may be many different types of Web Services that implement the Resource factory pattern.
However, unless the request results in the creation of a new Resource with an identifier provided in
the response message, the message exchange is not considered to be an instance of the WS-Resource
factory pattern. This pattern is described simply as a usage pattern, not an explicit operation in its
own right. The factory pattern may be implemented in a number of different Web Service operations
that may for example create one or many WS-Resources.

For completeness, WS-Resources must be fully managed over their lifecycle. This implies an
operation to destroy a Resource and free any resources it uses. The destroy operation has been
implemented to only remove the Resource instance and does not delete data held in the XML
database.

2.2.5 Web Services Security

This version of the reference implementation includes access control using the Globus Policy
Decision Point mechanism described in the EU Provenance security specification [IT06].

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 17 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

2.3 Component Overview

Server implementation may be invoked by Provenance Client API, the interfaces and inter-operates
with other components is described below.

PStoreDatabase
OGSA-DAI

Client
API

ProvenanceStoreResource

PStoreDatabase
OGSA-DAI

Client
API

ProvenanceStoreResource

Actor

record

query

manage

Provenance
Store

PortTypes

eXist
XML

Database

OGSA-DAI

Provenance GT4 Container

GT4/Tomcat
Container

External Security Services

ProvenanceStoreFactoryFactory

Destroy

PStoreDatabase
OGSA-DAI

Client
API

ProvenanceStoreResource

ProvenanceStoreResourceHome

Uses

Uses
Manages

ProvenanceStore Service

Figure 3: Provenance Store Components

The stateful Web Service pattern is described in the Stateful Web Service section of this document.
We now identify the components of a Provenance Store that implement this pattern. These are shown
in the Provenance Store Components figure.

1. The ProvenanceStoreFactory creates an instance of a ProvenanceStoreResource. This is an
instance of a Resource accessed by an actor through the Provenance Store public record,
query, manage and Destroy interfaces.

2. The ProvenanceStoreResourceHome manages a set of ProvenanceStoreResource objects. It is
used by the ProvenanceStoreFactory to create new instances of ProvenanceStoreResource
objects and by the ProvenanceStore implementation of the Web Service to access previously
created Resources.

3. The ProvenanceStore is an implementation of the Provenance Store Web Service whose
interfaces are defined by the record, query, manage and Destroy operations. These operations
are defined as part of a ProvenanceStorePortType within the interface WSDL.

4. The ProvenanceStoreResource is an implementation of a WS-Resource. An instance of this
Resource is created by the ProvenanceStoreFactory for use by an actor. The
ProvenanceStoreResource may be destroyed using the Destroy operation. Many
ProvenanceStoreResource objects can be created and managed in this implementation.

5. Persistent XML data storage is provided by an OGSA-DAI data service. This service may be
hosted in the same container as the Provenance Store or alternatively on a separate,
distributed container.

6. An eXist XML database provides the persistent database for the OGSA-DAI service.

These components are described in more detail in the Component Design section of this document.
The reader is also directed towards the Provenance Client API documentation.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 18 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

3 Component Design

3.1 Pre-requisite components

This Provenance Store implementation has the following pre-requisite components:
• Java 1.4.2 - http://java.sun.com (or IBM Java 1.4.2).
• Apache Ant 1.5 - http://ant.apache.org
• Globus Toolkit WSRF-compliant WS java container version 4.0.1

http://www.globus.org/toolkit/downloads/4.0.1/#wscore_bin
o Contains Apache AXIS 1.2 RC2

• OGSA-DAI version OGSA-DAI WSRF 2.1 http://www.ogsadai.org.uk
• eXist 1.0 latest snapshot - http://exist.sourceforge.net

3.2 Component Details

This section provides more details of the components identified in the Component Overview. The
GT4 WS Java Core in a Java implementation of WSRF. These Java classes are provided with a
container to host the Web Services, together with scripts used to interact with Resources.
The appendix contains sequence diagrams which present the role of each component, both for
resource creation and resource invocation.

3.2.1 The ProvenanceStoreFactory component

The WSDL describing the interface to the ProvenanceStoreFactory is shown in The
ProvenanceStoreFactory Interface appendix. It consists of a single ProvenanceStoreFactoryPortType
with a single createResource operation. The input message to the operation is of type
CreateResourceRequest and is empty. The response is of type CreateResourceResponse. The
response contains a WS-Addressing EndpointReference (EPR) to the newly created
ProvenanceStoreResource. The EPR is used by subsequent invocations of the ProvenanceStore Web
service to correctly identify which ProvenanceStoreResource should be used.
An example EPR serialized as a string is shown:

<ns1:ProvenanceStoreResourceReference xsi:type="ns2:EndpointReferenceType"
 xmlns:ns1="http://www.gridprovenance.org/schemas/ProvenanceStore"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/03/addressing">
 <ns2:Address xsi:type="ns2:AttributedURI">
 http://9.20.147.198:8080/wsrf/services/ProvenanceStore
 </ns2:Address>
 <ns2:ReferenceProperties xsi:type="ns2:ReferencePropertiesType">
 <ns1:ProvenanceStoreResourceKey xmlns:ns1="http://org.gridprovenance.gt4">
 1832807742
 </ns1:ProvenanceStoreResourceKey>
 </ns2:ReferenceProperties>
 <ns2:ReferenceParameters xsi:type="ns2:ReferenceParametersType"/>
</ns1:ProvenanceStoreResourceReference>

The returned EPR contains the Address of the Web Service to be used to access the
ProvenanceStoreResource together with a key to identify the newly created resource.
The GT4 client API allows a portType to be returned given an EPR as an input argument. The
following client code fragment illustrates the 2 stage process of invoking the
ProvenanceStoreFactory followed by the Provenance Store Web Service:

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 19 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

String factoryURI = "http://127.0.0.1:8080/wsrf/services/ProvenanceStoreFactory";
EndpointReferenceType factoryEPR, instanceEPR;
ProvenanceStoreFactoryPortType psFactory;
ProvenanceStorePortType pStore;

// Get the ProvenanceStoreFactory portType
factoryEPR = new EndpointReferenceType();
factoryEPR.setAddress(new Address(factoryURI));
psFactory = factoryLocator.getProvenanceStoreFactoryPortTypePort(factoryEPR);

// Create resource and get endpoint reference of WS-Resource.
// This resource is our Provenance Store "instance".
CreateResourceResponse createResponse = psFactory.createResource(new CreateResource());
instanceEPR = createResponse.getEndpointReference();

// Get instance PortType
pStore = instanceLocator.getProvenanceStorePortTypePort(instanceEPR);

// Create a Record structure
Record rec = new Record();

// and invoke the Provenance Store Web service
RecordAck recAck = pStore.record(rec);
.....

Note: The ProvenanceStoreFactory class is contained in the org.gridprovenance.wsrf.server
package.

3.2.2 The ProvenanceStoreResourceHome component

The ProvenanceStoreResourceHome class extends the GT4 ResourceHomeImpl class which
implements the ResourceHome interface. The Provenance Store implementation has to provide a
create() method which:

• Creates an instance of a ProvenanceStoreResource

• Initialises the resource

• Gets a key for the resource and adds it to the home set of keys

• Returns the key

The ProvenanceStoreResourceHome class is contained in the org.gridprovenance.wsrf.impl package.

3.2.3 The ProvenanceStoreResource component

The ProvenanceStoreResource class implements the GT4 Resource, ResourceIdentifier and
ResourceProperties interfaces. Its purpose is to:

• Encapsulate the interactions between the Provenance Store Web Service and the OGSA-DAI
data service

• Be a managed object that conforms to the lifecycle rules of WS-RF
The ProvenanceStoreResource.initialize() method is invoked by
ProvenanceStoreResourceHome.create() when creating a new resource. This constructs a new
instance of a PStoreDatabase that exists for the lifetime of the ProvenanceStoreResource instance.
The ProvenanceStoreResource also has methods for each of the three Provenance operations; record,
query and manage. Each method receives as input argument the message sent by an actor to the
Provenance Store Web service. It then invokes the appropriate method (record, query or manage) on
the PStoreDatabase for processing. The returned acknowledgements from the PStoreDatabase are
then returned by the ProvenanceStoreResource object.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 20 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

WS-RF lifecycle management allows a resource to be destroyed using a Destroy operation to the
ProvenanceStorePortType. This is shown in the ProvenanceStore Interface WSDL. The Destroy
operation is implemented by a DestroyProvider operation which is part of the GT4 toolkit. This
provider is loaded when the ProvenanceStore service is initialized by the GT4 container and is
defined as part of the deploy-server.wsdd configuration file. Note that the Destroy operation does not
destroy the persistent data stored in any database. It simply destroys the ProvenanceStoreResource
object that encapsulates the interfaces to the persistent XML database.
The ProvenanceStoreResource class is contained in the org.gridprovenance.wsrf.impl package.

3.2.4 The ProvenanceStore component

The ProvenanceStore component implements an instance Web Service through which all interactions
with the Provenance Store take place. Its interface is described by the WSDL in the ProvenanceStore
Interface appendix.
The interface consists of a single WSDL port type called ProvenanceStorePortType containing the
operations to support the three Provenance interfaces (record, query and manage) together with the
Destroy lifecycle operation. See the previous section for details of the Destroy operation.

3.2.4.1 The Record Operation

The record operation messages are defined in the PRecord WSDL and its associated XML Schema
file PRecord.xsd. The schema describes the record interface messages developed in the Provenance
Architecture document.
The request object for the record interface is a Record object. This contains an array of
IdentifiedContent objects, each one containing an array of Content objects that in turn contain either
an individual p-assertion or a SubmissionFinished indicator. The record method of the
ProvenanceStore class passes the Record object to the ProvenanceStoreResource object for
processing. The ProvenanceStoreResource iterates through each IdentifiedContent object and calls
the submit method of the PStoreDatabase object to record the entire contents to the database.
The response object for the record interface is a RecordAck object. This contains an array of
RecordAckAck objects that correspond to each p-assertion and SubmissionFinished indicator that
have been successfully inserted into the Provenance Store database.
A RecordAckAck contains a string describing the type of object that was inserted, and also the
InteractionKey for the interaction under which they were inserted.

3.2.4.2 The Query Operation

The query operation messages are defined in the PQuery WSDL and its associated XML Schema file
PQuery.wsdl.
The request object for the query interface is a QueryRequest object. This contains two elements:

• An XPath query expression

• An optional namespace mapping element
The response object for the query interface is a QueryResponse object. This contains a single element
of any type.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 21 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

3.2.4.3 The Manage Operation

The GridProvenance Architecture document (D3.1.1) did not specify management functionality as
this is not intended to be standardised. The justification being that management operation is not
deemed Provenance specific.
For the reference implementation the following operations have been defined with regards to the
manage interface:

• CreateRepository

• DeleteRepository

• ListRepository

• UpdateRepository

Each operation is defined with input message and corresponding acknowledgement message.

3.2.5 The choice for data repository

IBM partner members made a design decision to adopt XML database technology as the best choice
for storing Provenance data. This decision was based on the best knowledge available at the time
regarding the feasibility of storage within an XML database, coupled with the ability to search using
XPath. This implementation decision was presented to partners during early design discussions.

The choice of XML database as repository for p-assertions was made based on the format of the data
exchanged between Web Services, i.e. XML; and the availability of Open Source XML Database
implementation. The use of OGSA-DAI (see following section) does not preclude the use of another
data repository at a later stage. For example, implementation could be written to shred the XML data
across Relational database Table instead of into XML database Collection. Additionally, the use of
OGSA-DAI displays the positive re-use of another European Community Framework resource.

3.2.6 The OGSA-DAI Data Service

The database access has been abstracted away from the core server side Provenance (Provenance
Store) implementation by employing OGSA-DAI to own the connection to the database. This allows
the Provenance Store implementation to focus on the key business functionality rather than database
specific issues.
OGSA-DAI, is itself a web service that is hosted from a container such as Apache Tomcat or GT4.
Just like the Provenance code, it uses the same client/server model with SOAP messages being sent
between client applications and the OGSA-DAI service. The OGSA-DAI service is positioned at the
pivot point of an AXIS handler chain.
OGSA-DAI provides two ways of interacting with a database:

• Perform document: This is an XML document that is constructed and passed to OGSA-DAI.
It specifies the interaction to perform against the database, such as a query or an insert.

• Client API: This is a Java API for interacting with OGSA-DAI. It does not require the
programmer to develop perform documents as it does this on our behalf. The API provides a
neater, faster and more reliable way of using OGSA-DAI.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 22 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

The Provenance database access implementation uses the OGSA-DAI client API to interact with the
database. This OGSA-DAI client API is referenced in only a single Provenance Store class
(PStoreDatabase.java).
The fact that the database is abstracted away does not hide all database problems from us. OGSA-
DAI makes no attempt to “normalize” database access, so we are still subject to the problems
inherent with databases from multiple vendors, such as varying data languages and varying support
at the JDBC/XMLDB driver level.
As the database access code is being written to access an XML database, we must use XPath and
XUpdate protocols to search and update the database. These protocols are exposed in the OGSA-DAI
client API through the XPathQuery and XUpdate classes in the
uk.org.ogsadai.client.toolkit.activity.xmldb package.
See section Known outstanding issues for details regarding XQuery support in OGSA-DAI.

3.2.7 The eXist XML database

OGSA-DAI provides support for two XML databases; eXist and Xindice from the Apache
consortium. The eXist XML database has been widely accepted and received recognition through
market awards. Additionally, previous experience and testing further assisted the selection of eXist
database for this implementation.

The eXist database manages XML documents as a set of collections. A database can contain multiple
collections with each collection containing multiple XML documents. Collections can be created and
deleted within eXist. For storing p-assertions (Provenance records), a single collection is used called
ProvenanceStore. This is referred to in the set-up documentation by a constant named
“ProvenanceCollection”. All documents within this collection conform to the p-structure type
defined in the Provenance architecture. All p-structures contain a unique InteractionKey as specified
in the Architecture document (section 8.2, rule 8.1). The names for the OGSA-DAI data service URI,
database resource, and collection name are specified using the GT4 deploy-server.wsdd file as
detailed in Administration section.

The following sections detail some of the issues encountered in developing with XML databases
which so far are not as well established or mature as relational database technology. For more details
of the eXist database, see the paper “eXist: An Open Source Native XML Database” available at
http://exist-db.org/webdb.pdf.

3.2.7.1 XML Namespaces

XML uses namespaces to provide a means of avoiding naming conflicts when document structures
are derived from multiple schemata. An XML document within eXist will contain declaration for
each namespace used within the document. This takes the form of a prefix and a namespace value to
which the prefix is associated. For example, the PASOA schema used by the Provenance project
would have:

• Prefix: ps

• Value: http://www.pasoa.org/schemas/version022/PStruct.xsd
When the OGSA-DAI client API is used to record, query or update data in an XML database, the
namespace prefix and values must be pre-registered with OGSA-DAI. The OGSA-DAI client API
supports this for XPath and XUpdate. For an XPath query, the prefix and values are set by calling the
setNamespaceBinding() method on the XPathQuery object.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 23 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

For updating an existing document using XUpdate, the prefix and value must be included in the
XUpdate modifications element as an attribute, a sample is provided:

<xu:modifications version="1.0"
 xmlns:xu=http://www.xmldb.org/xupdate
 xmlns:ps=”http://www.pasoa.org/schemas/version022/PStruct.xsd”>
 <xu:update select="/ps:pstruct/ps:interactionRecord”>
 <xu:element name="ps:client">
 <ps:data> some data </ps:data>
 </xu:element>
 </xu:update>
</xu:modifications>

Note: The process that led to the creation of this sample is described in Insert and Append sections.

3.2.7.2 Data Storage

The p-assertions (Provenance records) are stored in the database as a p-structure document within a
collection. Each p-structure document contains an IdentifiedContent that is keyed on the
InteractionKey element. Within an XML database there is no implicit enforcement of unique keys,
should a request to add a new entry with identical key be made then a duplication of keyed item will
occur. Should an update request be expressed against the key, then both items will be updated. This
feature of XML databases is countered within the implementation for Provenance Store (Server) by
first issuing a query to check for any match in the database:

• no match found, then a fresh record is inserted into the database

• match found, the submitted data is appended to the existing record;
Further details regarding XML Update are detailed in Insert and Append sections.
The recording actor may request an InteractionKey from the Provenance Client API, or may generate
its’ own. The InteractionKey comprises three elements:

• interactionId: a URI
• messageSource: an address that can contain an array of any elements.
• MessageSink: an address that can contain an array of any elements.

In theory, any element could be placed in the messageSink and messageSource. However, for this
implementation; the messageSource and messageSink are based on WS-Addressing EPRs. When
testing with the eXist database, it was shown that eXist is intolerant to searching for the p-structure
element if the Address elements contained in the messageSource and messageSink had a namespace
that was different from that of the main document. To resolve this, a runtime transformation is
applied: the namespace for the messageSource and messageSink contents has been changed from

• xmlns:wsa=http://www.w3.org/2005/03/addressing to

• xmlns:ps=http://www.pasoa.org/schemas/version022/PStruct.xsd.
Note: This work around should be re-visited in future implementations. A bug report to the eXist
project may be submitted.

3.2.7.3 Recording Provenance

When the record operation on the ProvenanceStore Web service is invoked, a Record object is
generated by AXIS and is passed to the service. The object contains the data from the recording actor
to be recorded and the interface must determine whether to insert the data as a new p-structure
document or whether to update an existing document. This difference is required as the XML
XUpdate instruction is structured differently and must therefore be handled as two distinct cases. To
identify which type of update is required the database must be searched to retrieve any p-structure

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 24 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

documents that have a key that corresponds to the one we are recording. The search is performed
with an XPath statement of the form:

/ps:pstruct[ps:interactionRecord/ps:interactionKey/ps:interactionId =“http://interactionId/URI" and
ps:interactionRecord/ps:interactionKey/ps:messageSource//ps:Addr = "http://messageSource/URI"
and ps:interactionRecord/ps:interactionKey/ps:messageSink//ps:Addr = http://messageSink/URI"]

This returns an entire p-structure document if the key is matched, otherwise it will return an empty
set. Note that this will return all matching documents, so if more than 1 document has the same key
then they will all be returned.
Note that the messageSink/messageSource contains an element ps:Addr. This is not defined within
the http://www.pasoa.org/schemas/version022/PStruct.xsd schema even though it has been given the
same namespace prefix as elements that are. This is to work around a problem with the eXist
database where elements that contain children with different namespaces could not be found (this is
our interpretation of the problem; however the behaviour was somewhat unpredictable).
If the result set of the search is empty, then the Provenance Store inserts the p-structure into the
database. If the result set is not empty, then it performs an append to the existing p-structure entry.

3.2.7.4 Insert operation

Inserts of p-assertions into the database are accomplished as follows:
A Record object is received by the PStoreDatabase.submit() method. This contains the data from the
recording actor to be stored in the database. The IdentifiedContent element (which is a keyed record)
is converted into a p-structure object and then written into the database by calling the OGSA-DAI
client API. This is shown in the following code fragment:

// Create a pstruct from the identifiedContent.
PStructure pstruct = make_pstruct(collection, key, iDContent);

// Now serialize the PStructure into an XML string.
String result = Utils.PStructureToXMLString(pstruct);

XMLCreateResource xmlCreateResource = new XMLCreateResource(result);
xmlCreateResource.setParentCollectionName(collection);
service.perform(xmlCreateResource);
ActivityOutput output = xmlCreateResource.getOutput();
String response = output.getData();

3.2.7.5 Append operation

Appends of p-assertions into the database are accomplished in a manner similar to that described in
the following pseudo-code:

Determine the type of View we’re updating
Extract the appropriate View Element from the identified content
If we got an element
 We know the view already exists
 Extract all the p-assertions from the identified Content and add them to an array of appends
 If schema non-compliance detected
 Throw ProvenanceException
Else
 We need to create a new View of the appropriate type
 Extract all the p-assertions from the identified Content and add them to the View
 Convert the entire View into a single append entry
EndIf

For Each entry in the append array
 Append the entry to the document in the database

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 25 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Done

Should non compliance with p-structure schema be detected following a request to append p-
assertion then a ProvenanceException will be thrown. An example where this might occur is if two
or more entries were submitted for NumberOfExpectedPAssertions. This is not permitted in the p-
structure schema definition, only a single entry can be held per record per view. This allows a sender
(client) or receiver (service) to submit only a single NumberOfExpectedPAssertions. Additionally, an
exception would be reported if submission from an actor does match existing triple: InteractionKey,
senderId and receiverId. This extends from Architecture rule 8.1 (from section 8.2).
Note: The Java code to support the Update function is much larger than the pseudo-code illustrated
above.

3.3 Web Services Security

Globus certificates are used to identify both client and services in the WSRF compliant Provenance
implementation. To validate client access, the signature of the client must be held in the access
control list (ACL) for the Web Service. This ACL defines the operations which the client is
permitted to invoke. Should the client attempt to access without correct authorisation then an Axis
exception is thrown back to calling application. The security service is provided by the GT4
container and has no impact on the provenance implementation. A benefit from this model is that the
security can be further developed in successive implementations; or rather deployment can apply
various permutations of security.
 For simplicity in the first release of Provenance Store (Server), the security is set on the service
operations for ProvenanceStore and ProvenanceStoreFactory. This requires that security is defined
on both the initial request to Factory, to create a WS-Resource; and the subsequent operations request
to a specific resource. The generation of certificates can be achieved by using Globus security
resources. These resources are packaged into the full GT4 implementation, but are not available in
the WS Java Core. Note that the creation and management of user certificates forms part of the
management of a GT4 environment and is out of scope for this implementation.
Access control to the Provenance Store is managed using entries in the provenance-authfile.xml file.
In this file, users are identified with their certificate Distinguished Name (DN) and are permitted to
access operations of the ProvenanceStoreFactory and ProvenanceStore service. The syntax for this
file matches that of the Grimoires ACL file described at
http://www.ecs.soton.ac.uk/~wf/grimoires/docs/security.html#Grimoires_ACL. To access a
ProvenanceStore and its associated ProvenanceStoreResource, users should be permitted to invoke
the createResource operation on the ProvenanceStoreFactory which allows them to create a
ProvenanceStoreResource. Thereafter they may be permitted to access the ProvenanceStore
operations at the discretion of the systems administrator.
This access control support is disabled in the release of the implementation when downloaded. To
enable it, administrators should follow the instructions provided in the release documentation. The
package org.gridprovenance.gt4.security includes the custom Policy Decision Point code to support
the Provenance Store access control in the class ProvenanceAuthorisationPDP.java.

3.4 Initialisation and Termination

There will always be other permutations of component configuration other than that described in the
application documentation. If the user opts for a different set-up then they should be aware of the
implications. It may not be feasible to support each set-up. The following items describe the
execution process together with the system administration.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 26 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

3.4.1 Initialisation GT4

When a service request is made, the GT4 container assigns a thread to execute the request. This
thread will call the AXIS engine to process the inbound request, de-serialize the SOAP message into
a request object and then call the registered service implementation for that service passing the
request object.
On entry into a service implementation, the AXIS thread of execution is able to access a context
object that is managed by AXIS. This object provided to allow the service and all the handlers to
pass information between each other. The context is accessible through a static AXIS API
MessageContext.getCurrentContext().

3.4.2 Initialisation eXist

The eXist service can be exposed in several configurations, see eXist Administration. The
documented approach is to launch as a stand-alone server. Invocation is achieved either by:

• OGSA-DAI Data Service requests, using the XML:DB API.

• eXist interactive client application, http://www.exist-db.org/client.html

• web interface, http://localhost:8080/exist (default port is 8080, but can be altered)
The default number of threads available for connection is 5, although this can be modified when
launching the server. Should a connection request be received when there are no available threads in
the pool, then it will block until one becomes available.

3.4.3 Termination GT4

On exit from a service implementation, the interface specifies that a response object must be passed
back to AXIS (and ultimately for delivery to the client application).
Depending on the service type the response object will vary in structure.

3.4.4 Termination eXist

Upon completion of invoked task, the eXist thread of execution will be returned to the connection
pool and the response passed to the calling thread. For Provenance, this will be returning to the
OGSA-DAI Data Service request.

3.5 Administration

3.5.1 Administration GT4 and OGSA-DAI

There are values that must be set as parameter entries in the deploy-server.wsdd file used by GT4:

• provenanceServiceURI: the URI of the provenance data service exposed by OGSA-DAI

• provenanceDatabaseName: the name of the OGSA-DAI data resource

• provenanceCollectionName: the name of the eXist collection
If these parameters cannot be found, then a Provenance Exception will be thrown; see section
Exception & Notification Handling. Changes to these values will require alterations to other property
files; see Other Externals and Dependencies.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 27 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

3.5.2 Administration eXist

Separate to the GT4 Container, which hosts the Provenance and OGSA-DAI Web Services, there is
the eXist XML database service. This is run in a separate JVM as a stand-alone eXist server. The
server can be started as a service,
This is by no means the only feasible server deployment, another configuration includes embedding
the eXist database within a client application.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 28 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Some of the features of the different configurations are listed below:

• Stand-alone eXist
o Separate JVM (should provide increases reliability)
o Control the maximum number of threads available to client requests (will block until a

thread is available)
o No support for SOAP nor for Cocoon

• Embedded eXist
o Same JVM as client application
o No network listeners
o Database not accessible outside of the client application

For more information refer to the eXist Developers Guide and Deployment Guide:
http://exist.sourceforge.net/devguide.html and http://exist.sourceforge.net/deployment.html

3.6 Application Development Tooling

The design has no effect on Application Development tooling. Some descriptions may refer to files
located in a shared Concurrent Versions System (CVS) repository for project partners.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 29 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

4 Influences on the Component Design

4.1 Security

The design assumes that
• User authentication is managed by the GT4 container
• Access to the database is managed by the OGSA-DAI data service

4.2 Reliability Availability and Serviceability (RAS)

Log4J has been used throughout to provide the logging functionality. Log4J requires a
log4j.properties file to be available and correctly configured in order for the logging trace-points to
output their data.

4.3 Performance

The performance of this component is dependant on the ability to access and update the XML
database. The initial intention was to perform all updates to the data as single operations to ensure
efficient processing. However, the reality of using the XUpdate interface has meant that each p-
assertion must be added individually, which is inefficient.

4.4 Monitoring and Statistics

None.

4.5 Platform Considerations

Use of Apache AXIS allows the use of AXIS parameters and access to the AXIS MessageContext.

4.6 National Language Support (NLS) and Internationalisation Considerations

Messages exposed to user are translated based on default locale or locale of calling method. A
resource bundle is loaded which contains the translated messages for the application. A set of
convenience methods are provided to retrieve and format the message from the source bundle.

4.7 Test Considerations

The test scenarios shall be based on the patterns detailed in the public document “Architecture for
Provenance Systems” section 5.1 [GJM+06].

4.7.1 Test Scenarios

Whilst more will be added once test plan is completed, the initial test strategies are:
• Recording of a new interaction.
• Recording of additional data in an interaction.
• Recording of the returned ViewLink.
• Query the data stored in the database with an XPath query.

4.7.2 JUnit Strategy

JUnit tests can be used to test the submit method by passing a known Record object. However, as the
development progresses, the need for testing the insertion of the ViewLinks will mean that testing
will have to migrate to a more sophisticated framework where the link can be extracted from the

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 30 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

PHeader and appended into the view. This will require a real client/server setup rather than a simple
JUnit setup.

4.7.3 Test Hooks

The test hooks are the principal method entry points for submit, query and manage.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 31 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

5 Other Externals and Dependencies

This code relies on the OGSA-DAI Client API and the Apache AXIS API. The configuration of
OGSA-DAI and Apache AXIS is done through configuration files that can be manually edited.

Component File name Location / Purpose

AXIS deploy-server.wsdd located in CVS root
 defines the exposed server services
 used at deploy time to generate server-

config.wsdd in GT4 root
 Defined services include ProvenanceStore and

ProvenanceStoreFactory.
 server-config.wsdd located in GT4 server

/etc/globus_wsrf_gridprovenance/
 generated during GT4 Provenance deploy

based on data within deploy-server.wsdd in
CVS

 defines the Provenance services.
 client-config.wsdd located in CVS root
 defines client-side AXIS handlers for Globus

WSRF security
 also found in GT4 root and OGSA-DAI root
 could be extended, for client application, to

include provenance-handler to automate
Interaction PAssertions submissions.

Component File name Location / Purpose

OGSA-DAI data.service.resource.properties located in CVS /docs/ (to be copied to server
and used during server setup)

 permits OGSA-DAI to connect to eXist XML
database

 defines resource identify, user credentials and
eXist server parameters.

 NStoPkg.properties located in CVS root
 defines mappings between namespace and

implementation packages
 Includes ProvenanceStore, ProvenanceStore

bindings and ProvenanceStore service.
 DatabaseRoles.xml located in OGSA-DAI /skeletons/
 defines database credentials

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 32 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

Component File name Location / Purpose

GT4 deploy-jndi-config.xml located in CVS root
 defines the resource parameters to the service

definitions for both ProvenanceStore and
ProvenanceStoreFactory

 ProvenanceStore service contains parameter
for ACL file which needs to be uncommented
and correctly set for when security is enabled.

 ProvenanceStoreFactory service contains
parameters for security descriptor, ACL and
loadOnStartup. These need to be
uncommented and ACL value set for when
security is enabled.

 jndi-config.xml located in GT4
gt4/etc/globus_wsrf_gridprovenance/

 generated from deploy-jndi-config.xml to
define the Provenance service parameters

 security-config-
provenance.xml

located in CVS /etc/

 defines Globus security parameters
 provenance-authfile.xml located in CVS /etc/
 defines authorisation list using signatures
 Windows-Certificates.txt located in CVS /docs/
 describes how to setup Globus certificates in

Windows.
 container-log4j.properties located in GT4 root
 defines log4j properties to be used following

GT4 container start-up
 example usage: to debug security settings

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 33 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

6 Supported and Non-Supported Requirements
This implementation will support the following requirements from the Provenance Store architecture:

ID Description Design Feature Component

IR-PS-4 Provenance stores for an application
can be deployed in security domains
to which all querying actors have
credentials to access. Tools can
provide single-sign on by storing
credentials and using as appropriate
for each provenance store.

This recommendation may be
supported by a federated
security infrastructure with
actors having access to multiple
security domains via
a single sign-on infrastructure.

GT4 via WS-Security

IR-PS-5 Process documentation cannot be
removed from the data storage using
the provenance store APIs; instead, it
may be removed, following data
retention policies, by making direct
access to the storage layer, using
curation methodology typical of long
term storage.

The data storage system is a
separate sub-component of the
Provenance Store. The
Provenance Store interfaces do
not support the removal of
process documentation, but this
does not preclude its removal by
direct access to the data storage
by a user with an administration
role.

IR-PS-6 The access control functionality of
the provenance store may provide
a way to model the expression of
access control policies and rules so
that they are functionally and / or
semantically equivalent to the access
control policies of other data stores.

For a Provenance Store to
implement the same access
control policies as other data
stores, it must share the
definition of those policies.
The implementation will allow
access control policies to be
shared with other data stores.

IR-PS-7 Scalability of query results can be
implemented by caching of the
results within the provenance store. A
set of interface operations allows
actors to iterate and retrieve the
cached results in response to a query
request.

Query results will be
implemented as a resource
allowing querying actors to
iterate over large result sets.
This feature will be supported in
addition to the basic operation of
returning a result set in response
to a query.

OGSA-DAI and DIAS

IR-PS-8 Management of large number of p-
assertions can be addressed by
implementing the provenance store
persistent store component using a
proprietary or open source database
management system.

The Provenance Store persistent
store component is accessed via
an OGSA-DAI Data Service.
This allows proprietary database
components to be used.

OGSA-DAI

IR-PS-9 Implementations of the provenance
recording, query and management
interfaces should permit clustering.

The Provenance Store is
identified by a single logical
network endpoint address which
may represent a clustered
implementation.
Identification of stateful
resources managed by the
Provenance Store will be by
standardised Web Services
specifications. The
specifications permit clustering.

GT4 and WS-RF model
facilitate clustering. A
later test scenario may
be created to verify this
requirement.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 34 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

This implementation will not support the following requirements from the Provenance Store
architecture:

ID Description Design Feature Justification

IR-PS-1 A provenance store implementation
may use a metadata infrastructure
such as RDF to annotate p-
assertions with metadata
information about time at which p-
assertions are received through the
recording interface or stored in
persistent storage.

P-Assertion schemas include
elements of any type that are
intended for application specific
information and metadata.
These elements may be used to
annotate p-assertions with RDF
metadata for application specific
processing.

This is deemed
application specific.
Context of p-assertion is
open and thus Actor may
submit with RDF triple
using a suitably defined
DocumentStyle.

IR-PS-2 A provenance store implementation
may document its interactions with
asserters by storing p-assertions in
some provenance store (itself or
another one). This allows the
provenance to document back ups,
replication, time, etc.

A Provenance Store can itself be
an actor that records p-
assertions. Recording may be to
itself or a separate Provenance
Store by including the actor side
libraries in an implementation
of the Provenance Store. The
Provenance Store
implementation developed as
part of the project will not
include this feature.

Not included in version
1.0 release of
Provenance Server
Implementation. If
priority deemed
sufficient, then this may
be included in future
release of Provenance
Server Implementation.

IR-PS-3 A provenance store implementation
may use a storage layer that offers
replication of p-assertions in order
to be fault-tolerant.

The Provenance Store
implementation developed as
part of this project separates the
storage layer which is
represented as a data service
using OGSA-DAI. This
separation allows a fault-
tolerant database configuration
to be used if required.

To date, XML databases
do not support fault
tolerance so this feature
will not be supported by
the project.

IR-PS-10 Implementations of provenance
store should consider long term
storage of p-assertions and the
necessity to keep a long term copy
of public keys (which may expire)
to verify signed assertions.

Security lifecycle management
considers the changes over an
extended period of time of data
security as threats to the data
change.

This is an ongoing
research and
development subject and
out of scope for the
Provenance project.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 35 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

7 Packaging and Delivery Considerations

Project partners may retrieve source code for building by use of project CVS repository. The build
process results in a gar file for deployment to Globus. Additional support documentation and set-up
files are provided within CVS project.
Binary and source code is available for download from external project server, subject to acceptance
of registration terms. Software download details are available at the following URL:
www.gridprovenance.org

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 36 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

8 Known Outstanding Issues

8.1 XQuery Support

OGSA-DAI does not currently support XQuery. This support is anticipated in 2Q2006 following
which support will also be included in Provenance implementation.

8.2 Federated Query

The implementation to support federated query will be provided after the initial public release in
February 2006. This will be achieved by inclusion of DIAS patterns.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 37 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

9 Conclusion and further work

The documentation has presented the components which together form the server-side Provenance
Store. The deployment of the system is presented in terms of each internal and external component.
The application of standards, principally WS-ResourceFramework, is both presented in abstract and
in the instance for this implementation.
The exposure of WSRF is an extension to Provenance services to record, query and manage. Future
implementations shall apply further WSRF specifications to yield increased benefit from WS-
Resource model to access provenance data.
This should now be viewed with consideration for client side library development. The linkage of
both Client Library and Provenance Store is crucial for success of Provenance implementation. These
need to be displayed to function correctly with Test Scenarios. It should also take into account
deployment to more strenuous environments, where the number of actors or the size of submitted
records may have implications on deployment configuration. Such considerations will also take look
at implementation to cater for more complex query: both to permit XQuery and to return large result
sets in a manner that the calling client can use. This is the direction that the implementation of the
Provenance Store will take over the coming months, until September 2006.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 38 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

10 Bibliography

[And05] A. Andics: EU Provenance Deliverable 2.2.1 Software Requirements Document.
Public document published on www.gridprovenance.org project website.

[GJM+06] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, L. Moreau: Architecture
for Provenance Systems. Public document published on www.gridprovenance.org
project website.

[Ibb06] J. Ibbotson: EU Provenance Deliverable 5.3.2 Scalability for Provenance. Public
project document published on www.gridprovenance.org project website.

[IT06] J. Ibbotson and V. Tan : EU Provenance Deliverable 4.2.1 Security Requirements.
Public document published on www.gridprovenance.org project website.

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 39 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11 Appendices

11.1 Appendix A – Sequence Diagrams

The following diagrams are provided to assist comprehension of the role of each component.

Figure 5: Sequence diagram for creating a Provenance Store Resource

Figure 6: Sequence diagram for recording to a Provenance Store Resource

updateXML ()

find()
getResource()

record()

Actor Provenance
FactoryService

Provenance
Service

Resource
Context

Provenance
 Resource Home

Provenance
Resource

add()

<<create>>
create()

lookup()
createResource()

Actor Provenance
FactoryService

Provenance
Service

Resource
Context

Provenance
 Resource Home

Provenance
Resource

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 40 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11.2 Appendix B – External APIs

The following external APIs are described using WSDL and XML Schemas. The PASOA (version
0.22) definitions have been imported into the WSRF compliant Provenance Store schema. Note that
these are preliminary WSDL definitions of the interfaces and are subject to change as the project
moves towards a standardised set of interfaces.

11.2.1 ProvenanceStoreFactory Interface
<?xml version="1.0" encoding="UTF-8"?>
<!-- (c) Copyright International Business Machines Corporation 2005. -->
<!-- See CPL.txt for licensing information. -->
<definitions name="ProvenanceStoreFactory"
 targetNamespace="http://www.gridprovenance.org/namespaces/ProvenanceStoreFactory"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.gridprovenance.org/namespaces/ProvenanceStoreFactory"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <documentation>
 The ProvenanceStoreFactory interface.
 Author: John Ibbotson
 Last Modified: 03/01/2006
 </documentation>

 <!-- T Y P E S -->
 <types>
 <xsd:schema
 targetNamespace="http://www.gridprovenance.org/namespaces/ProvenanceStoreFactory"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.gridprovenance.org/namespaces/ProvenanceStoreFactory">

 <xsd:import namespace="http://schemas.xmlsoap.org/ws/2004/03/addressing"
 schemaLocation="../ws/addressing/WS-Addressing.xsd" />

 <!-- REQUESTS AND RESPONSES -->
 <xsd:element name="createResource">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="createResourceResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsa:EndpointReference"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>

 <!-- M E S S A G E S -->
 <message name="CreateResourceRequest">
 <part name="request" element="tns:createResource"/>
 </message>
 <message name="CreateResourceResponse">
 <part name="response" element="tns:createResourceResponse"/>
 </message>

 <!-- P O R T T Y P E -->
 <portType name="ProvenanceStoreFactoryPortType">
 <operation name="createResource">
 <input message="tns:CreateResourceRequest"/>
 <output message="tns:CreateResourceResponse"/>
 </operation>
 </portType>
</definitions>

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 41 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11.2.2 ProvenanceStore Interface
<?xml version="1.0"?>
<!-- (c) Copyright International Business Machines Corporation 2005. -->
<!-- See CPL.txt for licencing information. -->
<definitions name="ProvenanceStore"
 targetNamespace="http://www.gridprovenance.org/namespaces/ProvenanceStore"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.gridprovenance.org/namespaces/ProvenanceStore"
 xmlns:prw="http://www.pasoa.org/schemas/version022/PRecord.wsdl"
 xmlns:pqw="http://www.pasoa.org/schemas/version022/WSXQuery.wsdl"
 xmlns:pmw="http://www.pasoa.org/schemas/version022/PManage.wsdl"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
 xmlns:wsrlw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-
01.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <documentation>
 The ProvenanceStore interface.
 Author: John Ibbotson
 Last Modified: 03/01/2006
 </documentation>

 <import namespace="http://www.pasoa.org/schemas/version022/PRecord.wsdl"
 location="./PRecord.wsdl"/>
 <import namespace="http://www.pasoa.org/schemas/version022/WSXQuery.wsdl"
 location="./WSXQuery.wsdl"/>
 <import namespace="http://www.pasoa.org/schemas/version022/PManage.wsdl"
 location="./PManage.wsdl"/>
 <import namespace="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-
01.wsdl" location="../wsrf/lifetime/WS-ResourceLifetime.wsdl" />

 <!-- T Y P E S -->
 <types>
 <xsd:schema
 targetNamespace="http://www.gridprovenance.org/namespaces/ProvenanceStore"
 xmlns:tns="http://www.gridprovenance.org/namespaces/ProvenanceStore"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- RESOURCE PROPERTIES -->
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="ProvenanceStoreResourceProperties">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:Name" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>

 <!-- P O R T T Y P E -->
 <portType name="ProvenanceStorePortType"
 wsrp:ResourceProperties="ProvenanceStoreResourceProperties">
 <operation name="record">
 <input message="prw:Record"/>
 <output message="prw:RecordAck"/>
 </operation>

 <operation name="query">
 <input message="pqw:Query"/>
 <output message="pqw:QueryAck"/>
 </operation>

 <operation name="CreateRepository">
 <input message="pmw:CreateRepository"/>
 <output message="pmw:CreateRepositoryAck"/>
 </operation>
 <operation name="DeleteRepository">
 <input message="pmw:DeleteRepository"/>
 <output message="pmw:DeleteRepositoryAck"/>
 </operation>
 <operation name="ListRepositories">

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 42 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

 <input message="pmw:ListRepositories"/>
 <output message="pmw:ListRepositoriesAck"/>
 </operation>
 <operation name="updateRepository">
 <input message="pmw:UpdateRepository"/>
 <output message="pmw:UpdateRepositoryAck"/>
 </operation>

 <wsdl:operation name="Destroy">
 <input message="wsrlw:DestroyRequest"
 wsa:Action="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceLifetime/Destroy"/>
 <output message="wsrlw:DestroyResponse"
 wsa:Action="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceLifetime/DestroyResponse"/>
 <fault
 message="wsrlw:ResourceNotDestroyedFault"
 name="ResourceNotDestroyedFault"/>
 <fault
 message="wsrlw:ResourceUnknownFault"
 name="ResourceUnknownFault"/>
 </wsdl:operation>
 </portType>
</definitions>

The WSRF compliant ProvenanceStore includes the following WSDL files:

11.2.2.1 PRecord WSDL
<?xml version="1.0"?>
<definitions name="PRecord"
 targetNamespace="http://www.pasoa.org/schemas/version022/PRecord.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.pasoa.org/schemas/version022/PRecord.wsdl"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl"
 xmlns:pr="http://www.pasoa.org/schemas/version022/PRecord.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <documentation>
 The Provenance Store recording port type and messages
 Author: Paul Groth
 Last Modified: Feb 1 2005
 </documentation>

 <import namespace="http://www.pasoa.org/schemas/version022/PRecord.xsd"
 location="./PRecord.xsd" />

 <message name="Record">
 <part name="body" element="pr:record"/>
 </message>

 <message name="RecordAck">
 <part name="body" element="pr:recordAck"/>
 </message>

 <portType name="RecordPortType">
 <operation name="Record">
 <input message="tns:Record"/>
 <output message="tns:RecordAck"/>
 </operation>
 </portType>
</definitions>

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 43 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11.2.2.2 WSXQuery WSDL

The following WSDL shall be modified to include the full WSXQuery version 0.22 following release of Provenance
version 1.0. The updated version shall provide extended query capabilities.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="WSXQuery"
 targetNamespace="http://www.pasoa.org/schemas/version022/WSXQuery.wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.pasoa.org/schemas/version022/WSXQuery.wsdl"
 xmlns:xq="http://www.pasoa.org/schemas/version022/WSXQuery.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <documentation>
 An XQuery interface for Web Services
 Author: Simon Miles
 Last Modified: 25 January 2005
 </documentation>

 <import namespace="http://www.pasoa.org/schemas/version022/WSXQuery.xsd"
location="./WSXQuery.xsd"/>

 <message name="Query">
 <part name="body" element="xq:query"/>
 </message>

 <message name="QueryAck">
 <part name="body" element="xq:queryAck"/>
 </message>

 <portType name="XQueryPortType">
 <operation name="Query">
 <input message="tns:Query"/>
 <output message="tns:QueryAck"/>
 </operation>
 </portType>
</definitions>

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 44 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11.2.2.3 PManage WSDL
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="PManage"
 targetNamespace="http://www.pasoa.org/schemas/version022/PManage.wsdl"
 xmlns:tns="http://www.pasoa.org/schemas/version022/PManage.wsdl"
 xmlns:pm="http://www.pasoa.org/schemas/version022/PManage.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:p="http://www.w3.org/2001/XMLSchema">

 <documentation>
 The Provenance Store management port type and messages.
 Author: Paul Groth
 Last Modified: 17 November 2003
 </documentation>

 <import namespace="http://www.pasoa.org/schemas/version022/PManage.xsd"
 location="./PManage.xsd"/>

 <!-- A Provenance Store may have one or more repositories that act as independently from one
another. Fundamentally, this can be seen as a Provenance Service having one or more provenance stores
-->
 <portType name="ManagePortType">
 <operation name="CreateRepository">
 <input message="tns:CreateRepository"/>
 <output message="tns:CreateRepositoryAck"/>
 </operation>
 <operation name="DeleteRepository">
 <input message="tns:DeleteRepository"/>
 <output message="tns:DeleteRepositoryAck"/>
 </operation>
 <operation name="ListRepositories">
 <input message="tns:ListRepositories"/>
 <output message="tns:ListRepositoriesAck"/>
 </operation>
 <operation name="updateRepository">
 <input message="tns:UpdateRepository"/>
 <output message="tns:UpdateRepositoryAck"/>
 </operation>
 </portType>

 <message name="CreateRepository">
 <part name="body" element="pm:createRepository"/>
 </message>

 <message name="CreateRepositoryAck">
 <part name="body" element="pm:createRepository"/>
 </message>

 <message name="DeleteRepository">
 <part name="body" element="pm:deleteRepository"/>
 </message>

 <message name="DeleteRepositoryAck">
 <part name="body" element="pm:deleteRepository"/>
 </message>

 <message name="ListRepositories">
 <part name="body" element="pm:listRepositories"/>
 </message>

 <message name="ListRepositoriesAck">
 <part name="body" element="pm:listRepositoriesAck"/>
 </message>

 <message name="UpdateRepository">
 <part name="UpdateRepository" element="pm:updateRepository"/>
 </message>

 <message name="UpdateRepositoryAck">
 <part name="UpdateRepositoryAck" element="pm:updateRepositoryAck"/>
 </message>
</definitions>

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 45 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11.3 Appendix C – UML Class Diagrams

11.3.1 Class diagram for org.gridprovenance.wsrf package, including security

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 46 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11.3.2 Class diagram for org.gridprovenance.commonservices package

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 47 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11.3.3 Class diagram for org.gridprovenance.exceptions package

11.3.4 Class diagram for org.gridprovenance.commonservices.test package

PROVENANCE Contract Number:
Enabling and Supporting Provenance in Grids for Complex Problems 511085

Copyright © 2005 by the PROVENANCE consortium Page 48 of 48
The PROVENANCE Project receives research funding from the European Community’s Sixth Framework Programme

11.4 Exception and Notification Handling

The ProvenanceException class is used for error reporting together with log4j logging. This is sub-
classed for more specific error handling and defined in package
org.gridprovenance.commonservices.exceptions. Each instance of a ProvenanceException is
allocated an identifier, this is to assist debugging by prefixing log4j error messages.
Exceptions thrown within the Provenance server implementation are caught and wrapped into
ServerExceptions. It is not intended that server-side exceptions be reported to user directly, but
should be handled by the implementation.

